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Abstract. Deriving general rules to estimate a neural network sample
complexity is a difficult problem. Therefore, in practice, datasets are
often large to ensure sufficient class samples representation. This comes
at the cost of high power consumption and long training time. This paper
introduces a novel data reduction method for Deep Learning classifiers,
called LRP-GUS, focusing on visual features. The idea behind LRP-
GUS is to reduce the size of our training dataset by exploiting visual
features and their relevance. The proposed technique is tested on the
MNIST and Fashion-MNIST datasets. We evaluate the method using
compression rates, accuracy and F1 scores per class. For instance, our
method achieves compression rates of 96.10% for MNIST and 75.94%
for Fashion-MNIST, at the cost of a drop of 3% test accuracy for both
datasets.

Keywords: Data reduction · Machine Learning · Visual features · XAI

1 Introduction

Training Convolutional Neural Networks (CNNs) requires a lot of resources and
time, as feature extraction is integrated in the model itself. One solution to solve
this issue is to reduce the training dataset size, using data reduction methods
to get a lower number of instances, thus training the model faster without af-
fecting the model’s performance and robustness. In a way, this can be seen as
an experimental estimation of the CNN sample complexity [2]. In this article,
we introduce a new data reduction iterative method called Layerwise Relevance
Propagation - Guided Undersampling (LRP-GUS), computing reduced dataset
class sizes, based on visual features learnt by the model. Our final goal is to
generate a training subset from the original training set: once it is computed,
new classifiers with a high enough accuracy can be trained on it, faster than if
they were trained on the full training set. We use LRP [3] as our decision basis
for class undersampling. This method maps the output of a model to its input
space, showing the importance of the input pixels in the model’s decision as a
saliency map. This saliency map is an image with positive and negative pixel
values, showing how each input pixel helped the model to make its decision.
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We tested our iterative method on two benchmark image datasets with 10
classes: MNIST [21] (the handwritten digits from 0 to 9) and Fashion-MNIST
[32] (various pieces of clothing). Both datasets are composed of 60,000 training
images and 10,000 testing images. We trained a distinct CNN architecture for
each dataset, to reach an acceptable initial generalization accuracy. With a stop
condition of a maximum 3% accuracy drop, our method achieved high training
dataset reduction, 96.10% for MNIST and 75.94% for Fashion-MNIST.

This paper is organized as follows: Section 2 lists methods aiming for data
reduction and undersampling datasets. Our method and the reason for using
visual features are detailled in Section 3. Section 4 describes the experimental
framework, and examines the results obtained in this study on the MNIST and
Fashion-MNIST datasets. We discuss the results and their limitations in Section
5. Section 6 concludes the paper and discusses potential future work.

2 Related Work

Data reduction is a problem that has been widely documented in the recent
years [10, 5]. It consists of selecting instances from the initial training set, based
on different metrics. Its end goal is often to find an acceptable trade-off between
the accuracy and the compression rate from the full training set. However, some
methods focus on staying above a given accuracy at all costs while others fo-
cus on compressing the training data as much as possible. While Deep Learning
methods can benefit from a good data compression, it can also be detrimental
[29, 9] both for the generalization and the convergence speed of the model [1].
Class imbalance methods can also tackle the same issue. They consist in aver-
aging the number of instances per class in a dataset to ensure a balanced class
representation, because consequent differences in class representation can hinder
the performance of classifiers [15]. Class imbalance can refer to different distri-
butions of datasets, but all of them have an important gap between the minority
class and the majority class [10].

Data reduction: Data reduction techniques try to reduce the initial train-
ing dataset while keeping the accuracy as high as possible. Researchers have
tried various ways to apply this to existing datasets, such as the pure k-Nearest
Neighbors selection approach [7], and a few variants [13, 30] focusing on border
instances or changing the metric formula. Editing methods focus on cleaning
the data, by removing noisy instances and smoothing the inter-class borders
[31, 14]. While Euclidean distance is a common choice, some authors have used
other distances: MeanShift [6] is an example of such method using dissimilarity
measures. Finally, clustering methods are also widely used for data reduction. A
few examples are Prototype Selection by Clustering [25] that handles instances
clusters based on their homogeneity, Symbolic Nearest Mean Classifier [8] and
Reduction through Homogeneous Clusters [26]. All these methods only consider
the data and their relative proximity in the data space without looking at the
evolution of the model during its training phase. In this article, we fill this gap
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by implicitly constructing a metric based on the data and the model. Our goal
is to have a better estimate of the sample complexity [2].

