
Minimum entropy unsupervised aircraft trajectories
clustering: theory and implementation

Florence Nicol

Université Fédérale de Toulouse
Ecole Nationale de l’Aviation Civile

F-31055 Toulouse FRANCE
Email: florence.nicol@enac.fr

Stéphane Puechmorel

Université Fédérale de Toulouse
Ecole Nationale de l’Aviation Civile

F-31055 Toulouse FRANCE
Email: stephane.puechmorel@enac.fr

Abstract—Clustering is a common operation in statistics. When
data considered are functional in nature, like curves, dedicated
algorithms exist, mostly based on truncated expansions on Hilbert
basis. When additional constraints are put on the curves, like in
applications related to air traffic where operational considerations
are to be taken into account, usual procedures are no longer
applicable. A new approach based on entropy minimization
and Lie group modeling is presented here, yielding an efficient
unsupervised algorithm suitable for automated traffic analysis. It
outputs cluster centroids with low curvature, making it a valuable
tool in airspace design applications or route planning.

Keywords–curve clustering; probability distribution estimation;
functional statistics; minimum entropy; air traffic management.

I. INTRODUCTION

Clustering aircraft trajectories is an important problem in
Air Traffic Management (ATM). It is a central question in
the design of procedures at take-off and landing, the so called
sid-star (Standard Instrument Departure and Standard Terminal
Arrival Routes). In such a case, one wants to minimize
the noise and pollutants exposure of nearby residents while
ensuring runway efficiency in terms of the number of aircraft
managed per time unit.

The same question arises with cruising aircraft, this time
the mean flight path in each cluster being used to opti-
mally design the airspace elements (sectors and airways).
This information is also crucial in the context of future air
traffic management systems where reference trajectories will
be negotiated in advance so as to reduce congestion. A special
instance of this problem is the automatic generation of safe and
efficient trajectories, but in such a way that the resulting flight
paths are still manageable by human operators. Clustering is
a key component for such tools: major traffic flows must be
organized in such a way that the overall pattern is not too
far from the current organization, with aircraft flying along
airways. The classification algorithm has thus not only to
cluster similar trajectories but at the same time makes them
as close as possible to operational trajectories. In particular,
straightness of the flight segments must be enforced, along with
a global structure close to a graph with nodes corresponding to
merging/splitting points and edges the airways. Moreover, the
clustering procedure has to deal with trajectories that are very
similar in shape but are oriented in opposite directions. These
flight paths should be sufficiently separate in order to prevent

hazardous encounters. A Lie group modeling is proposed to
take into account the direction and the position of the aircraft
trajectories.

In the next two sections, previous related works and the
motivation for dealing with curve systems are presented. Then,
the notion of entropy of a curve system is introduced. In
section V, the modeling of trajectories with a Lie group
approach is presented. Sections VI and VII will show how
to estimate Lie group densities and to cluster curves in this
new setting. In section VIII, a discussion on fast implemen-
tation and algorithms is detailed. Finally, results on synthetic
examples are briefly given and a conclusion is drawn.

II. PREVIOUS RELATED WORK

Several well established algorithms may be used for per-
forming clustering on a set of trajectories, although only a
few of them were eventually applied in the context of air
traffic. The spectral approach relies on trajectories modeling
as vectors of samples in a high dimensional space, and uses
random projections as a mean of reducing the dimensionality.
The huge computational cost of the required singular values
decomposition is thus alleviated, allowing use on real recorded
traffic over several months. It was applied in a study conducted
by the Mitre corporation on behalf of the Federal Aviation
Authority (FAA) [1]. The most important limitation of this
approach is that the shape of the trajectories is not taken
into account when applying the clustering procedure unless a
resampling procedure based on arclength is applied: changing
the time parametrization of the flight paths will induce a
change in the classification. Furthermore, there is no mean
to put a constraint on the mean trajectory produced in each
cluster: curvature may be quite arbitrary even if samples
individually comply with flight dynamics.

Another approach is taken in [2], with an explicit use of an
underlying graph structure. It is well adapted to road traffic as
vehicles are bound to follow predetermined segments. A spatial
segment density is computed then used to gather trajectories
sharing common parts. For air traffic applications, it may be of
interest for investigating present situations, using the airways
and beacons as a structure graph, but will misclassify aircraft
following direct routes which is quite a common situation,
and is unable to work on an unknown airspace organization.
This point is very important in applications since trajectory

datamining tools are mainly used in airspace redesign. A
similar approach is taken in [3] with a different measure of
similarity. It has to be noted that many graph-based algorithms
are derived from the original work presented in [4], and
exhibit the aforementioned drawbacks for air traffic analysis
applications.

An interesting vector field based algorithm is presented in
[5]. A salient feature is the ability to distinguish between close
trajectories with opposite orientations. Nevertheless, putting
constraints on the geometry of the mean path in a cluster
is quite awkward, making the method unsuitable for our
application.

Due to the functional nature of trajectories, that are basi-
cally mappings defined on a time interval, it seems more appro-
priate to resort to techniques based on times series as surveyed
in [6], [7], or functional data statistics, with standard references
[8], [9]. In both approaches, a distance between pairs of
trajectories or, in a weaker form, a measure of similarity must
be available. The algorithms of the first category are based on
sequences, possibly in conjunction with dynamic time warping
[10], while in functional data analysis, samples are assumed
to come from an unknown underlying function belonging to a
given Hilbert space. However, it has to be noticed that apart
from this last assumption, both approaches yield similar end
algorithms, since functional data revert for implementation
to usual finite dimensional vectors of expansion coefficients
on a suitable truncated basis. For the same reason, model-
based clustering may be used in the context of functional data
even if no notion of probability density exists in the original
infinite dimensional Hilbert space as mentioned in [11]. A nice
example of a model-based approach working on functional
data is funHDDC [12].

III. DEALING WITH CURVE SYSTEMS: A PARADIGM
CHANGE

When working with aircraft trajectories, some specific
characteristics must be taken into account. First of all, flight
paths consist mainly of straight segments connected by arcs
of circles, with transitions that may be assumed smooth up to
at least the second derivative. This last property comes from
the fact that pilot’s actions result in changes on aerodynamic
forces and torques and a straightforward application of the
equations of motion. When dealing with sampled trajectories,
this induces a huge level of redundancy within the data, the
relevant information being concentrated around the transitions.
Second, flight paths must be modeled as functions from a
time interval [a, b] to R3 which is not the usual setting for
functional data statistics: most of the work is dedicated to
real valued mappings and not vector ones. A simple approach
will be to assume independence between coordinates, so that
the problem falls within the standard case. However, even
with this simplifying hypothesis, vertical dimension must be
treated in a special way as both the separation norms and
the aircraft maneuverability are different from those in the
horizontal plane.

