N

N
N

HAL

open science

Online tracking of multiple objects using WiSARD

Rafael Lima de Carvalho, Danilo S. C. Carvalho, Felix Mora-Camino, Priscila
V. M. Lima, Felipe M. G. Franca

» To cite this version:

Rafael Lima de Carvalho, Danilo S. C. Carvalho, Felix Mora-Camino, Priscila V. M. Lima, Felipe
M. G. Franca. Online tracking of multiple objects using WiSARD. ESANN 2014, 22st European
Symposium on Artificial Neural Networks, Computational Intelligence And Machine Learning, Apr

2014, Bruges, Belgium. pp 541-546. hal-01059678

HAL Id: hal-01059678
https://enac.hal.science/hal-01059678

Submitted on 1 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://enac.hal.science/hal-01059678
https://hal.archives-ouvertes.fr

Online tracking of multiple objects using
WiSARD

Rafael Lima de Carvalho'?, Danilo S. C. Carvalho' , Félix Mora-Camino®,
Priscila V. M. Lima?, Felipe M. G. Franca' *

1 — COPPE, 2 — iNCE, Universidade Federal do Rio de Janeiro, BRAZIL
3 - Universidade Federal do Tocantins, UFT, BRAZIL
4 - Ecole Nationale de I’Aviation Civile - Laboratoire d’Automatique, FRANCE

Abstract.  This paper evaluates the WiSARD weightless model as a
classification system on the problem of tracking multiple objects in real-
time. Exploring the structure of this model, the proposed solution applies
a re-learning stage in order to avoid interferences caused by background
noise or variations in the target shape. Once the tracker finds a target
at the first time, it applies only local searches around the neighbourhood
in order to have fast response. This approach is evaluated through some
experiments on real-world video data.

1 Introduction

Tracking objects in real-time is an important and challenging task, useful for
many applications. Among its challenges, the real-time requirement is an ob-
stacle for many off-the-shelf tracker solutions due the high cost of processing.
Therefore, a fast tracker solution with exploration of the total observed area is
decisive for such type of application. The exploration of the whole image area
has a high cost, so using parallel approaches sounds an interesting way to achieve
it.

SanMiguel et al. [1] proposed a framework for video tracking algorithms qual-
ity estimation, which features the capability of evaluating video trackers with
multiple failures and recoveries over long sequences. Percini and Del Bimbo [2]
presented a tracking method that uses multiple instances of scale invariant local
features, and a non parametric learning algorithm based on the transitive match-
ing property, showing state of the art tracking performance on public available
benchmark datasets. In [3], the WiSARD model has been successfully used by
an artificial vision system in order to follow the cadence of ships, implying in a
model of the movement of an observed vessel.

In this work, a part of [1] is used as the means of evaluating tracker accuracy.
Besides, the adopted methodology takes the opposite approach of [2] by adopting
a minimum number of features, focusing on portability and speed of the tracker.
Moreover, the objective of this paper is evaluate the use of WiSARD neural
model, taking advantages of its structure in order to overcome the real-time
requirement of an on-line tracker for general objects.

*The authors acknowledge the Brazilian Agencies CAPES and CNPq for funding parts of
this research.



This paper is organised as follows. The WiSARD models is presented in
section 2. In following, the section 3 describes how we used the WiSARD as the
classification system of the proposed tracker application. Then, the experimental
setup followed by some results are presented in section 4. Finally, in section 5
some conclusions and future improvements are pointed.

2 WIiSARD

The WISARD is a weightless neural network model conceived, initially, for bill
recognition and to be implemented in hardware. WiSARD stands for Wilkie,
Stonham and Aleksander’s Recognition Device [4]. The model has its neuron
unit based in the RAM memory. In training mode, this RAM memory stores
“1” on its memory position addressed by the binary input pattern (the non-
addressed entries remain “0”). While in classifying mode, the RAM outputs
the value addressed by its input. Thus, a RAM fires when the input pattern
addresses a value equals to “1”.

As an advantage over the McCulloch and Pitts neuron model, the RAM-
neuron is enabled to learn any Boolean function. However, the neuron itself has
no generalisation capabilities. Thus, the simplest weightless neural network with
such ability is known as discriminator. A discriminator is a single layer network
with K’ RAM neurons capable of handling KN inputs. Therefore, a WiSARD
network is composed of a set of these discriminators. Each one is responsible
for classifying a different pattern. This way, the WiSARD network has the same
number of inputs as its discriminators. Figure 1 illustrates the architecture of
the WiSARD’s discriminator.

