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The difficulty of managing airspace is reflected in the complexity of forecasting its evolution. This paper presents a
new neural network framework for managing images for which pixels are matrices with application to air traffic
complexity map prediction. By modelling air traffic with a linear dynamical system, air traffic maps can be defined
as images whose pixels are matrices. By computing intermediate steps, these air traffic maps are defined as images
whose pixels are symmetric positive definite matrices. Then, we implement a convolution neural network with a
specific data preprocessing step, new convolution, max-pooling, and flatten layers suitable to such images. The new
convolution, max-pooling and flatten layers are capable of processing images coming from the data preprocessing
step.
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1. Introduction
There are currently around 8,720 flights per day registered
in France. This traffic creates a considerable workload for
air traffic controllers. Thus, the airspace is divided into
several elementary sectors which are managed by
controllers. An increase in air traffic leads to congestion in
these control sectors. Two strategies to alleviate this
congestion are based on sector capacity and determined by
the number of aircraft passing through in a given period.
On the one hand, controllers can accept aircraft above the
capacity threshold. On the other hand, they can reject traffic
before maximum capacity is exceeded. This simple fact
shows that the current capacity definition is not enough to
reflect the workload induced by a traffic situation. The
workload is linked to the level of organisation of the
trajectories in sectors. If such trajectories are organised like
in a flow, the associated complexity is low. On the other
hand, if trajectories have a mixing behaviour, then conflicts
may appear, and the complexity increases.
The key idea of this approach is to model traffic in the
airspace by a dynamical system. This dynamical system
associates a velocity vector to each point of the airspace,
creating a vector field that gathers the main feature of the
traffic. At each point of the airspace, one can associate a
level of complexity, which is summarised by a matrix. An
airspace then can be represented as a 3D image defined by
Eq.(1)

. (1)𝐴 :  {1,..., 𝑝} ×  {1,..., 𝑛} ×  {1,..., 𝑚} →  ℝ³
where , and represent the number discretization steps𝑝, 𝑛 𝑚
for the altitude, the longitude, and the latitude, respectively.

Each corresponds to the velocity vectors. We can𝐴(𝑘, 𝑖, 𝑗)
build a complexity map as defined by Eq.(2)𝐿

(2)𝐿 :  {1,..., 𝑝} ×  {1 ..., 𝑛} ×  {1,  ..., 𝑚} →  ℝ3 × 3.

The Fig.1 is an example of a complexity map. Our model
assigns a label to each air traffic map , which measures the𝐿
associated level of traffic complexity. A detailed
explanation of this assignment label can be found in Section
2.
Since air traffic maps are similar to 3D images, the problem

of air traffic organisation can be framed as a classification
problem. Air traffic maps defined by Eq.(2) can be defined
as 3D images whose pixels are real matrices. In the fields of
machine learning and statistics, convolutional neural
networks (CNN) have proven to be the most efficient
algorithms for classifying real images. However, the
classification of air traffic maps T, as defined by Eq.(2),
poses a unique challenge as they do not conform to
conventional images.

Fig 1: Example of a complexity map of French airspace over an entire day.
All flight levels are represented.The represented values are computed by

the function (Eq.(8)).𝑓

Since there are no neural networks capable of classifying
air traffic maps, we transform the air traffic maps into new
air traffic maps defined by equation (3)

(3)𝑇:  {1,..., 𝑝} ×  {1 ..., 𝑛} ×  {1,  ..., 𝑚} →  𝑆
3
+.

where is the symmetric positive definite set.𝑆
3
+

Since is a Riemannian manifold, we have developed a𝑆
3
+

neural network inspired by CNN that is designed to classify
these air traffic maps. The neural network's architecture
includes a data preprocessing step where the natural
logarithm of each is computed, and a new𝑇(𝑘, 𝑖, 𝑗)
convolution, subsampling, and flattening layers suitable for
air traffic maps are detailed in Section 3.
The paper is organised into three sections. Section 2 is
dedicated to air traffic modelling and label assignment.
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Specifically, air traffic maps are generated using a linear
dynamical system. Section 3 introduces the state-of-the-art
CNN and our neural network to classify air traffic maps. T.
We implement convolution, max-pooling, and flatten
layers tailored to air traffic maps. Section 4 presents our
airspace database and the results obtained by our
convolutional neural network model.