Finally, being able to cope with the initial requirement of
compliance with the current airspace structure in airways is
not addressed by general algorithms. In the present work, a
new kind of functional unsupervised classifier is introduced,
that has in common with graph-based algorithms an esti-
mation of traffic density but works in a continuous setting.

For operational applications, a major benefit is the automatic
building of a route-like structure that may be used to infer new
airspace designs. Furthermore, smoothness of the mean cluster
trajectory, especially low curvature, is guaranteed by design.
Such a feature is unique among existing clustering procedures.
Finally, our Lie group approach makes easy the separation
between neighboring flows oriented in opposite directions.
Once again, it is mandatory in air traffic analysis where such
a situation is common.

IV. THE ENTROPY OF A SYSTEM OF CURVES

Considering trajectories as mappings γ : [t0, t1] → R3

induces a notion of spatial density as presented in [13]. As-
suming that after a suitable registration process all flight paths
γi, i = 1, . . . , N , are defined on the same time interval [0, 1] to
Ω a domain of R3, one can compute an entropy associated with
the system of curves using the approach presented in [14]. Let
a system of curves γ1, . . . , γN be given, its entropy is defined
to be:

E(γ1, . . . , γN) = −
∫

Ω

d̃(x) log
(
d̃(x)

)
dx,

where the spatial density d̃ is computed according to:

d̃ : x 7→
∑N
i=1

∫ 1

0
K (‖x− γi(t)‖) ‖γ′i(t)‖dt∑N

i=1 li
. (1)

In the last expression, li is the length of the curve γi and K
is a kernel function similar to those used in nonparametric
estimation. A standard choice is the Epanechnikov kernel:

K : x 7→ C
(
1− x2

)
1[−1,1](x),

with a normalizing constant C chosen so as to have a unit
integral of K on Ω. In multivariate density estimation, a
common practice is to build a multivariate kernel function
by means of an univariate kernel K composed with a norm,
denoted by ‖.‖. The resulting mapping, x 7→ K(‖x‖) enjoys
some important properties:

• Translation invariance;
• Rotational symmetry.

In the section on implementation, the translation invariance
will be used to cut the computational cost of kernel evaluation.

Since the entropy is minimal for concentrated distributions,
it is quite intuitive to figure out that seeking for a curve system
(γ1, . . . , γN) giving a minimum value for E(γ1, . . . , γN) will
induce the following properties:

• The images of the curves tend to get close one to
another.

• The individual lengths will be minimized: it is a direct
consequence of the fact that the density has a term in
γ′ within the integral that will favor short trajectories.

Using a standard gradient descent algorithm on the entropy
produces an optimally concentrated curve system, suitable for
use as a basis for a route network. Figure 2 illustrates this
effect on an initial situation given in Figure 1. A conflicting
set of trajectories are converging to a single point, following
an initial flight plan. First, an automated planner has proposed
a solution by generating a set of safe trajectories that are
relatively complex and may fail to be manageable by air traffic

controllers. In Figure 2, the minimization entropy criterion has
deformed the proposed flight paths and produced straighten
trajectories with route-like behavior. The median of the initial
and the final flows are represented in Figure 1 and 2.

Figure 1. Initial flight plan.

Figure 2. Entropy minimal curve system from the initial flight plan.

The displacement field for trajectory j is oriented at each
point along the normal vector to the trajectory, with norm given
by:∫

Ω

γj(t)− x
‖γj(t)− x‖

∣∣∣∣
N
K ′ (‖γj(t)− x‖) log

(
d̃(x)

)
dx‖γ′j(t)‖

(2)

−
(∫

Ω

K (‖γj(t)− x‖) log
(
d̃(x)

)
dx

)
γ′′j (t)

‖γ′j(t)‖

∣∣∣∣∣
N

(3)

+

(∫
Ω

d̃(x) log(d̃(x))dx

)
γ′′j (t)

‖γ′j(t)‖

∣∣∣∣∣
N

, (4)

where the notation v|N stands for the projection of the vector
v onto the normal vector to the trajectory. An overall scaling
constant of:

1∑N
i=1 li

,

where li is the length of trajectory i, has to be put in front of the
expression to get the true gradient of the entropy. In practice,

it is not needed since algorithms will adjust the size of the step
taken in the gradient direction. Another formulation using the
scaled arclength in the entropy can be found in [15]. While
being equivalent to the one presented above, since it relies on a
reparametrization, only the term related to the kernel gradient
remains in the final expression. As a consequence, there is no
need to project moves onto the normal to the curves. However,
it introduces a constraint that must be taken into account in
numerical implementations. So far, the principle retained is
to resample the curves after the update so as to ensure that
the defining property (constant velocity) of the arclength is
preserved.

V. A LIE GROUP MODELING

While satisfactory in terms of traffic flows, the previous
approach suffers from a severe flaw when one considers flight
paths that are very similar in shape but are oriented in opposite
directions. Since the density is insensitive to direction reversal,
flight paths will tend to aggregate while the correct behavior
will be to ensure a sufficient separation in order to prevent
hazardous encounters. Taking aircraft headings into account in
the clustering process is then mandatory when such situations
have to be considered.

This issue can be addressed by adding a penalty term
to neighboring trajectories with different headings but the
important theoretical property of entropy minimization will be
lost in the process. A more satisfactory approach will be to take
heading information directly into account and to introduce a
notion of density based on position and velocity.

Since the aircraft dynamics is governed by a second order
equation of motion of the form:(

γ′(t)
γ′′(t)

)
= F

(
t;

γ(t)
γ′(t)

)
,

it is natural to take as state vector:(
γ(t)
γ′(t)

)
.

The initial state is chosen here to be:(
0d
e1

)
,

with e1 the first basis vector, and 0d the origin in Rd. It is
equivalent to model the state as a linear transformation:

0d ⊗ e1 7→ T (t)⊗A(t)(0d ⊗ e1) = γ(t)⊗ γ′(t),

where T (t) is the translation mapping 0d to γ(t) and A(t) is
the composite of a scaling and a rotation mapping e1 to γ′(t).
Considering the vector (γ(t), 1) instead of γ(t) allows a matrix
representation of the translation T (t):(

γ(t)
1

)
=

(
Id γ(t)
0 1

)(
0d
1

)
.