Input Pattern

X1\

Xo et RAM |,
D 1 Fi1
Xy ei—
X(N+1)"§\
Xow+2®+——| RAM >
2[R S r
XzN./
| RAM
<R
XKN/

Fig. 1: Discriminator: an elementary unity for the WiSARD model [4].



3 A Weightless Tracker

The proposed WiSARD tracker is composed of components called unit trackers
(UT), which holds information about the bounding box of the object to be
tracked and the WiSARD instance. In this tracker, the quantity of UTs is
defined a priori. Each UT has also two search algorithms: a global one, which is
responsible for searching over the entire image; and a local one, which searches
around a local neighbourhood.

In the beginning of the tracking task, the proposed solution requests all of its
tracker units to perform a global search. After that, a local search is invoked, in
order to improve the accuracy of the global search answer. If the resulting unit
answer is greater than a minimal threshold, the location is stored in a history
list.. When the second input image is presented, the tracker retrieves the last
history entry, updating the bounding box position through local searches only.

As presented in section 2, the original RAM-based neuron of the WiSARD
model stores a binary information about the presence or absence of a deter-
mined address (pattern). The RAM-based neural networks are subject to the
overtraining problem. If the training set has many different patterns, most of
RAMs composing the network may fill all (or almost all) available addresses.
This event is called saturation and makes the network loose its classifying capa-
bilities.

In order to overcome the overtraining problem, [5] proposed a WiSARD
extension called DRASIW, which stores the RAM addressing frequency. This
approach allows one to know which parts of the pattern (sub-patterns) happens
more frequently. Furthermore, the remaining task is to isolate the relevant sub-
patterns from the others [6]. A bleaching process is shown by [7], which proposes
to accomplish this task by using the frequency information as a filter for the
RAM-neuron fire mechanism. When using this filter, a RAM is able to fire only
when the frequency of the input address is greater or equal to a threshold, known
as bleaching threshold.

During the tracking process, in addition the background and luminance dis-
turbances, the moving objects tend to change their shape over time. In order to
address this problem, two re-learning algorithms are proposed: byMean, which
triggers the re-train procedure when the mean of the answers is less than a
threshold, and byDiff, which accounts for the historical differences between an-
swers in a buffer. The algorithm byDiff calls the re-learn procedure whenever the
buffer reaches a given size and the sum of differences is greater than a threshold.
Both algorithms increase the bleaching threshold before re-training.

Two local search algorithms have been developed as well: linearLS and
probLS. The former explores the whole local neighbourhood delimited by a num-
ber n of pixels around a given window position. The latter randomly chooses p
different points (rounds) around the neighbourhood also delimited by n pixels.
Two global search algorithms have also been proposed. The first one, identified
as stepGS, slides the unit window over the whole image, moving by n pixels at
each step. Finally, the other one, identified as threadedGS, uses a grid of n x m



instances of the probLS algorithm, associating each instance with a different
thread.

4 Experimental setup and results

The proposed tracker has been evaluated using a part of the CAVIAR dataset!
(the result of only one dataset is shown in this paper). Each image of this dataset
has 384x288 pixels and before processing a frame, the tracker binarizes the input
image using a luminance threshold. The tracker quality evaluation is done by
calculating the amount of intersection between the bounding boxes given by the
ground-truth data and the ones given by the tracker.

In order to evaluate the tracker, we assembled sixteen different combinations
of the algorithms described in section 3, identified by config0 to config15. The
combinations of searching algorithms are divided into two pairs, as follows. The
searchPairl has the global search threadedGS (16 x 16 probLSs, neighbourhood
of 10 pixels, and 25 rounds), and the linearLS (neighbourhood of 10 pixels) as
the local search algorithm. The searchPair2 has the global search stepGS (step
of 5 pixels), and the probLS (neighbourhood of 20 pixels and 40 rounds) as the
local search algorithm.

Configs from 0 to 3 use the searchPair! and the byDiff (threshold equals to
0.08 and history size n = 3) re-learning strategy. Configs from 4 to 7 use the
searchPair2 and the byDiff (threshold equals to 0.08 and history size n = 1)
re-learning strategy. Configs from 8 to 11 use searchPairl and the byMean
(threshold equals to 0.08) re-learning algorithm, while configs from 9 to 15 use
the searchPair2 with the same re-relearning algorithm. The parameters used by
the algorithms composing the configurations were found empirically.

We ran the tracker application, using the 16 aforementioned configurations,
on an Intel(R) Core(TM) i7-3770 CPU 3.40GHz processor. We have used the
UNIX time application to measure the processing time. Table 1 summarises the
results by showing the mean and standard deviation of each tracked target, as
well as the quantity of Frames per Second for each configuration. Figure 2 shows
an output image produced by the tracker.