2. Linear dynamical system to modelize air traffic map
The airspaces are defined by Eq.(1). Each is a𝐴(𝑘, 𝑖, 𝑗)
velocity aircraft vector. Using a linear dynamical system,
we transform Eq.(1) to Eq.(2). Each of the air𝑀(𝑘, 𝑖, 𝑗)
traffic map is called a complexity matrix, which informs on
local aircraft trajectories complexity.

2.1 State-of-the-art
The "Free Flight" operational concept has generated
significant research interest in ATC complexity. Dynamic
density was an integral part of Free Flight.
Wyndemere Inc. 1) proposed a measure of the perceived
complexity of an air traffic situation. This measure is linked
to the cognitive workload of the controller, with or without
knowledge of the aircraft's intentions. The metric is
human-oriented and, therefore, very subjective.
Laudeman et al. from NASA 2) developed a metric called
dynamic density which is more quantitative than the
previous ones.
A study aimed at identifying complexity drivers using
judgement analysis identified airspace design as the second
most important factor behind traffic volume3). The impact
of the structure on the controller workload can be found in
the paper 4,5).
But, all previous metrics only capture a single
characteristic. In this paper, we are interested in a model
capable of capturing as many possible situations as
possible. Linear and nonlinear dynamical systems were thus
implemented, each presenting its classes of metrics
identifying the disorder of a traffic model. The linear
dynamical systems are based on geometric properties and
propose new metrics capable of extracting characteristics
on the complexity of traffic such as proximity, convergence
and sensitivity. The linear dynamical systems are based on
dynamic air traffic modelling and use topological entropy
to measure air traffic disorder. Topological entropy
(Kolmogorov entropy) is the only metric capable of
capturing most characteristics of complexity. The nonlinear
form can even identify possible organisational trajectories
(planes following the same path at the same speed). Since
the computation time of nonlinear dynamical systems is
much longer than that of dynamic linear systems and the
accuracy is therefore not sufficient, we are naturally turned
to dynamic linear systems.

2.2. Principle
In this approach, we model a set of aircraft trajectories
using a linear dynamical system: . This𝑌

→
=  𝐴 × 𝑋

→
 +  𝐵

→

equation associates a velocity vector with a position in𝑌
→

space represented by coordinate . The congestion matrix𝑋
→

𝐴
describes the linear mapping between the position vector 𝑋

→

and the velocity vector . In contrast, the vector to the𝑌
→

𝐵
→

mean value of the vector field. The eigenvalues of matrix 𝐴
represents the system's evolution. Specifically, the real part
of these eigenvalues determines whether the system is in
contraction mode or in expansion mode: a positive real part
indicates expansion, while a negative real part indicates
contraction.
The imaginary part of the eigenvalues corresponds to the
curl tendency of the vector field. level. Depending on these
eigenvalues, a dynamical system can evolve through
contraction, expansion, rotation, or a combination of these
modes. The Fig.2 illustrates four typical examples for
which the matrix and the associated eigenvalues are𝐴
computed. When the relative distances between aircraft
remain unchanged over time, the real parts of the
eigenvalues of matrix are zero. It is illustrated in Fig.2 by𝐴
situations 1 and 4. When the norms of the relative distances
between aircraft decrease over time, the real parts of the
eigenvalues are negative. It is illustrated in Fig.2 by
situation 2. Conversely, when those relative distances
increase over time, the real parts of the eigenvalues are
positive. It is illustrated in Fig.2 by situation 3.

Fig 2: Eigenvalues loci for several typical situations.The small squares are
the initial positions of aircraft at a given time 6).

2.2. The airspace database
We consider a set of aircraft trajectories in a given airspace.
For each point of such airspace, we consider a
neighbourhood where trajectory samples are extracted. For
such aircraft velocity vectors, we compute the associated
linear dynamical system thanks to a Least Mean Square
approach in order to compute the A matrix and the 𝐵

→

vector.
(4)𝑌

𝑖 
=  𝐴 . 𝑋

𝑖
 +  𝐵.

where is the observed aircraft velocity vectors at position𝑌
𝑖

.𝑋
𝑖

The dynamical system has to be adjusted with the minimum
error based on the aircraft observations (positions and
velocity vectors). This fitting has been done with a Least
Mean Square minimization (LMS) method. For each
considered aircraft , it is supposed that position and𝑖
velocity vectors are given by : 𝑋