From now, all points will be implicitly considered as having
an extra last coordinate with value 1, so that translations are
expressed using matrices. The origin 0d will thus stand for the
vector (0, . . . , 0, 1) in Rd+1. Gathering things yields:(

γ(t)
γ′(t)

)
=

(
T (t) 0

0 A(t)

)(
0d
e1

)
. (5)

The previous expression makes it possible to represent a
trajectory as a mapping from a time interval to the matrix Lie
group G = Rd×Σ×SO(d), where Σ is the group of multiples
of the identity, SO(d) the group of rotations and Rd the group
of translations. Please note that all the products are direct. The
A(t) term in the expression (5) can be written as an element
of Σ ⊗ SO(d). Starting with the defining property A(t)e1 =
γ′(t), one can write A(t) = ‖γ′(t)‖U(t) with U(t) a rotation
mapping e1 ∈ Sd−1 to the unit vector γ′(t)/‖γ′(t)‖ ∈ Sd−1.
For arbitrary dimension d, U(t) is not uniquely defined, as it
can be written as a rotation in the plane P = span(e1, γ

′(t))
and a rotation in its orthogonal complement P⊥. A common
choice is to let U(t) be the identity in P⊥ which corresponds in
fact to a move along a geodesic (great circle) in Sd−1. This will
be assumed implicitly in the sequel, so that the representation
A(t) = Λ(t)U(t) with Λ(t) = ‖γ′(t)‖Id becomes unique.

The Lie algebra g of G is easily seen to be Rd × R ×
Asym(d) with Asym(d) is the space of skew-symmetric d × d
matrices. An element from g is a triple (u, λ,A) with an
associated matrix form:

M(u, λ,A) =

 0 u
0 0

0

0 λId+A

 . (6)

The exponential mapping from g to G can be obtained in a
straightforward manner using the usual matrix exponential:

exp((u, λ,A)) = exp(M(u, λ,A)).

The matrix representation of g may be used to derive a
metric:

〈(u, λ,A), (v, µ,B)〉g = Tr
(
M(u, λ,A)tM(v, µ,B)

)
.

Using routine matrix computations and the fact that A,B being
skew-symetric have vanishing trace, it can be expressed as:

〈(u, λ,A), (v, µ,B)〉g = nλµ+ 〈u, v〉+ Tr
(
AtB

)
. (7)

A left invariant metric on the tangent space TgG at g ∈ G
is derived from (7) as:

〈〈X,Y, 〉〉g = 〈g−1X, g−1Y 〉g,

with X,Y ∈ TgG. Please note that G is a matrix group acting
linearly so that the mapping g−1 is well defined from TgG to
g. Using the fact that the metric (7) splits, one can check that
geodesics in the group are given by straight segments in g: if
g1, g2 are two elements from G, then the geodesic connecting
them is:

t ∈ [0, 1] 7→ g1 exp
(
t log

(
g−1

1 g2

))
,

where log is a determination of the matrix logarithm. Finally,
the geodesic length is used to compute the distance d(g1, g2)
between two elements g1, g2 in G. Assuming that the transla-
tion parts of g1, g2 are respectively u1, u2, the rotations U1, U2

and the scalings exp(λ1), exp(λ2) then:

d(g1, g2)2 = (λ1 − λ2)
2

+ (8)

Tr
(

log
(
U t1U2

)
log
(
U t1U2

)t)
+ ‖u1 − u2‖2. (9)

An important point to note is that the scaling part of an
element g ∈ G will contribute to the distance by its logarithm.

Based on the above derivation, a flight path γ with state
vector (γ(t), γ′(t)) will be modeled in the sequel as a curve
with values in the Lie group G:

Γ: t ∈ [0, 1] 7→ Γ(t) ∈ G,

with:
Γ(t).(0d, e1) = (γ(t), γ′(t)).

In order to make the Lie group representation amenable
to statistical thinking, we need to define probability densities
on the translation, scaling and rotation components that are
invariant under the action of the corresponding factor of G.

VI. NONPARAMETRIC ESTIMATION ON G
Since the translation factor in G is the additive group Rd, a

standard nonparametric kernel estimator can be used. It turns
out that it is equivalent to the spatial density estimate of (1),
so that no extra work is needed for this component. As for
the rotation component, a standard parametrization is obtained
recursively starting with the image of the canonical basis of Rd
under the rotation. If R is an arbitrary rotation and e1, . . . , ed is
the canonical basis, there is a unique rotation Re1 mapping e1

to Re1 and fixing e2, . . . , ed. It can be represented by the point
Re1 = r1 on the sphere Sd−1. Proceeding the same way for
Re2, . . . Red, it is finally possible to completely parametrized
R by a (d − 1)-uple (r1, . . . , rd−1) where ri ∈ Si−1, i =
1, . . . , d. Finding a rotation invariant distribution amounts thus
to construct such a distribution on the sphere.

In directional statistics, when we consider the spherical
polar coordinates of a random unit vector u ∈ Sd−1, we deal
with spherical data (also called circular data or directional
data) distributed on the unit sphere. For d = 3, a unit vector
may be described by means of two random variables θ and ϕ
which respectively represent the co-latitude (the zenith angle)
and the longitude (the azimuth angle) of the points on the
sphere. Nonparametric procedures, such as the kernel density
estimation methods are sometimes convenient to estimate the
probability distribution function (p.d.f.) of such kind of data
but they require an appropriate choice of kernel functions.

Let X1, . . . , Xn be a sequence of random vectors taking
values in Rd. The density function f of a random d-vector may
be estimated by the kernel density estimator [16] as follows:

f̂(x) =
1

n

n∑
i=1

KH (x−Xi) , x ∈ Rd,

where KH(x) =| H |−1 K(H−1x), K denotes a multivariate
kernel function and H represents a d-dimensional smoothing
matrix, called bandwidth matrix. The kernel function K is a d-
dimensional p.d.f. such as the standard multivariate Gaussian
density K(x) = (2π)d/2 exp

(
− 1

2x
Tx
)

or the multivariate
Epanechnikov kernel. The resulting estimation will be the sum
of “bumps” above each observation, the observations closed
to x giving more important weights to the density estimate.
The kernel function K determines the form of the bumps
whereas the bandwidth matrix H determines their width and
their orientation. Thereby, bandwidth matrices can be used to
adjust for correlation between the components of the data.
Usually, an equal bandwidth h in all dimensions is chosen,

corresponding to H = hId where Id denotes the d×d identity
matrix. The kernel density estimator then becomes:

f̂(x) =
1

nhd

n∑
i=1

K
(
h−1(x−Xi)

)
, x ∈ Rd.

In certain cases when the spread of data is different in
each coordinate direction, it may be more appropriate to use
different bandwidths in each dimension. The bandwidth matrix
H is given by the diagonal matrix in which the diagonal entries
are the bandwidths h1, . . . , hd.