Class imbalance: Class imbalance methods can be divided in two groups:
oversampling and undersampling methods. We will only focus on undersampling
methods since we aim to reduce the dataset size. However, undersampling is not
as popular among class imbalance research as oversampling because it tends to
degrade the model performance [4]. The most basic method is called random
majority undersampling, or RUS. It discards majority classes instances at ran-
dom until the dataset is more balanced. This method is effective because of the
reduced power consumption and training time of the model, but it can perform
poorly because of the uncontrolled loss of information from the initial data [12].
One-Sided Selection [19] is an early technique that identifies redundancy of sam-
ples close to the class boundaries to remove them. Edited Nearest Neighbor [20]
is a technique that detects redundant or insignificant majority samples based on
a 3 Nearest Neighbor rule. SMUTE and CSMOUTE [17] are other examples of
undersampling techniques, known to work particulary well with complex classi-
fiers like Artificial Neural Networks. Other techniques also use other families of
methods like clustering or genetic algorithms to select their instances [33, 22, 18,
11].

XAI methods: eXplainable AI (XAI) methods map the output of a model to
its input space. For image classification, they show the importance of the input
pixels in the model’s decision as a saliency map. Those maps can take multiple
forms, depending on the method. Grad-CAM [28] is one such method, outputting
a positive saliency map focusing on the important pixels. The intensity of that
saliency map shows which pixels contributed the most for the classification. Lo-
cal Interpretable Model-Agnostic Explanations (LIME) [27] is another method,
quantifying the response of the model to a given instance. It trains an explainable
model based on random instances chosen around the reference instance. Other
methods, like LRP [3] and SHapley Additive exPlanations [23], take a different
approach. They output a saliency map with both positive and negative values.
The positive values show the inputs helping the classification, while the negative
ones show inputs not helping it. To the best of our knowledge, XAI methods are
always used as a visual tool for humans to interpret on, and not as a secondary
mean to quantitatively optimize a primary objective.

All data reduction methods aim to compress the initial dataset size while
keeping an acceptable generalization accuracy. Our method is more focused on
the model’s reaction to the dataset and tries to balance the dataset using the
relevance of the visual features it has learnt. We used LRP to extract the visual
feature relevances learnt by the model and assert them. To the best of our
knowledge, this is the first algorithm using visual features and XAI methods to
reduce the size of a dataset.
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3 The LRP-GUS method

LRP-GUS aims to create a training subset that balances the difficulty for a model
to learn every class separately. We used a hybrid method based on RUS and
XAI methods to build such a dataset balanced with respect to visual features.
In this section, we will discuss our XAI method choice, then we will explain our
algorithm step by step.

Neural Networks are infamously known for being black box algorithms, mean-
ing it is difficult to analyze their decision process when predicting a class for an
input. This is because they have a complex decision boundary compared to tra-
ditional methods like k-NN or Decision Trees. XAI methods have been developed
to understand how a model makes its prediction. They are popular in image clas-
sification tasks as they return saliency maps that are human-readable. Details
about the goal and output of such methods are explained in Section 2.

Out of all available methods, we focus on Layerwise Relevance Propagation
(LRP) because it provides a direct binary criterion that can be easily exploited
at a higher level as we propose. Indeed, in the output class LRP maps, the
positive pixels are those contributing to the class decision. Grad-CAM does
not provide such information, and LIME requires to train one surrogate model
for each classifier and is therefore not suitable for the framework we propose.
Several LRP decision rules exist focusing on positive or negative activations
and/or weights of the network. Each rule specializes in handling input, upper,
middle, or lower layers specifically. Such rules include LRP-0, LRP-ϵ, LRP-γ and
the zβ-rule. A composite LRP rule [24] was shown to give better explanations
on more complex network architectures. However, since our models for Fashion-
MNIST and MNIST are relatively small, as described in Section 4.1, we use a
pure LRP-ϵ rule (with parameter ϵ = 10−4) for our entire model. An example of
LRP outputs on MNIST is shown on Figure 1.