𝑖

→
 =   [𝑥

𝑖
,  𝑦

𝑖
,  𝑧

𝑖
]𝑇

. An example of such observations is𝑉
𝑖

→
 =   [𝑣

𝑥
𝑖

,  𝑣
𝑦𝑖

,  𝑣
𝑧

𝑖

]𝑇

given on Fig.3 for which aircraft observations are
represented by the blue arrows.
We then construct an error criterion , between the𝐸
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dynamical system model and the observation, based on a
norm (Euclidean, in our case), which should be minimised
in relation to matrix and vector and therefore in𝐴 𝐵

→

relation to matrix , which represents the parameters of the𝐶
model:

(5)𝐸 =  
𝑖 = 1

𝑁

∑ ||𝑉
𝑖

→
−  𝐴 .  𝑋

𝑖

→
||

2
.

Fig 3. Radar captures associated with three aircraft. In this example only
one time sample is considered.

In order to use matrix forms, we rewrite Eq.(4) as
, introducing the following matrices:𝑉 =  𝐶 ×  𝑋

where , , , ,𝑋 ∈ ℝ4 × 𝑁 𝑉 ∈  ℝ3 × 𝑁 𝐶 ∈ ℝ3 × 4 𝐴 ∈  ℝ3 × 3

and represents the number of observations at𝐵 ∈ ℝ3 × 𝑁 𝑁
a given instant (number of aircraft present in a sector at a
given instant). The Eq.(5) can be written as Eq.(6)

. (6)𝐸 =
𝑖 = 1

𝑁

∑ ||𝑉
𝑖

→
− ( 𝐶 .  𝑋

𝑖
)

→
||

2
 

In a matrix form 𝐸 =  ||𝑉 −  𝐶 . 𝑋||.
The derivative of such expression with respect to C is given
by Eq.(7)

. (7)∇
𝐶
𝐸2 =  −  2 . (𝑉 −  𝐶 . 𝑋) . 𝑋𝑇

E is minimum when :
.∇

𝐶
𝐸 =  0 ⇒  𝐶.  𝑋 . 𝑋𝑇 =  𝑉 . 𝑋𝑇

Then . On the right side, we 𝐶
𝑜𝑝𝑡 

=  𝑉. 𝑋𝑇. (𝑋. 𝑋𝑇)
−1

recognize the pseudo-inverse of matrix :𝑋𝑇

.𝑋+ =  𝑋𝑇. (𝑋. 𝑋𝑇)
−1

In some situations, is not invertible, and the𝑋. 𝑋𝑇

computation of the is not possible by using such𝐶
𝑜𝑝𝑡

equation. In this case, the classical SVD decomposition
trick is applied:

𝑋𝑇. (𝑋. 𝑋𝑇)
−1

 =  𝐿𝑇. 𝑆−1. 𝑅

where is a diagonal matrix containing the singular values𝑆
(only the significant singular values are inverted in this
formula in order to control the conditioning of the
algorithm).

⇒ 𝐶
𝑜𝑝𝑡

 =  𝑉. 𝐿𝑇. 𝑆−1. 𝑅
Based on the matrix is extracted for which an𝐶 𝐴
eigenvalue decomposition is computed :

𝐴 =  𝐵. 𝐷. 𝐵𝑇.
The diagonal matrix contains the eigenvalues. When such𝐷
eigenvalues have positive real parts, the system is in
expansion mode, and when they are negative, the system is
in contraction mode. We obtain the air traffic map defined
by Eq.(2)

(7)𝐿 :  {1,..., 𝑝} ×  {1 ..., 𝑛} ×  {1,  ..., 𝑚} →  ℝ3 × 3.
where is matrix.𝐿(𝑘, 𝑖, 𝑗) 𝐴
For more information on linear dynamical systems to model
air traffic maps and eigenvalues impact, readers are invited
to consult 6,7).

2.3. The assignment labels
Airspace maps need to be labelled in terms of complexity to
feed our neural network. To achieve this goal, we associate
each point in the airspace with the negative real part of the
eigenvalue of the A matrix (positive values ​​represent the
expansion of the vector field and will not generate
conflicts). Then, for each point, we compute the following
function f Eq.(8):

(8)𝑓(𝑀(𝑘, 𝑖, 𝑗)) =  
𝑖 = 1

3

∑ log(− λ
𝑖
)

where and negative eigenvalues of the M𝑀  ∈ ℝ3 × 3 λ
𝑖

matrix.
The function f, as shown in Fig.4 on the French airspace, is
a representation of the complexity which has to be managed
by air traffic controllers.