In directional statistics, a kernel density estimate on Sd−1

is given by adopting appropriate circular symmetric kernel
functions such as von Mises-Fisher, wrapped Gaussian and
wrapped Cauchy distributions. A commonly used choice is the
von Mises-Fisher (vMF) distribution on Sd−1 which is denoted
M(m,κ) and given by the following density expression [17]:

KVMF (x;m,κ) = cd(κ) eκm
T x, κ > 0, x ∈ Sd−1, (10)

where

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
(11)

is a normalizing constant with Ir(κ) denoting the modified
Bessel function of the first kind at order r. The vMF kernel
function is an unimodal p.d.f. parametrized by the unit mean-
direction vector µ and the concentration parameter κ that
controls the concentration of the distribution around the mean-
direction vector. The vMF distribution may be expressed by
means of the spherical polar coordinates of x ∈ Sd−1 [18].

Given the random vectors Xi, i = 1, . . . , n, in Sd−1, the
estimator of the spherical distribution is given by:

f̂(x) =
1

n

n∑
i=1

KVMF (x;Xi, κ)

=
cd(κ)

n

n∑
i=1

eκX
T
i x, κ > 0, x ∈ Sd−1.

Please, note that the quantity x − Xi which appears in the
linear kernel density estimator is replaced by XT

i x which is
the cosine of the angles between x and Xi, so that more
important weights are given on observations close to x on
the sphere. The concentration parameter κ is a smoothing
parameter that plays the role of the inverse of the bandwidth
parameter as defined in the linear kernel density estimation.
Large values of κ imply greater concentration around the mean
direction and lead to undersmoothed estimators whereas small
values provide oversmoothed circular densities [19]. Indeed,
if κ = 0, the vMF kernel function reduces to the uniform
circular distribution on the hypersphere. Note that the vMF
kernel function is convenient when the data is rotationally
symmetric.

The vMF kernel function is a convenient choice for our
problem because this p.d.f. is invariant under the action on
the sphere of the rotation component of the Lie group G.
Moreover, this distribution has properties analogous to those
of multivariate Gaussian distribution and is the limiting case
of a limit central theorem for directional statistics. Other
multidimensional distributions might be envisaged, such as the
bivariate von Mises, the Bingham or the Kent distributions
[17]. However, the bivariate von Mises distribution being a

product kernel of two univariate von Mises kernels, this is more
appropriate for modeling density distributions on the torus and
not on the sphere. The Bingham distribution is bimodal and
satisfies the antipodal symmetry property K(x) = K(−x).
This kernel function is used for estimating the density of
axial data and is not appropriate for our clustering approach.
Finally, the Kent distribution is a generalization of the vMF
distribution, which is used when we want to take into account
of the spread of data. However, the rotation-invariance property
of the vMF distribution is lost.

As for the scaling component of G, the usual kernel
functions such as the Gaussian and the Epanechnikov kernel
functions are not suitable for estimating the radial distribution
of a random vector in Rd. When distributions are defined over
a positive support (here in the case of non-negative data), these
kernel functions cause a bias in the boundary regions because
they give weights outside the support. An asymmetrical kernel
function on R+ such as the log-normal kernel function is
a more convenient choice. Moreover, this p.d.f. is invariant
by change of scale. Let R1, . . . , Rn be univariate random
variables from a p.d.f. which has bounded support on [0; +∞[.
The radial density estimator may be defined by means of a sum
of log-normal kernel functions as follows:

ĝ(r) =
1

n

n∑
i=1

KLN (r; lnRi, h), r ≥ 0, h > 0,

where
KLN (x;µ, σ) =

1√
2πσx

e−
(ln x−µ)2

2σ2

is the log-normal kernel function and h is the bandwidth
parameter. The resulting estimate is the sum of bumps de-
fined by log-normal kernels with medians Ri and variances
(eh

2 −1)eh
2

R2
i . Note that the log-normal (asymmetric) kernel

density estimation is similar to the kernel density estimation
based on a log-transformation of the data with the Gaussian
kernel function. Although the scale-change component of G is
the multiplicative group R+, we can use the standard Gaussian
kernel estimator and the metric on R.

VII. UNSUPERVISED ENTROPY CLUSTERING

The first thing to be considered is the extension of the
entropy definition to curve systems with values in G. Starting
with expression from (1), the most important point is the
choice of the kernel involved in the computation. As the group
G is a direct product, choosing K = Kt.Ks.Ko with Kt,
Ks, Ko functions on respectively the translation, scaling and
rotation part will yield a G-invariant kernel provided the Kt,
Ks, Ko are invariant on their respective components. Since the
translation part of G is modeled after Rd, the Epanechnikov
kernel is a suitable choice. As for the scaling and rotation, the
choice made follows the conclusion of section VI: a log-normal
kernel and a von-Mises one will be used respectively. Finally,
the term ‖γ′(t)‖ in the original expression of the density, that
is required to ensure invariance under re-parametrization of the
curve, has to be changed according to the metric in G and is
replaced by 〈〈γ′(t), γ′(t)〉〉1/2γ(t). The density at x ∈ G is thus:

dG(x)) =

∑N
i=1

∫ 1

0
K (x, γi(t)) 〈〈γ′i(t), γ′i(t)〉〉

1/2
γi(t)

dt∑N
i=1 li

(12)

where li is the length of the curve in G, that is:

li =

∫ 1

0

〈〈γ′i(t), γ′i(t)〉〉
1/2
γi(t)

dt. (13)

The expression of the kernel evaluation K (x, γi(t)) is split
into three terms. In order to ease the writing, a point x in G will
be split into xr, xs, xo components where the exponent r, s, t
stands respectively for translation, scaling and rotation. Given
the fact that K is a product of component-wise independent
kernels it comes:

K (x, γi(t)) = Kt

(
xt, γti (t)

)
Ks (xs, γsi (t))Ko (xo, γoi (t))

where:

Kt(x
t, γti (t)) =

2

π
ep
(
‖xt − γti (t)‖

)
(14)

Ks(x
s, γsi (t)) =

1

xsσ
√

2π
exp

(
− (log xs − log γsi (t))

2

2σ2

)
(15)

Ko(x
o, γoi (t)) = C(κ) exp

(
κTr

(
xoT γoi (t)

))
(16)

with ep : x ∈ R+ 7→ (1 − x2)1[0,1](x) and C(κ) the normal-
izing constant making the kernel of unit integral. Please note
that the expression given here is valid for arbitrary rotations,
but for the application targeted by the work presented here, it
boils down to a standard von-Mises distributions on Sd−1:

Ko(x
o, γoi (t)) = C(κ) exp

(
κxoT γoi (t)

)
with normalizing constant as given in (11). In the general case,
it is also possible, writing the rotation as a sequence of moves
on spheres Sd−1,Sd−2, . . . and the distribution as a product of
von-Mises on each of them, to have a vector of parameters κ:
it is the approach taken in [20] and it may be applied verbatim
here if needed.