Notations: Let D = {(xi, yi) | 1 ≤ i ≤ |D|} ⊂ Rd × {1, ..., c} be a dataset
for supervised classification with c classes. Let T ⊂ D and U ⊂ D be a training
set and test set respectively. For any pair of sets A and B so that A ⊂ B,

we define the compression rate: r(A,B) = 1 − |A|
|B| . Let also, for any I ⊂ D,

I(k) = {(x, y) ∈ I | y = k} be the k-class set of I for a given class k ∈ {1, ..., c}.
We also define the negative intensity function n for all samples x ∈ Rd as the
sum of negative values such that n(x) =

∑d
i=1 min (0, xi).

Finally, we define the normalized LRP function. It applies to: an instance
from the input space x ∈ Rd, a class y ∈ {1, ..., c}, and a neural network M .
The LRP function can therefore be written as: lM : (x, y) 7→ lM (x, y) ∈ Rd. To
compute an average LRP map across various LRP saliency maps, we propose
a normalized version of the LRP function above, using absolute maximum nor-
malization. This normalization ensures the sign of the pixels in the LRP maps
remains unchanged. Therefore, we define the normalized LRP function as:

l̂M : (x, y) 7→ lM (x, y)

max (|lM (x, y)|)
(1)



LRP-GUS: A visual based data reduction algorithm for Neural Networks 5

LRP saliency maps: To illustrate the construction of LRP maps, consider
the following example. A model M is trained on the MNIST training dataset,
using a network architecture and parameters defined in Section 4.1. We picked
two images from the MNIST training set (digit 0 and digit 6) to compute the

normalized LRP function ˆlM . Figure 1 shows the resulting maps for both digits.
The model has learnt a good decision frontier between the class 0 and the other
classes as only the LRP heatmap computed using the true class (y = 0) displays
a lot of positive pixels. The second digit, on the other hand, displays positive
visual patterns for almost all classes, not only for its true class 6. This highlights
our model can learn clear boundaries for some digits (0 in this case) while the
boundaries for others (6 here) are less sharp.

Fig. 1: Normalized LRP maps for 2 MNIST digits. The class y chosen in the
LRP formula varies from left (class 0) to right (class 9). In the heatmaps, grey
corresponds to scores close to zero, red to positive scores and blue to negative
scores. See text for interpretation.

The algorithm: LRP-GUS uses both LRP and Random Undersampling to
iterate. The goal is not to pick specific important instances for accuracy, but to
find which classes have the most difficult patterns to learn, and thus which ones
need more instances to build a balanced CNN.

We start from an initial class proportion pk ∈ Nc, where for all j ∈ {1, ..., c},
(pk)j defines the number of training samples for class j. We use RUS on the
training set T to extract an iteration subset I with proportions defined by pk.
We build a neural network classifierM using this extracted dataset I as a training
set. We then use the normalized LRP function l̂M on the training dataset I, with
the inputs true class as parameter, and the negative intensity n to compute a
vector fk ∈ Rc of scores per class as follows:

∀j ∈ {1, ..., c}, (fk)j = n
( 1

|I(j)|
∑

(x,y)∈I(j)

l̂M (x, y)
)

(2)

We then pick a class ck to increase or decrease its proportion based on the
value and sign of the difference between scores at consecutive iterations: ∆fk =
fk−fk−1. The class ck must respect a constraint percentage lim so that the new
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proportion is not too far away from the class proportions mean. We increase or
decrease the proportion of that class by a percentage, and end up with a dataset
class proportion pk+1 for the next iteration, and the scores fk of the current
iteration. If at any point, all the classes violate the constraint, the algorithm
stops. Our algorithm outputs a new dataset proportion with less global instances
than the initial dataset T , thus reducing the time and energy required to train
new models using it. The pseudocode can be found in Table 1.