Fig 4. Complexity map of the French airspace. The represented values are
computed by the function (Eq.(8)).𝑓

The global complexity associated with an air traffic map 𝐿
is determined using the function :𝑐

𝑐(𝐿) =  
𝑘 = 1

𝑝

∑
𝑖 = 1

𝑛

∑
𝑗 = 1

𝑚

∑ 𝐶(𝑘, 𝑖, 𝑗) =
𝑘 = 1

𝑝

∑
𝑖 = 1

𝑛

∑
𝑗 = 1

𝑚

∑ 𝑓(𝐿(𝑘, 𝑖, 𝑗)).  

Such global complexity is evaluated on each air traffic map
composing the database and is then categorised into four
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groups. These groups are established based on the quartile
distribution of all c values computed on the air traffic map
database. Ultimately, we assign a mark from 1 to 4 to label
the map, reflecting the difficulty of managing airspace for
controllers. A mark of 1 indicates that air traffic
management presents no difficulty for controllers in
managing the airspace. A mark of 4 indicates that air traffic
management represents a critical difficulty for controllers.
The function , a key component in our process, is then𝑐
applied to the air traffic map at times and . It allows𝑡 𝑡 + 1
us to understand the evolution of the global complexity
between times and by computing the difference :𝑡 𝑡 + 1 θ

θ =  𝑐(𝐿
𝑡+1

) −  𝑐(𝐿
𝑡
)

where and are air traffic maps at the time t+1 and t 𝐿
𝑡+1

 𝐿
𝑡

respectively.
When the difference is negative, the global complexity
associated with an air traffic map at time t is more
significant than at time . The evolution of air traffic𝑡 + 1
maps between times and is more manageable for𝑡 𝑡 + 1
air traffic controllers. Air traffic maps with a negative
difference are associated with a mark of zero.
When the difference is positive, the global complexity
associated with an air traffic map at time is more𝑡 + 1
significant than at time . Consequently, the evolution of air𝑡
traffic maps will become more complex for air traffic
controllers to manage. The difference values ​​are divided
into four groups defined by the distribution of quartiles
across the entire air traffic maps database. Ultimately, we
assign a mark from 1 to 4 to label these maps, reflecting the
evolution difficulty of managing air traffic maps for
controllers.
Therefore, an air traffic map is associated with these two
marks. Combining these two marks, we obtain a new score
with two pieces of information on airspace management:
the difficulty of controllers managing airspace at time t and
its evolution managing difficulty at time t+1. The new score
evolves between a score between 1 and 20. For example, a
score of 12 corresponds to the combination of the score of 2
obtained by the function as well as the score of 4 obtained𝑐
by the difference function θ. This score of 12 means air
traffic mapping is relatively manageable at time and will𝑡
become complex at time .𝑡 + 1

3. Neural network for air traffic maps classification
Our neural network will have to solve classification
problems. Air traffic maps are similar to 3D images whose
pixels are the complexity matrices. We will first present a
state-of-the-art neural network capable of classifying
conventional images. Secondly, we will present our neural
network, inspired by traditional CNN, by implementing a
data preprocessing step, a new convolution, max-pooling,
and flattening layers adapted to air traffic maps.

3.1. State-of-the-art
The visual cortex inspires convolutional neural networks.
As illustrated in Fig.5, a convolutional neural network
consists of an input layer, hidden layers, and an output
layer. These hidden layers are divided into two networks: a
feature extraction network and a classifier network.
The feature extraction network comprises numerous
convolution and pooling layer pairs. The pooling layer
reduces the dimensionality. Feature extraction aims to find
the most compact and informative set of features and
distinct patterns to enhance the classifier's efficiency.
The classifier network is a succession of fully connected
layers. Each layer contains a certain number of cells, also
known as neurons. An activation function is associated with
each layer. This network aims to classify feature maps
derived from the feature extraction network.
CNNs have proven their efficiency in image classification
9), object detection 10), facial recognition 11) and video
analysis 12,13).
In 2017, a groundbreaking neural network was
implemented based on symmetric positive-definite matrices
(SPD), the Riemannian manifold. This neural network
preserves the (SPD) structure across layers. It integrates the
Riemannian structures into the deep network architectures.
A novel backpropagation algorithm sets it apart: it trains the
network by exploiting a stochastic gradient descent
optimization algorithm on Stiefel manifolds. This specific
neural network is applied to emotion recognition, action
recognition, face verification14), and recognition of
skeleton-based hand gestures15).

