Online tracking of multiple objects using WiSARD - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Communication Dans Un Congrès Année : 2014

Online tracking of multiple objects using WiSARD


This paper evaluates the WiSARD weightless model as a classification system on the problem of tracking multiple objects in real- time. Exploring the structure of this model, the proposed solution applies a re-learning stage in order to avoid interferences caused by background noise or variations in the target shape. Once the tracker finds a target at the first time, it applies only local searches around the neighborhood in order to have fast response. This approach is evaluated through some experiments on real-world video data.
Fichier principal
Vignette du fichier
Mora-Camino_ESANN2014.pdf (161.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01059678 , version 1 (01-09-2014)


  • HAL Id : hal-01059678 , version 1


Rafael Lima de Carvalho, Danilo S. C. Carvalho, Felix Mora-Camino, Priscila V. M. Lima, Felipe M. G. França. Online tracking of multiple objects using WiSARD. ESANN 2014, 22st European Symposium on Artificial Neural Networks, Computational Intelligence And Machine Learning, Apr 2014, Bruges, Belgium. pp 541-546. ⟨hal-01059678⟩
195 Consultations
208 Téléchargements


Gmail Mastodon Facebook X LinkedIn More