Minimum entropy unsupervised aircraft trajectories clustering: theory and implementation - ENAC - École nationale de l'aviation civile
Article Dans Une Revue International Journal On Advances in Software Année : 2016

Minimum entropy unsupervised aircraft trajectories clustering: theory and implementation

Florence Nicol

Résumé

Clustering is a common operation in statistics. When data considered are functional in nature, like curves, dedicated algorithms exist, mostly based on truncated expansions on Hilbert basis. When additional constraints are put on the curves, like in applications related to air traffic where operational considerations are to be taken into account, usual procedures are no longer applicable. A new approach based on entropy minimization and Lie group modeling is presented here, yielding an efficient unsupervised algorithm suitable for automated traffic analysis. It outputs cluster centroids with low curvature, making it a valuable tool in airspace design applications or route planning.
Fichier principal
Vignette du fichier
main.pdf (453.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01367593 , version 1 (16-09-2016)

Identifiants

  • HAL Id : hal-01367593 , version 1

Citer

Florence Nicol, Stéphane Puechmorel. Minimum entropy unsupervised aircraft trajectories clustering: theory and implementation. International Journal On Advances in Software, 2016, 9 (3-4). ⟨hal-01367593⟩

Collections

ENAC MAIAA DEVI
220 Consultations
192 Téléchargements

Partager

More