For conventional images, classification problems for classic
images are most of the time defined by a parametric model:

𝑁: Ω ×  𝑊 → 𝐾
where is a set of free parameters, a set of outcomes𝑊 Ω
into a finite number of subset and a finite whose elements𝐾
are the labels.
A loss function is used to characterise the model's𝐸
goodness-of-fit. The learning algorithm for the model 𝑁
involves minimising the loss function based on the set .𝑊
After computing congestion matrices using a linear𝐴
dynamical system, we have .Ω = ℝ3 × 3

Fig 5: An example of convolution neural network structure 8).

After computing congestion matrices using a linear𝐴
dynamical system, we have . Therefore, weΩ = ℝ3 × 3

implement our specific convolutional neural network model.
Similar to a conventional neural network, our convolutional
model is divided into a feature extraction network and a
classifier network.
Moreover, our convolutional model also contains two passes: a
forward and a backward pass. A pass is defined as a sequence
of mathematical operations dependent on the layers of a neural
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network. The forward pass propagates the input data from the
first to the last layer, defining the neural network. For each
input data, the result is compared to the associated label with a
loss function. The loss function provides a result called error
denoted by . This error is propagated from the last layer to theδ
first layer. Conversely, the backward pass defines the
mathematical operations allowing data propagation from the
last layer to the first layer.
Since the pixels of air traffic maps are not real numbers, we
cannot apply the traditional neural networks described in the
state of the art. In this same state of the art, we have also noted
the existence of neural networks capable of processing images
such as air traffic maps.

3.2. The preprocessing data step
Through the interpolation of the velocity vectors by a linear
dynamical system, the input data are transformed into air
traffic maps , precisely defined by Eq.(2). This𝑇
transformation is defined by Eq.(9):

, (9)𝑁(𝑘, 𝑖, 𝑗) =  𝐿(𝑘, 𝑖, 𝑗) × 𝐿(𝑘, 𝑖, 𝑗)𝑇 
resulting in another air traffic map N, as precisely defined
by Eq.(10)

(10)𝑁:  {1,..., 𝑝} ×  {1 ..., 𝑛} ×  {1,  ..., 𝑚} →  𝑆
3
,

where is the symmetric matrix set.𝑆
3

3 × 3
The eigenvalues of each pixel are thus positive or null. By
employing the singular value decomposition (SVD) method
to decompose each :𝑁(𝑘, 𝑖, 𝑗)

𝑁(𝑘, 𝑖, 𝑗) =  𝑈
𝑘,𝑖,𝑗

. 𝐷
𝑘,𝑖,𝑗

. 𝑉
𝑘,𝑖,𝑗

where is the diagonal matrix containing the𝐷
𝑘,𝑖,𝑗

eigenvalues of symmetric matrix.𝑁(𝑘, 𝑖, 𝑗)
Then, we add an :ϵ >  0

𝑁(𝑘, 𝑖, 𝑗) =  𝑈
𝑘,𝑖,𝑗

. 𝐷
𝑘,𝑖,𝑗

. 𝑉
𝑘,𝑖,𝑗

+  ϵ ×  𝐼
3 ×3

,
where is the identity matrix.𝐼

3 ×3 
 3 × 3

This step is significant as it helps to prevent any potential
issues with zero eigenvalues, ensuring the stability and
accuracy of our data transformation process. This leads us
to air traffic maps defined by Eq.(3)𝑇

𝑇:  {1,..., 𝑝} ×  {1 ..., 𝑛} ×  {1,  ..., 𝑚} →  𝑆
3
+.