The entropy of the system of curves is obtained from the
density in G:

E(dG) = −
∫
G
dG(x) log dG(x)dµG(x) (17)

with dµG the left Haar measure. Using again the fact that G is a
direct product group, dµ is easily seen to be a product measure,
with dxt, the usual Lebesgue measure on the translation part,
dxs/xs on the scaling part and dxo on Sd−1 for the rotation
part. It turns out that the 1/xs term in the expression of dxs/xs
is already taken into account in the kernel definition, due to the
fact that it is expressed in logarithmic coordinates. The same
is true for the von-Mises kernel, so that in the sequel only the
(product) Lebesgue measure will appear in the integrals.

Finding the system of curves with minimum entropy re-
quires a displacement field computation as detailed in [14].
For each curve γi, such a field is a mapping ηi : [0, 1]→ TG
where at each t ∈ [0, 1], ηi(t) ∈ TGγi(t). Compare to the
original situation where only spatial density was considered,
the computation must now be conducted in the tangent space
to G. Even for small problems, the effort needed becomes
prohibitive. The structure of the kernel involved in the density
can help in cutting the overall computations needed. Since it
is a product, and the translation part is compactly supported,
being an Epanechnikov kernel, one can restrict the evaluation

to points belonging to its support. Density computation will
thus be made only in tubes around the trajectories.

Second, for the target application that is to cluster the flight
paths into a route network and is of pure spatial nature, there
is no point in updating the rotation and scaling part when
performing the moves: only the translation part must change,
the other two being computed from the trajectory. The initial
optimization problem in G may thus be greatly simplified.

Let ε be an admissible variation of curve γi, that is a
smooth mapping from [0, 1] to TG with ε(t) ∈ Tγi(t)G and
ε(0) = ε(1) = 0. We assume furthermore that ε has only a
translation component. The derivative of the entropy E(dG)
with respect to the curve γi is obtained from the first order
term when γi is replaced by γi + ε. First of all, it has to be
noted that dG is a density and thus has unit integral regardless
of the curve system. When computing the derivative of E(dG),
the term

−
∫
G
dG(x)

∂γidG(x)

dG(x)
dµG(x) = −

∫
G
∂γidG(x)dµG(x)

will thus vanish. It remains:

−
∫
G
∂γidG(x) log dG(x)dµG(x).

The density dG is a sum on the curves, and only the i-th term
has to be considered. Starting with the expression from (12),
one term in the derivative will come from the denominator. It
computes the same way as in [14] to yield:

γt′′i (t)

〈〈γ′i(t), γ′i(t)〉〉G

∣∣∣∣
N
E(dG) (18)

Please note that the second derivative of γi is considered only
on its translation component, but the first derivative makes use
of the complete expression. As before, the notation |N stands
for the projection onto the normal component to the curve.

The second term comes from the variation of the numerator.
Using the fact that the kernel is a product KtKsKo and that
all individual terms have a unit integral on their respective
components, the expression becomes very similar to the case
of spatial density only and is:

−
(∫
G
K (x, γi(t)) log dG(x)dµG(x)

)
γt′′i (t)

〈〈γ′i(t), γ′i(t)〉〉
1/2
G

∣∣∣∣∣
N

(19)

+

∫
Rd
e(t)Kt′ (xt, γti (t)) log dG(x)〈〈γ′i(t), γ′i(t)〉〉

1/2
G dxt

(20)

with:
e(t) =

γti (t)− xt

‖γti (t)− xt‖

∣∣∣∣
N
.

VIII. IMPLEMENTATION

Two computational bottlenecks are associated with the
implementation of the clustering algorithm. The first one is the
computation of the curve system density and the second one is
the entropy minimization, which relies on gradient iterations.
These two aspects will be separately treated in the sequel.
Please note that the algorithms introduced are mainly tailored
for the application in air traffic and may not be adequate to
problems with different state spaces.

A. Density evaluation
Assuming that the original trajectories are planar, the

overall dimension of the Lie group G is 4. The method requires
the evaluation of the integral

E(dG) = −
∫
G
dG(x) log dG(x)dµG(x) (21)

that has potentially a very high computational cost. However,
as mentioned in section V, G is a direct product, so that the
Haar measure µG splits into three terms: one that is the usual
Lebesgue measure on R2, the second one that is the Lebesgue
measure on the unit circle and the last being of the form ds/s.
Let a point x in G be represented as (x1, x2, θ, s) with (x1, x2)
the spatial component in R2, θ be the angle giving the position
on the unit circle (with the usual identification 2π = 0) and s
be the scale factor. The integral (21) becomes:

E(dG) = (22)

−
∫
R2

∫ 2π

0

∫
R+

dG(x1, x2, θ, s) (23)

log dG(x1, x2, θ, s)dx1dx2dθ
ds

s
(24)

In computer implementation, multi-dimensional integrals
can be evaluated either using polynomial approximations on
a discrete grid [21] or Monte-Carlo methods when the di-
mensionality of the problem induces an intractable computa-
tional cost. In the present case, where the integration has to
be conveyed in four dimensions, grid based approaches can
still be applied. Extension to trajectories with values in R3

will increase the dimension to 6 which mandates the use of
stochastic approximations. In any case, it must be noted that a
high accuracy in the result is not needed, so that randomized
algorithms may be used without impairing the convergence of
the subsequent gradient iteration.

The computation of the density itself is more constraining
as its original definition involves for each point where its value
is needed a summation of integrals over all trajectories which
may quickly become prohibitive. In a previous work [14]
where the density was two-dimensional, a grid based approach
was selected, which allows a very simple discrete convolution
formulation. Here, due to the higher dimensionality, a crude
extension of the method seems to yield an unacceptable
increase of both the computational cost and memory footprint.
It turns out however that the problem is less complex than
expected as a result of the product form of the kernel. Starting
with the expression (12), the critical point in the evaluation of
the density at a given point x = (x1, x2, θ, s) is the sum:

N∑
i=1

∫ 1

0

K (x, γi(t)) 〈〈γ′i(t), γ′i(t)〉〉
1/2
γi(t)

dt. (25)

Using any classical quadrature formula, the integral may be
reduced to a finite sum, yielding a double sum:

N∑
i=1

Mi∑
j=1

wijK (x, γi(tij)) 〈〈γ′i(tij), γ′i(tij)〉〉
1/2
γi(tij)

(26)

where Mi is the number of sample points tij chosen on
trajectory i and the wij are the quadrature weights. The
expression (26) is fully general, but a simpler choice is made

in practice: the sampling points tij are selected to be evenly
spaced and the weights all equal to 1. It is nothing but the
rectangle quadrature formula, whose accuracy is sufficient for
the application in mind. Switching to a higher order formula
is straightforward. In (26), the evaluation of the kernel has the
highest cost since the norm 〈〈γ′i(tij), γ′i(tij)〉〉

1/2
γi(tij)

does not
depend on x and can be computed once for all. To compute the
density at a single point, the total number of kernel evaluations
is
∑N
i=1Mi, with typical values of N = 100,Mi = 20 for the

analysis of a control sector to N = 10000,Mi = 100 in the
case of a country sized airspace. While acceptable in the first
case, a direct application of the formula is not efficient enough
in the second.

