Air traffic classification using convolutional neural networks - ENAC - École nationale de l'aviation civile
Communication Dans Un Congrès Année : 2024

Air traffic classification using convolutional neural networks

Daniel Delahaye
  • Fonction : Auteur
  • PersonId : 1129086
Pierre Maréchal
  • Fonction : Auteur
  • PersonId : 1263784
Isabelle Berry

Résumé

The difficulty of managing airspace is reflected in the complexity of forecasting its evolution. This paper presents a new neural network framework for managing images for which pixels are matrices with application to air traffic complexity map prediction. By modelling air traffic with a linear dynamical system, air traffic maps can be defined as images whose pixels are matrices. By computing intermediate steps, these air traffic maps are defined as images whose pixels are symmetric positive definite matrices. Then, we implement a convolution neural network with a specific data preprocessing step, new convolution, max-pooling, and flatten layers suitable to such images. The new convolution, max-pooling and flatten layers are capable of processing images coming from the data preprocessing step.
Fichier principal
Vignette du fichier
IWAC2024_T1-1-A.pdf (1.84 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04792269 , version 1 (20-11-2024)

Identifiants

  • HAL Id : hal-04792269 , version 1

Citer

Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry. Air traffic classification using convolutional neural networks. International Workshop on ATM/CNS, ENRI, Nov 2024, Tokyo, Japan. ⟨hal-04792269⟩
4 Consultations
4 Téléchargements

Partager

More