We implement specific layers inspired by CNN. The
convolution operation is the first mathematical operation
applied to input data. Since is a Riemannian manifold,𝑆

3
+

convolution operations cannot be applied to air traffic maps
. Since kernels are allowed to take negative values,𝑇 𝐾

producing convolved object whose values are no𝑇 * 𝐾 
longer in . In order to circumvent this difficulty, we apply𝑆

3
+

convolutions to another air traffic map where𝑋
. Since is a symmetric𝑋(𝑘, 𝑖, 𝑗) =  log(𝑇(𝑘, 𝑖, 𝑗) 𝑇(𝑘, 𝑖, 𝑗)

positive definite matrix, it can be diagonalized on an
orthonormal basis with strictly positive eigenvalues. The
logarithm of the matrix is obtained by applying the natural
logarithms to the eigenvalues. Since is a Lie group,𝑆

3
+

is a symmetric matrix. The air traffic maps are𝑋(𝑘, 𝑖, 𝑗) 𝑋
then defined by Eq.(11)

(11)𝑋:  {1,..., 𝑝} ×  {1 ..., 𝑛} ×  {1,  ..., 𝑚} →  𝑆
3

where .𝑋(𝑘, 𝑖, 𝑗) =  log(𝑇(𝑘, 𝑖, 𝑗)

3.3. The forward pass
The new air traffic map are the input data of our𝑋
convolutional neural network model. In the sequel, we
denote as a hidden layer's input, whereas Z is the hidden𝑋
layer’s output.

3.3.1. Convolution layer
The convolution layer is a key part of a convolutional
neural network. It performs a mathematical operation called
convolution. The data that goes into this layer is filtered by
a kernel, which is like a feature detector. It picks out
specific features that make up the input images. The outputs
of a convolution layer are called feature maps.
Since is a Euclidean vector space, we adapt the 3D𝑆

3
convolution to air traffic maps . Assume an input𝑋 𝑋
filtered by a real kernel K; the feature maps Z are defined
by Eq.(12)

. (12) 𝑍 =  
𝑘= 1

𝑑

∑
𝑖  1 

𝑟

∑
𝑗 =1

𝑐

∑ 𝑋(𝑝 − 𝑘, 𝑛 − 𝑖, 𝑚 − 𝑗) × 𝐾(𝑘, 𝑖, 𝑗) 

The output of convolution layers is forwarded to a
subsampling layer. There are mainly three subsampling
layers: average-pooling, min-pooling, and max-pooling. In
this paper, we focus only on the max-pooling layer.

3.3.2. Max-pooling layer
After the convolution layer, there is mainly a subsampling
layer. Subsampling is a technique that reduces reliance on
precise positioning within feature maps. A kernel of
dimension is associated with subsampling𝑑 × 𝑟 × 𝑐
layers, which divide images into cells. In each cell, the
subsampling layer retains just one piece of information
related to a mathematical operation.
In this paper, we focus on the max-pooling layer. The
feature maps are divided into some cells as in conventional
convolutional neural networks. Since each is a𝑋(𝑘, 𝑖, 𝑗)
symmetric matrix, we must redefine the maximum function.
Since each is a real symmetric matrix, we have𝑋(𝑘, 𝑖, 𝑗)

where is the spectral𝑋(𝑘, 𝑖, 𝑗)| || |
2
 =  ρ(𝑋(𝑘, 𝑖, 𝑗)) ρ

radius.
During the max-pooling layer, a significant process takes
place. The positions where maximum values are located on
the input data are registered on a mask . This step is𝑋 𝑀
crucial in the backward pass of the max-pooling layer.
Once the input data is divided into cells, a crucial step is
taken to retain the maximum values for each cell. This is
achieved by applying the norm , a key element in our.| || |

2
process that ensures the most significant information is
preserved.

3.3.3. Flatten layer
There is a flatten layer after the succession of convolution
and max-pooling layers. The practical application of this
flattening layer is to vectorize the output of the feature
extraction network, making it more accessible for the
classifier network. The purpose of our flatten layer is the
same as the conventional flatten layer. More specifically,
our flatten layer is defined by Eq.(13)
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, (13)𝑍(𝑡) =  𝑋(𝑘, 𝑖, 𝑗, 𝑎, 𝑏)

where 𝑡 =  𝑘𝑛𝑚  +  𝑖𝑚 +  𝑗 +  3𝑎 +  𝑏
where is the real value located at the position𝑋(𝑘, 𝑖, 𝑗, 𝑎, 𝑏)

on the matrix .(𝑎, 𝑏) 𝑋(𝑘, 𝑖, 𝑗)
Since the outputs of the flatten layer are vectors, ourℝ𝑛

classifier network is a conventional artificial neural network
(ANN). After forwarding spatial grids into the classifier
network, the results are compared to the target using a loss
function. Then, the gradient is backpropagated in the CNN.
As the classifier network is a conventional ANN, we focus
on our flatten, max-pooling, convolution layers' backward
pass.

