Wind Mill Pattern Optimization using Evolutionary Algorithms - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2020

Wind Mill Pattern Optimization using Evolutionary Algorithms


When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that when reducing the problem to only two variables defining a grid, we can gain up to 3% of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing computation time. To achieve these results, we compared both a genetic algorithm and a differential evolution algorithm to previous results from the literature. These preliminary results should be extended to examples involving non-rectangular farm layouts and wind distributions that may require pattern deformation variables in order to increase solution diversity.
Fichier principal
Vignette du fichier
gecco2014.pdf (1.89 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02917483 , version 1 (19-08-2020)


  • HAL Id : hal-02917483 , version 1


Charlie Vanaret, Nicolas Durand, Jean-Marc Alliot. Wind Mill Pattern Optimization using Evolutionary Algorithms. 2020. ⟨hal-02917483⟩
86 Consultations
105 Téléchargements


Gmail Facebook X LinkedIn More