Table 1: Algorithm pseudocode

input: Training set T, Score vector f, Dataset class proportion p,

Percentages up, down and lim, Max number of iterations Nmax

output: Dataset class proportion p

N ← 0

while N < Nmax do

if 0 is in p:

stop condition

I ← random dataset from T with p

M ← neural network trained on I

f_k ← scores of I per class (cf. above)

c_k ← class whose proportion will be changed

if (f_k - f)(c_k) > 0 do

p(c_k) ← (1 - down) * p(c_k)

else do

p(c_k) ← (1 + up) * p(c_k)

f ← f_k

N ← N + 1

return p

4 Results

4.1 Experimental Setup

Experiments were carried out on the MNIST and Fashion-MNIST datasets.
MNIST is known for its separability with most handwritten digits sharing com-
mon features from their own class, and differences with other classes. Fashion-
MNIST is a bit more complex, as some classes visually overlap, making it difficult
for a model or even a human to classify them. Each dataset was trained on a
separate architecture. Since our goal is to compress the dataset, the chosen archi-
tectures and hyperparameters were selected to guarantee both CNNs were ”good
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enough” classifiers (with a high accuracy on the full training set). While there
is room for hyperparameters improvement, this is not the goal of this paper.

Our MNIST network architecture is based on an existing model, LeNet-5
[21]. It is a small and compact CNN. We tuned and changed a few parameters
in layers, as described in Table 2. All convolution layers are followed by a ReLU
activation function, and the fully connected is followed by a Softmax. Our model
uses an Adam optimization [16] algorithm with default α, β1, β2 and ϵ param-
eters. A batch size of 64 was chosen. The model training was stopped after 15
epochs. The Fashion-MNIST architecture introduces more layers, dropout and
batch normalization, described in Table 3. The activation functions are the same
as in the MNIST model. It uses an Adam optimization algorithm with default
parameters, a batch size of 128 and the model training was stopped after 15
epochs.

Table 2: MNIST model
Layer Size Kernel Strides

Input 28*28*1 - -

Conv2D 26*26*32 3 1

Max Pool 13*13*32 2 2

Conv2D 11*11*64 3 1

Max Pool 5*5*64 2 2

Dropout (.5) 5*5*64 - -

FC 10 - -

Table 3: Fashion-MNIST model
Layer Size Kernel Strides

Input 28*28*1 - -

Conv2D 28*28*16 1 1

Conv2D 28*28*32 3 1

Max Pool 14*14*32 2 2

BatchNorm 14*14*32 - -

Dropout (.2) 14*14*32 - -

Conv2D 12*12*64 3 1

Max Pool 6*6*64 2 2

BatchNorm 6*6*64 - -

Dropout (.2) 6*6*64 - -

FC 256 - -

Dropout (.2) 256 - -

FC 10 - -

4.2 MNIST

The following initial set of parameters was chosen: score vector f = 0 for all
classes, dataset class proportion p = 2000 for all classes, percentages up = 5%,
down = 20% and lim = 40% and a maximum number of iterations Nmax =
1000. The generalization accuracy with respect to the compression rate is dis-
played in Figure 2a and the evolution of the dataset proportions p and the F1

scores per iteration are shown in Figure 2b.
The stop condition for our algorithm is a maximum accuracy drop of 3% com-

pared to the full training set T accuracy. This target is shown as the horizontal
black line on Figure 2a. We deduce the cutoff iteration ic from the intersection
with the curve. The vertical line x = ic on Figure 2b gives the cutoff dataset Tc

and the algorithm final proportion p.
Table 4 shows the repartition of classes in both datasets T and Tc. We can

see the introduced imbalance in our subset, while the original training set is
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almost balanced. Thus, we trained 20 models on the original training dataset T ,
our cutoff dataset Tc and on a new dataset Tc (bal), with the same size as Tc,
but a forced proportional split of instances between classes. Performance results
for those datasets, along with the compression rate are also displayed in Table
4.