3.4. The backward pass
Once the spatial grids are forwarded into the classifier
network, a crucial step in the training process, the results
are compared to the target using a loss function. This
comparison is a key part of a network's learning process, as
it helps us understand the areas where the neural network is
performing well and where it needs improvement. The
backward pass, a significant part of this learning process, is
then performed in the CNN. As the classifier network is a
conventional ANN, we focus on our flatten, max-pooling,
convolution layers' backward pass. The error is computed
using the cross-entropy loss function. This error is then
propagated from the last layer to the first layer. Since the
classifier network is a conventional ANN, we focus on the
flattening, max-pooling, and convolution layers. In the
following, we denote the gradient data and the gradient loss
as and , respectively.𝐺

𝑑𝑎𝑡𝑎
𝐺

𝑙𝑜𝑠𝑠

3.4.1. Flatten layer
The backward pass consists of reshaping the gradient
coming from the classifier network. The purpose of our
backward pass for the flatten layer is the same: to reshape
the gradient coming from the classifier network. More
specifically, our flatten layer is defined by Eq.(14):

, (14)𝐺
𝑑𝑎𝑡𝑎

(𝑘, 𝑖, 𝑗, 𝑎, 𝑏) =  𝐺
𝑙𝑜𝑠𝑠

(𝑡)
where . 𝑡 =  𝑘𝑛𝑚  +  𝑖𝑚 +  𝑗 +  3𝑎 +  𝑏

3.4.2. The max-pooling layer
Regarding the backward pass, it is also inspired by the
conventional max-pooling layer. As we have seen in the
forward pass for the max-pooling layer, this layer is
associated with a mask . Eq.(15) defines the gradient𝑀
data:

. (15)𝐺
𝑑𝑎𝑡𝑎

(𝑖, 𝑗) =  𝐺
𝑙𝑜𝑠𝑠

(𝑖, 𝑗)

If the positions of gradient data are not represented in the
mask , the gradient data takes the null matrix as a𝑀 2 × 2 
value. For detailed information on max-pooling layers the
readers can refer to 16).

3.4.3. Convolution layer
As for convolution layers, the backward pass can be
divided into two steps: data gradient and kernel gradient
computation. The data gradient results from the discrete
convolution operation between the padding loss gradient
and the 180° rotated kernels associated with the
convolution layer. The data gradient is based on Eq.(16)

, (16)𝐺
𝑑𝑎𝑡𝑎

 =  𝑝(𝐺
𝑙𝑜𝑠𝑠

) × 𝐾
180°

where corresponds to the zero-padding operation.𝑝

The kernel gradient is the result of the input convolution
layer filtered by the loss gradient. For detailed𝑋
information on convolution layers the readers can refer to
17).

4. Results
We have access to French airspace data. These data
represent air traffic over a day. In total, our database
contains 2875 air traffic maps defined by:

.𝐹 :  {1,..., 52} ×  {1,..., 180} ×  {1,..., 186} →  ℝ³

Next, we associate labels with each air traffic map as it is
detailed in Section 2.
To classify France's air traffic evolution, we implement a
specific neural network whose layers are described in
Section 3. The neural network consists of one data
preprocessing step, one feature extraction network and a
classifier network. The input airspaces are transformed into
air traffic maps (pink) with the data preprocessing step. The
feature extraction network is divided into two blocks. Each
block contains two convolution layers and a max-pooling
layer. The feature extraction network is illustrated in Fig.6.

Fig 6. Architecture of our feature extraction network.

The classifier network consists of three fully-connected
layers which contain 2835, 567, and 20 neurons. We apply
the sigmoid function on the first two fully-connected layers
(green). The sigmoïd function is also applied on the last
fully-connected layer (blue). The error is computed withδ
the cross-entropy loss function. The classifier network is
illustrated in Fig.7.

Fig 7. Architecture of our classifier network.

