Wind Mill Pattern Optimization using Evolutionary Algorithms - ENAC - École nationale de l'aviation civile
Pré-Publication, Document De Travail Année : 2020

Wind Mill Pattern Optimization using Evolutionary Algorithms

Résumé

When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that when reducing the problem to only two variables defining a grid, we can gain up to 3% of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing computation time. To achieve these results, we compared both a genetic algorithm and a differential evolution algorithm to previous results from the literature. These preliminary results should be extended to examples involving non-rectangular farm layouts and wind distributions that may require pattern deformation variables in order to increase solution diversity.
Fichier principal
Vignette du fichier
gecco2014.pdf (1.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02917483 , version 1 (19-08-2020)

Identifiants

  • HAL Id : hal-02917483 , version 1

Citer

Charlie Vanaret, Nicolas Durand, Jean-Marc Alliot. Wind Mill Pattern Optimization using Evolutionary Algorithms. 2020. ⟨hal-02917483⟩
115 Consultations
146 Téléchargements

Partager

More