Recalling that the kernel K is a product of three elementary
kernels K = KtKoKs, it is clear that K will vanish outside
of the support of any of the three. As mentioned before, Kt is
selected to be an Epanechnikov kernel which is compactly
supported, so that K itself will vanish when the distance
between the translation components of x and γi(tij) is large
enough. The sum (26) will thus have almost all terms vanishing
if the bandwidth of Kt is adequately selected. Finally, using
the t superscript to denote the translation part of the points:

Kt(x
t, γti (tij)) =

2

π
ep
(
‖xt − γti (tij)‖

)
with ep : x ∈ R+ 7→ (1− x2)1[0,1](x).

The final step towards efficient evaluation of the density
is to reduce the computation to points located on a evenly
spaced grid. This procedure is known in the non-parametric
statistics community as binning [22]. First of all, the domain
of interest in the translation component is assume to be of the
form [a1, b1]× [a2, b2], which fits almost all possible cases in a
real world application. For the air traffic clustering problem, it
is a box covering the investigated airspace. Letting L1, L2 be
the respective number of grid points desired in each direction,
an evenly spaced grid is constructed by taking as vertices the
points:

xtk,l =

(
a1 +

k(b1 − a1)

L1 − 1
, a2 +

l(b2 − a2)

L2 − 1

)
with k ∈ {0, . . . L1−1}, l ∈ {0, . . . , L2−1} and L1 > 1, L2 >
1. Please note that the vertices xk,l define implicitly bins that
are rectangular cells [xk,l, xk+1,l]× [xk,l, xk,l+1]. The density
will be evaluated at the vertices of the grid only, resulting
in a final approximation made of L1 × L2 discrete values.
Furthermore, sample points γi(tij) will be considered equal
to the grid vertex xk,l that is closest to it (the case of ties up
to machine precision is unlikely to appear, but can be solved by
either randomly drawing the vertex among those equally close
or splitting the observation between ex-aequo vertices). Due
to this approximation, the norm ‖xt−γti (tij)‖ can only take a
finite number of values, namely the distances between any pair
of vertices and can thus be precomputed. Furthermore, since
the kernel Kt is compactly supported, the number of non-zeros
values is in practice much lower than the size of the grid.

Binning is used also for the rotation and scale components
with respective kernels Ko and Ks. In both cases, the support
of the kernel is identical to the domain of variation itself, so
that cutting the computation cost using the previous trick is
quite difficult. For the specific application to air traffic analysis,
two remarks can be made:

• Within the frame of the current airspace organization,
aircraft are bound to follow quite narrow paths. Even
in the future, a complete free flight cannot be imagined
unless humans are removed from the loop, which is
not intended. As a consequence, one can assume a
quite small bandwidth for the von-Mises kernel Ko.

• The main use of the rotation and scale components
is to disambiguate between flows that are spatially
closed, but with otherwise very different behaviors:
opposite headings, different speed categories. In theses
cases, a fine representation of the rotation and scale
components is not needed, as the observed values are
expected to be well separated.

Gathering things together, a coarse grid was selected for
binning the rotation and scale components. In the experiments
conducted so far, a 10× 10 was enough to ensure the desired
behavior. Since the translation component is discretized on
a 100 × 100, the overall bins number is 1e6, which is well
within acceptable limits for memory footprint (around 10Mo
with current implementation).

In the first of the complete density computation algorithm,
the density grid is created as a block matrix M of size m1 ×
m2, where m1,m2 are the respective number of bins desired
in each component and each block is of size p×q, with p (resp.
q) the number of bins in the rotation (resp. scale) component.
The domain of variation for the translation component is a
rectangle [a1, b1]× [a2, b2], the interval [0, 2π] for the rotation
and [s1, s2] for the scale. An elementary cell in the grid where
a given point (x1, x2, θ, s) lies can be determined using the
following procedure:

• The block coordinates (i, j) is found from the couple
(x1, x2) as:

i = (m1 − 1)
x1 − a1

b1 − a1
, j = (m2 − 1)

x2 − a2

b2 − a2
.

• Within the block Mi,j , the respective rotation and
scale indices (k, l) are obtained pretty much by the
same way:

k = (p− 1)
θ

2π
, l = (q − 1)

s− s1

s2 − s1
.

Please note that all indices are zero-based, so thatM0,0 is the
first block in the matrixM. Actual elements inM are referred
to using quadruples (i, j, p, q), with the first two components
designing the block and the remaining two locating the element
in the block.

As mentioned above, a benefit of the binning procedure
is the ability to pre-compute the kernel values, since the
difference between any two grid points is known. As an
example, for the translation component, the value for the kernel
Kt can be stored as a m1m2 ×m1m2 matrix Kt with entries
Kt(i,j),(k,l) = Kt

(
d(i,j),(k,l)

)
and:

d(i,j),(k,l) =

√(
k − i
b1 − a1

)2

+

(
l − j
b2 − a2

)2

.

The storage size is m2
1 × m2

2 and seems prohibitive, but it
turns out that most of the element values are redundant. It is
assumed that the matrix Kt is stored in a lexicographic order,
that is couples (i, j) are stored in increasing i then increasing

j order. Kt is clearly symmetric, and all the elements on the
diagonal have the same value Kt(0). Furthermore, since the
distance d(i,j),(k,l) is based only on the differences k − i and
l − j, it is invariant if the same shift (p, q) is applied to both
couples. It implies that the matrix Kt has a block structure that
is represented as:

A0 A1 Am2

A1 A0 Am2−1

...
...

...
...

...
Am2

. A1 A0

 .

Each block Ai is symmetric and within a given block, all the
diagonals are equal, thanks again to the integer shift invariance
property. Therefore, the storage really required is just m1×m2

that is no more than the number of grid points. Please note that
it is due entirely to the shift invariance property, that comes
from the translation invariance of the distance: using more
general kernels that do not exhibit invariance properties will
require storing the full Kt matrix: in practical implementations,
it is thus highly desirable to stick to distance based kernels.

A further reduction of complexity comes from the fact that
Kt is compactly supported: for distance greater than a given
threshold, Kt will be identically 0. It means that only a subset
of the blocks Ai will not vanish. Within the blocks themselves,
when the bandwidth parameter is low enough, only a subset
of the diagonals will be non zero. As a consequence, the real
needed storage is only a fraction of the original one and is
well below m1 ×m2. In practice, the most convenient way is
to store data in a u× v matrix Kt with entries:

Kt
ij = Kt

√(i

b1 − a1

)2

+

(
j

b2 − a2

)2
 .