The hyperparameters, such as the training batch size,
number of epochs, and the learning rate for the neural
network during the training phase, are set to 50, 30, and
0.05.
Since we have only 2875 air traffic maps, we use a 5-cross
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validation method. When evaluating different settings
(“hyperparameters”) there is a risk of overfitting on the test
set because the parameters can be tweaked until the
estimator performs optimally. Solutions to this problem are
procedures called cross-validation and L1 regularisation.
We divide the database into a training set and a validation
set. In the approach, called -fold cross-validation, the𝑘
training set is split into smaller sets. Then, we repeat𝑘 𝑘
times the following procedure: a model is trained using

of the folds as training data and the resulting model𝑘 − 1
is validated on the remaining part of the data (i.e., it is used
as a test set to compute a performance measure such as
accuracy).
The resulting model is validated on the remaining part of
the data: the validation set. The performance measure
reported by -fold cross-validation is then the average of𝑘
the values computed in the loop. The 5-fold validation is
illustrated in Fig.8. For more information on the -fold𝑘
cross-validation method is detailed in 18).

Fig 8: Illustration of 5-fold cross-validation method 19).

The database, including air traffic maps defined by Eq.(3),
is then divided into the training set and the validation set.
The training set contains 2300 air traffic maps ( of air80%
traffic maps including in the database) whereas the testing
set contains 575 air traffic maps ( of air traffic maps20%
including in the database). The training set is divided into 5
folds including 460 air traffic maps. For each step, 1840 air
traffic maps train the neural network whereas the remaining
460 air traffic maps are dedicated to the testing step. The
neural network is validated on the 575 air traffic maps
included in the validation set.
The neural network correctly classifies an average of

of France's air traffic map, improving to65. 22% 91. 31%
after 20 epochs. The training step is illustrated in Fig.8.

Fig 8: Evolution of the error percentage with epochs number.

During the testing step, our CNN correctly classified an
average of of France's air traffic. Although the input90%
data differs, this neural network's results are similar to those
obtained by random forest 20) and support vector machine
(SVM) 21) algorithms. Figs.9 and.10 illustrate our neural
network results. Fig 9 illustrates an airspace with a note
equals to 2 for controllers to manage air traffic at time t.
Fig.10 illustrates also an airspace that is complex for
controllers to manage at time . At time , the𝑡 + 1 𝑡 + 1
evolution of air traffic is given a score of 4, indicating the
difficulty of managing it at time .𝑡 + 1

Fig 9: Our neural network predicts a note equals to 2 for air traffic
management at time . The represented values are computed by the𝑡 𝑓

function (Eq.(8)).

Fig 10: Our neural network predicts a note equals to 4 for evolution to air
traffic management at time . The represented values are computed𝑡 + 1

by the function (Eq.(8)).𝑓

The neural network can identify the global complexity level
of a given airspace. On the other hand, the neural network
can predict the evolution of this air complexity at a time

. Combining this information could significantly𝑡 + 1
support controllers' decision-making. Indeed, providing the
neural network with an air traffic situation could inform air
traffic controllers about its potential critical development in
air traffic. In other words, in the context where the neural
network detects a conflicting evolution of air traffic, it
could support air traffic controllers by providing them with
a danger rating on the evolution of the airspace. This
potential holds great promise for the future of air traffic
management.

5. Conclusion
In this paper, we implement a neural network capable of
predicting the evolution of air traffic complexity. The
specificity of this neural network is based on the
implementation of data preprocessing, new convolution,
new max-pooling, and flatten layers able to manipulate
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images composed of matrix pixels. We apply this neural
network to an air traffic database.
Each air traffic map is assigned a label indicating its future
evolution. Our neural network is trained using the robust
5-fold cross-validation method. Post-training, the neural
network achieves an average classification rate of 91. 31%
for air traffic maps. In the testing phase, the neural network
has a classification rate of .88%
The neural network's ability to detect patterns in air traffic
maps is a significant breakthrough. The neural network can
therefore identify the global complexity of an air traffic
map and its future evolution. Ultimately, this neural
network could be used as a valuable tool for air traffic
controllers, providing them with insights into the likely
evolution of air traffic and helping them in their
decision-making process. However, the neural network is
expensive in computation time and resources requiring
improvement. In addition, the neural network needs to be
trained on a more extensive database of French air traffic.
This opens the way for developing tools to help air traffic
controllers make decisions in critical situations that can be
complex to manage.
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