Fig. 2: (a) Evolution of accuracy by compression rate and (b) F1 scores and class
proportions per iteration for our experiments on the MNIST dataset. See text
for interpretation.

4.3 Fashion-MNIST

The following initial set of parameters was chosen: score vector f = 0 for all
classes, dataset class proportion p = 4000 for all classes, percentages up = 5%,
down = 20% and lim = 40% and a maximum number of iterations Nmax = 500.
The generalization accuracy by the compression rate is displayed in Figure 3a
and the evolution of the dataset proportions p and the F1 scores per iteration
are shown in Figure 3b.

The interpretation of the black lines is the same as for MNIST (see Section
4.2). Table 5 shows the repartition of classes in both datasets T and Tc. We also
trained 20 models on the original training dataset T , our cutoff dataset Tc and
on a new dataset Tc (bal). Performance results on those datasets, along with the
compression rate are also displayed in Table 5.
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Table 4: Experiment results on MNIST. (a) Proportions of classes in T and Tc.
(b) Compression rate, mean and standard deviation for accuracy and F1 scores.
Computed with 20 models for each dataset T , Tc and Tc (bal).

(a)

class T Tc

- N % N %

0 6923 9.9 185 7.9

1 6742 11.2 819 35.0

2 5958 9.9 173 7.4

3 6131 10.2 173 7.4

4 5842 9.7 162 6.9

5 5421 9.0 152 6.5

6 5918 9.9 162 6.9

7 6265 10.4 154 6.6

8 5851 9.8 180 7.7

9 5949 9.9 180 7.7

(b)

- T Tc Tc (bal)

- µ σ µ σ µ σ

r - 96.10 96.10

accu. 99.24 5e-4 96.35 2e-3 96.63 2e-3

F1 (0) 99.55 0.10 97.67 0.36 97.75 0.36

F1 (1) 99.57 0.06 98.50 0.38 98.42 0.23

F1 (2) 99.17 0.14 95.11 0.49 95.57 0.33

F1 (3) 99.36 0.10 95.49 0.46 96.35 0.64

F1 (4) 99.41 0.14 97.52 0.38 97.65 0.38

F1 (5) 99.02 0.11 95.93 0.62 96.80 0.52

F1 (6) 99.23 0.13 97.52 0.28 97.65 0.31

F1 (7) 98.99 0.17 95.32 0.24 95.33 0.63

F1 (8) 99.09 0.12 94.86 0.41 95.03 0.48

F1 (9) 98.95 0.19 95.36 0.42 95.62 0.37

Fig. 3: (a) Evolution of accuracy by compression rate and (b) F1 scores and class
proportions per iteration for our experiments on the Fashion-MNIST dataset.
See text for interpretation.
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Table 5: Experiment results on Fashion-MNIST. (a) Proportions of classes in T
and Tc. (b) Compression rate, mean and standard deviation for accuracy and F1

scores. Computed with 20 models for each dataset T , Tc and Tc (bal).

(a)

class T Tc

- N % N %

0 6000 10.0 1068 7.4

1 6000 10.0 1012 7.0

2 6000 10.0 1097 7.6

3 6000 10.0 967 6.7

4 6000 10.0 1130 7.8

5 6000 10.0 3205 22.2

6 6000 10.0 1130 7.8

7 6000 10.0 2685 18.6

8 6000 10.0 1130 7.8

9 6000 10.0 1012 7.0

(b)

- T Tc Tc (bal)

- µ σ µ σ µ σ

r - 75.94 75.94

accu. 92.46 3e-3 88.98 1e-2 89.53 1e-2

F1 (0) 87.61 0.42 83.22 2.43 83.89 2.66

F1 (1) 99.02 0.19 98.12 0.18 98.33 0.20

F1 (2) 87.99 1.25 82.19 2.40 82.72 2.96

F1 (3) 93.02 0.37 89.36 0.56 90.00 0.62

F1 (4) 87.94 0.93 81.46 1.75 82.55 2.62

F1 (5) 98.55 0.24 98.04 0.27 97.50 0.43

F1 (6) 77.88 0.59 69.55 1.97 71.06 1.83

F1 (7) 96.82 0.47 95.53 0.86 95.46 0.49

F1 (8) 98.66 0.15 97.18 0.39 97.50 0.37

F1 (9) 97.10 0.41 96.03 1.02 96.26 0.29

5 Discussion and Limitations

The proposed method provides a new subset, extracted from the original subset,
to train future models on without losing too much accuracy. We can see on Tables
4 and 5 that our algorithm introduces high class imbalance for our experiments
on both datasets. This is the reason performance results are confronted to results
on a separated balanced final proportion dataset Tc (bal) for both datasets.