The size of Kt is of course depending on the kernel bandwidth,
but is generally in the order of one tenth to one fifth of the
size of M in each coordinates.

On the rotation and scale components, there is no particular
vanishing property that can be used. Except when dealing
with very small bandwidths, there is no interest in having less
kernel values stored that possible distances. In the sequel, the
corresponding vectors will be denoted as Ko (resp. Ks) with
size p (resp. q).

The density computation can then be performed using the
Algorithm 1. On completion, the block matrix M contains
as entries the density up to a scalar. Normalizing it so that
all its elements sum to 1 yields the final density estimate.
In practical implementations, the matrix M will have all its
elements stored contiguously.

B. Moving density computation to GPUs
There is an increasing interest in the numerical analysis

community for GPU computation. These massively parallel
processors, first intended to perform tasks related to 3D scenes
display, have proved themselves very efficient in problems
where it is possible to formulate the solution has a set of
asynchronous and independent tasks. Due to the high number
of processing units available, GPUs excel in many algorithms
coming from the field of linear algebra, simulation, PDE
solving. In the clustering application described here, GPU
computing can leverage the efficiency of density computation

Algorithm 1 Density computation

1: M← 0
2: for i = 0 . . . N − 1 do
3: for j = 0 . . .Mi − 1 do
4: x← γti (tj)
5: (k, l,m, n)← coordinate of cell containing x
6: UPDATE(k,l,m,n)
7: end for
8: end for
9: procedure UPDATE(k,l,m,n)

10: for i = −u . . . u do
11: if k + i ≥ 0|k + i < N then
12: for j = −v . . . u do
13: if l + j ≥ 0|l + j < Mi then
14: kt← Kt

|i||j|
15: UPDATEINNERBLOCK(kt, k+i,l+j,m,n)
16: end if
17: end for
18: end if
19: end for
20: end procedure
21: procedure UPDATEINNERBLOCK(kt, k,l,m,n)
22: for i = 0 . . . p do
23: ir ← (m+ i) mod p
24: kθ ← Kθ

ir
25: for j = 0 . . . q do
26: js← n+ j
27: if js < q then
28: ks← Ks

js
29: Mk,l,ir,js ←Mk,l,ir,js + kt ∗ kθ ∗ ks
30: end if
31: end for
32: end for
33: end procedure

that leads naturally to parallel processing. Some care must be
taken however as simultaneous accesses to common memory
locations may impair the overall performance.

First of all, one can note that computation within a M
block, that is updating the rotation and scale part of the density
requires only the knowledge of the samples with translation
coordinates falling within the corresponding grid cell and is
independent of the computation made on another block. This
gives access to the first level of parallelism. On most GPU
architectures, the computation may be organized in thread
blocks. It is the case within the CUDA programming model
of NVIDIA, and a thread block size of 16× 16 was selected.
The size of the kernel grids in rotation and scale components
were chosen accordingly. To maximize the performance, the
corresponding block in the matrix M is first copied to local
memory (designed as ”shared memory” in CUDA), then all
computation are performed on it within the given thread
block. At the end of the updating phase, the local memory is
transferred back to the global one. The storage needed for the
local block is 256 times the size of a float, which yields a total
of 1Ko, well below the 48Ko limit of the CUDA architecture.

At the beginning of the density computation, a global
memory block representing the whole of matrixM is allocated
on the device and set to 0. One thread block (256 threads) is

dedicated to a single block inM, for a total of m1×m2×256
threads. Depending on the hardware and the choice made on
m1,m2, this value can exceed the maximum number of threads
allowed on a particular GPU. In such a case, the update is
performed on submatrices of the original matrix M. With the
typical values given previously, the maximal number of threads
of the GTX980 used for the development is not reached.

Using the GPU to affect the sample points γi(tij) to the
right block in M will not improve the performance. A better
choice is to use the CPU to perform the task, then to send the
processed array of samples to the GPU device.

A second level of parallelism will be to consider updates
of submatrices of blocks in M instead of single blocks. The
expected gain is small, except when more that one GPU are
present in the system. The implementation details are not given
here, trying to improve the overall algorithm being still a work
in progress.

C. Implementing the gradient descent algorithm
Once the density grid M has been computed, the im-

plementation of the gradient move is quite straightforward
and requires only the ability to estimate the first and second
derivative on each trajectory. A very classical finite differences
scheme gives a sufficient accuracy to obtain convergence on
most situations. It takes the form of the product of a matrix
Di with theNi×4 matrix of samples (γi(ti1), . . . , γi(tiNi)) to
yield the matrix of derivative estimates (γ′i(ti1), . . . , γ′i(tiNi)).
Please note that the coordinates are put in columns, while
the samples are in row. Iterating the product with Di will
give rise to the second derivative. Generally speaking, Di is
obtained from the Lagrange interpolation polynomial and can
be constructed using the algorithm 2 (in the sequel d is the
degree of the interpolating polynomial):

As mentioned before, integrals are computed using a
quadrature formula, that was chosen to the simplest one, with
all weights equal.

IX. RESULTS

Only partial results are available for the moment and
several traffic situations are still to be considered. On simple
synthetic examples, the algorithm works as expected, avoiding
going to close to trajectories with opposite directions as indi-
cated on Figure 3. Note that using the Lie approach properly
separates the two left flight paths that have similar shape but
opposite directions. In a more realistic setting, the arrivals
and departures at Toulouse Blagnac airport were analyzed.
The algorithm performs well as indicated on Figure 4. Four
clusters are identified, with mean lines represented through a
spline smoothing between landmarks. It is quite remarkable
that all density based algorithms were unable to separate the
two clusters located at the right side of the picture, while the
present one clearly show a standard approach procedure and a
short departure one. An important issue still to be addressed
with the extended algorithm is the increase in computation
time that reaches 20 times compared to the approach using
only spatial density entropy. In the current implementation,
the time needed to cluster the traffic presented in Figure 3 is
in the order of 0.01s on a XEON 3Ghz machine and with a
pure java implementation. For the case of Figure 4, 5 minutes
are needed on the same machine for dealing with the set of
1784 trajectories.

