Aircraft 4D trajectories planning under uncertainties - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Communication Dans Un Congrès Année : 2015

Aircraft 4D trajectories planning under uncertainties


To sustain the rapidly increasing air traffic demand, the future air traffic management system will rely on a concept, called Trajectory-Based Operations (TBO), that will require aircraft to follow an assigned 4D trajectory (time-constrained trajectory) with high precision. TBO involves separating aircraft via strategic (long-term) trajectory deconfliction rather than the currently-practicing tactical (short-term) conflict resolution. In this context, this paper presents a strategic 4D aircraft trajectory planning approach aiming at minimizing interaction between aircraft trajectories for a given day. The proposed methodology allocates an alternative departure time, a horizontal flight path, and a flight level to each flight at a country and a continent scale. Uncertainties of aircraft position and arrival time on its curvilinear abscissa are taken into account in the trajectory planning process. The proposed approach optimizes the 4D trajectory of each aircraft so as to minimize the interaction between trajectories. A hybrid-metaheuristic optimization algorithm has been developed to solve this large-scale mixed-variable optimization problem. The algorithm is implemented and tested with real air traffic data taking into account uncertainty over the French and the European airspace for which a conflict-free and robust 4D trajectory plan is produced.
Fichier principal
Vignette du fichier
NonFormatted_Hybrid metaheuristic for 4D trajectory planning under uncertaintie .pdf (709.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01271435 , version 1 (09-02-2016)



Supatcha Chaimatanan, Daniel Delahaye, Marcel Mongeau. Aircraft 4D trajectories planning under uncertainties. SSCI 2015, IEEE Symposium Series on Computational Intelligence, IEEE, Dec 2015, Cape Town, South Africa. pp.ISBN: 978-1-4799-7560-0, ⟨10.1109/SSCI.2015.18⟩. ⟨hal-01271435⟩
240 Consultations
573 Téléchargements



Gmail Mastodon Facebook X LinkedIn More