For MNIST, the high imbalance shows an increase for class 1, and a decrease
for all other classes. However, Table 4 shows that this class imbalance is not
a major issue. Indeed, the degradation of the F1 scores for those classes is not
significant compared to other classes like classes 8 and 9. This shows, from our
point of view, that class imbalance is not necessarily detrimental in Deep Learn-
ing, but may even be a valid idea during training to balance inter-class relevance.
For example, the digit 6 proportion was lowered in the dataset from 10% to 7%
but its F1 score barely decreased (-2%). In constrast, other classes like digit 1
need more representation to maintain a good F1 score. However, the balanced
dataset Tc (bal) has better F1 scores for all classes.

For Fashion-MNIST, the high imbalance shows an increase for classes 5 and
7, and a decrease for all other classes. However, we noticed multiple runs on that
dataset returned different proportions. Table 5 shows that the results are more
contrasted this time. Classes 5 and 7 were increased in proportion and had their
F1 scores decreased by only 0.5% and 1% respectively, which is successful to
us. However, many classes that were reduced in proportion suffered a significant
F1 score drop (-6% for pullover, -6.5% for coat or -8% for shirt). The drop in
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proportion of those classes, visually overlapping with each other, was detrimental
for their F1 scores and overall accuracy. Like our MNIST results, the balanced
dataset Tc (bal) generalizes a bit better for all classes.

It should also be mentioned from Tables 4 and 5 that there is an increase of
the standard deviation σ when reducing the dataset sizes. This should not be
a surprise as reducing the number of instances in a class reduces its intraclass
variance, thus reducing its generalization to unknown instances.

Both experiments on MNIST and Fashion-MNIST show that our algorithm
is aggressive in compression rate, as it tends to force an important degradation of
global accuracy and F1 scores per class. One explanation may be the choice of the
up and down parameters, as picking +5% and −20% forces a quick degradation
of the dataset. Moreover, our stop condition based on accuracy is also limited
to datasets and models achieving high initial accuracy. Other possible methods
for choosing our cutoff iteration are still under investigation.

6 Conclusion

Our method, LRP-GUS, extracts a training subset that reflects more homoge-
neous visual features learnt across all classes of any given dataset. We used an
XAI method, LRP, to assess the visual features and select the class proportions
that should be modified. To the best of our knowledge, this is the first data
reduction method exploiting such visual features. LRP-GUS achieved high com-
pression rates, 96.10% for MNIST and 75.94% for Fashion-MNIST, at the cost
of a drop of 3% test accuracy for both datasets. This shows that deep learning
models can be trained on extracted imbalanced subsets while controlling a good
trade-off with the predictive performance. This is encouraging as some datasets
come with a natural high imbalance (fraud detection, meteo prediction, ...).

As our algorithm is highly dependent of the choice of the cutoff iteration, its
choice is crucial. In the proposed work, it was selected as corresponding to a drop
of 3% accuracy. More clever choices based on automatic detection of regime shift
in the accuracy-compression rate graph may be more appropriated. The current
non-refined choice of cutoff introduces extra class imbalance that may explain
the contrasted results when comparing the final reduced dataset and a random
balanced dataset with the same compression rate. We believe visual features can
give a good explanation about a model’s performance, thus allowing to choose
instances and train a better model. The results displayed in this paper show the
viability of our method in the form of preliminary results. Further investigation
will focus on making a proper comparison with data reduction methods. In
addition, future work could also investigate other XAI methods beyond LRP
like LIME, or by extension SHAP.
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