Algorithm 2 Computation of the derivation matrix Di

1: Di ← 0
2: for k = 0 . . . Ni do
3: offset = GETOFFSET(k)
4: for j = 0 . . . N1 do
5: Di[k, j + offset] =LAGRANGE(j,k,offset)
6: end for
7: end for
8: function GETOFFSET(i)
9: if i < d/2 then

10: o← 0
11: else if i > Ni − d/2− 1 then
12: o← Ni − d
13: else
14: o← i− d/2
15: end if
16: return o
17: end function
18: function LAGRANGE(k,j,offset)
19: w ← 1.0
20: for a = 0 . . . d do
21: if a 6= k then
22: w ← w ∗ (ti,k+offset − ti,a+offset)
23: end if
24: end for
25: s← 0.0
26: for a = 0 . . . d do
27: if a 6= k then
28: p← 1.0
29: for b = 0 . . . d do
30: if b 6= k ∧ b 6= a then
31: p← p ∗ (ti,j − ti,b+offset)
32: end if
33: end for
34: s← s+ p
35: end if
36: end for
37: return s/w
38: end function

Figure 3. Clustering using the Lie approach.

X. CONCLUSION AND FUTURE WORK

The entropy associated with a system of curves has proved
itself efficient in unsupervised clustering application where

Figure 4. Bundling trajectories at Toulouse airport.

shape constraints must be taken into account. For using it in
aircraft route design, heading and velocity information must be
added to the state vector, inducing an extra level of complexity.
In our algorithm, we cannot enforce the regulatory separation
norms, just construct clusters with low interactions. Please note
that we can consider the current algorithm as a preprocessing
phase. In a second step, we could imagine running an algorithm
based on, for instance, optimal control in order to keep in line
with the minimum separation norms. The present work relies
on a Lie group modeling as an unifying approach to state
representation. It has successfully extended the notion of curve
system entropy to this setting, allowing the heading/velocity to
be added in a intrinsic way. The method seems promising, as
indicated by the results obtained on simple synthetic situations,
but extra work needs to be dedicated to algorithmic efficiency
in order to deal with the operational traffic datasets, in the
order of tens of thousand of trajectories.

Moreover, the choice of the kernel bandwidth parameters
should be explored in the next step of this work. Indeed, as it
is noted in [15], kernel bandwidth values will influence the
effect of the minimization entropy procedure on the curve
straightening: straightening is preeminent for low values, while
gathering dominates at high bandwidths. An automatic proce-
dure in the choice of bandwidth parameter is then desirable and
an adaptive bandwidth procedure may be of some interest.

Generally speaking, introducing a Lie group approach to
data description paves the way to new algorithms dedicated
to data with a high level of internal structuring. Studies are
initiated to address several issues in high dimensional data
analysis using this framework.

REFERENCES
[1] M. Enriquez, “Identifying temporally persistent flows in the terminal

airspace via spectral clustering,” in ATM Seminar 10, FAA-Eurocontrol,
Ed., 06 2013.

[2] M. El Mahrsi and F. Rossi, “Graph-based approaches to clustering
network-constrained trajectory data,” in New Frontiers in Mining Com-
plex Patterns, ser. Lecture Notes in Computer Science, A. Appice,
M. Ceci, C. Loglisci, G. Manco, E. Masciari, and Z. Ras, Eds. Springer
Berlin Heidelberg, 2013, vol. 7765, pp. 124–137.

[3] J. Kim and H. S. Mahmassani, “Spatial and temporal characterization
of travel patterns in a traffic network using vehicle trajectories,”
Transportation Research Procedia, vol. 9, 2015, pp. 164 – 184, papers
selected for Poster Sessions at The 21st International Symposium on
Transportation and Traffic Theory Kobe, Japan, 5-7 August, 2015.

[4] M. Ester, H. peter Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
AAAI Press, 1996, pp. 226–231.

[5] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, “Vector
field k-means: Clustering trajectories by fitting multiple vector fields,”
in Computer Graphics Forum, vol. 32, no. 3pt2. Blackwell Publishing
Ltd, 2013, pp. 201–210.

[6] T. W. Liao, “Clustering of time series data - a survey,” Pattern
Recognition, vol. 38, 2005, pp. 1857–1874.

[7] S. Rani and G. Sikka, “Recent techniques of clustering of time series
data: A survey,” International Journal of Computer Applications, vol. 52,
no. 15, August 2012, pp. 1–9, full text available.

[8] F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory
and Practice, ser. Springer Series in Statistics. Springer, 2006.

[9] J. Ramsay and B. Silverman, Functional Data Analysis, ser. Springer
Series in Statistics. Springer New York, 2006.

[10] W. Meesrikamolkul, V. Niennattrakul, and C. Ratanamahatana, “Shape-
based clustering for time series data,” in Advances in Knowledge
Discovery and Data Mining, ser. Lecture Notes in Computer Science,
P.-N. Tan, S. Chawla, C. Ho, and J. Bailey, Eds. Springer Berlin
Heidelberg, 2012, vol. 7301, pp. 530–541.

[11] A. Delaigle and P. Hall, “Defining probability density for a distribution
of random functions,” The Annals of Statistics, vol. 38, no. 2, 2010,
pp. 1171–1193.

[12] C. Bouveyron and J. Jacques, “Model-based clustering of time series
in group-specific functional subspaces,” Advances in Data Analysis and
Classification, vol. 5, no. 4, 2011, pp. 281–300.

[13] S. Puechmorel, “Geometry of curves with application to aircraft trajec-
tory analysis.” Annales de la faculté des sciences de Toulouse, vol. 24,
no. 3, 07 2015, pp. 483–504.

[14] S. Puechmorel and F. Nicol, “Entropy minimizing curves with applica-
tion to automated flight path design,” Second International Conference,
GSI 2015, Palaiseau, France, October 28-30, 2015, Proceedings, 2015.

[15] ——, “Entropy minimizing curves with application to flight path
design and clustering,” Entropy, vol. 18, no. 9, 2016, p. 337. [Online].
Available: http://www.mdpi.com/1099-4300/18/9/337

[16] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visu-
alization, ser. A Wiley-interscience publication. Wiley, 1992.

[17] K. Mardia and P. Jupp, Directional Statistics, ser. Wiley Series in
Probability and Statistics. Wiley, 2009.

[18] K. V. Mardia, “Statistics of directional data,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 37, no. 3, 1975, pp.
349–393.

[19] E. Garcı́a-Portugués, R. M. Crujeiras, and W. González-Manteiga,
“Kernel density estimation for directional–linear data,” Journal of
Multivariate Analysis, vol. 121, 2013, pp. 152–175.

[20] P. E. Jupp and K. V. Mardia, “Maximum likelihood estimators for the
matrix von mises-fisher and bingham distributions,” Ann. Statist., vol. 7,
no. 3, 05 1979, pp. 599–606.

[21] G. Dahlquist and Å. Björck, Numerical Methods in Scientific
Computing: Volume 1, ser. SIAM e-books. Society for
Industrial and Applied Mathematics, 2008. [Online]. Available:
https://books.google.fr/books?id=qy83gXoRps8C

[22] M. P. Wand, “Fast computation of multivariate kernel estimators,”
Journal of Computational and Graphical Statistics, vol. 3, no. 4, 1994,
pp. 433–445.

