LRP-GUS: A Visual Based Data Reduction Algorithm for Neural Networks - ENAC - École nationale de l'aviation civile
Communication Dans Un Congrès Année : 2023

LRP-GUS: A Visual Based Data Reduction Algorithm for Neural Networks

Résumé

Deriving general rules to estimate a neural network sample complexity is a difficult problem. Therefore, in practice, datasets are often large to ensure sufficient class samples representation. This comes at the cost of high power consumption and long training time. This paper introduces a novel data reduction method for Deep Learning classifiers, called LRP-GUS, focusing on visual features. The idea behind LRPGUS is to reduce the size of our training dataset by exploiting visual features and their relevance. The proposed technique is tested on the MNIST and Fashion-MNIST datasets. We evaluate the method using compression rates, accuracy and F1 scores per class. For instance, our method achieves compression rates of 96.10% for MNIST and 75.94% for Fashion-MNIST, at the cost of a drop of 3% test accuracy for both datasets.
Fichier principal
Vignette du fichier
LRP_GUS.pdf (1.08 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-04218733 , version 1 (03-10-2023)

Licence

Domaine public

Identifiants

Citer

Arnaud Guibert, Christophe Hurter, Nicolas Couellan. LRP-GUS: A Visual Based Data Reduction Algorithm for Neural Networks. ICANN 2023: Artificial Neural Networks and Machine Learning, Sep 2023, Heraklion, Greece. pp.337-349, ⟨10.1007/978-3-031-44192-9_27⟩. ⟨hal-04218733⟩
62 Consultations
65 Téléchargements

Altmetric

Partager

More