'EC Funded CAVIAR project/IST 2001 37540, found at http://homepages . inf.ed.ac.uk/
rbf /CAVIAR/



Fig. 2: An image from CAVIAR dataset and the bounding boxes drawn by the
tracker.

Setup Obj1 Obj2 Obj3 Objd FPS
W o o o W o w o
configd | 0.74 | 0.30 | 1.00 | 0.00 | 1.00 | 0.07 | 0.86 | 0.29 | 48
configl | 0.70 | 0.21 | 0.98 | 0.10 | 0.76 | 0.17 | 1.00 | 0.04 | 56
config2 | 0.58 | 0.26 | 0.94 | 0.22 | 0.87 | 0.32 | 0.97 | 0.07 | 55
configd | 0.87 | 0.20 | 0.95 | 0.20 | 0.69 | 0.25 | 0.98 | 0.05 | 52
configd | 0.86 | 0.27 | 0.92 | 0.22 | 0.71 | 0.40 | 0.99 | 0.04 | 162
configh | 0.68 | 0.19 | 0.94 | 0.18 | 1.00 | 0.01 | 0.94 | 0.14 | 166
configb | 0.65 | 0.31 | 0.92 | 0.22 [ 0.70 | 0.38 | 0.57 | 0.34 | 165
config7 | 0.74 | 0.29 | 0.88 | 0.23 | 0.82 | 0.36 | 0.79 | 0.26 | 158
config8 | 0.90 | 0.10 | 0.91 | 0.23 | 0.87 | 0.29 | 0.99 | 0.04 | 52
configd | 0.64 | 0.24 | 1.00 | 0.00 | 0.52 | 0.31 | 0.97 | 0.10 | 56
configl0 | 0.70 | 0.25 | 0.97 | 0.11 | 0.89 | 0.28 | 0.98 | 0.05 | 56
configll | 0.62 | 0.26 | 0.94 | 0.20 | 0.88 | 0.28 | 0.94 | 0.14 | 51
configl2 | 0.63 | 0.31 | 0.99 | 0.03 | 0.92 | 0.31 | 0.95 | 0.11 | 164
configl3 | 0.68 | 0.25 | 0.93 | 0.19 | 0.70 | 0.42 | 0.97 | 0.08 | 170
configld | 0.80 | 0.28 | 0.88 | 0.22 | 0.68 | 0.41 | 0.86 | 0.22 | 161
configl5 | 0.86 | 0.20 | 0.58 | 0.22 | 0.80 | 0.33 | 0.82 | 0.26 | 153

Table 1: Summary of results.

The optimal values for the tracking quality measure are the mean equals to 1
and the standard deviation tending to 0, meaning the window is over the object
all the time. Values lesser than 1 indicate the tracker has lost its target (or part
of it) during the tracking time.



5 Final Remarks

In this paper, the WiSARD model was evaluated as a solution in an on-line
multi-object tracking application. Despite the use of a very limited input in-
formation (binarized image), the WiSARD model has shown promising results
towards an adequate classifying algorithm for this type of application. Neverthe-
less, more data sets should be tested in order to validate the proposed system.
In the configurations shown in section 4, the configuration12 presented good re-
sults in both track quality and quantity of frames per second. Despite fulfilling
the realtime requirement, the tracker has still lost the tracked objects for some
frames.

A positive factor of this model is the bleaching process who plays an im-
portant role in the re-learning stage. However, the re-learning rules currently
present in this tracker are too simple. One of the observed problems of this
model is loosing targets, in the presence of occlusions. In this case, target loss
occur due to two reasons: the neural network answer be slightly better in a po-
sition other than the occluded object; and for delays in the re-learning trigger.
As future improvements, smarter rules should be investigated in order to get to
the right moment of invoking the re-learning stage. Future research directions
include the development of algorithms for auto adjustment of the tracker param-

eters and the use of grayscale images such as the ranking algorithm proposed in
[8].

References

[1] J. SanMiguel, A. Cavallaro, and J. Martinez. Adaptive online performance evaluation of
video trackers. IEEE Transactions on Image Processing, 21(5):2812 — 2823, 2012.

[2] Federico Pernici and Alberto Del Bimbo. Object tracking by oversampling local features.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), in press,
2014.

[3] H.L. Franga, J.C.P. da Silva, M. De Gregorio, O. Lengerke, M.S. Dutra, and F.M.G.
Franca. Movement persuit control of an offshore automated platform via a ram-based neu-
ral network. In Control Automation Robotics Vision (ICARCV), 2010 11th International
Conference on, pages 2437 —2441, dec. 2010.

[4] Igor Aleksander and Helen Morton. An introduction to Neural Computing. Thomson
Computer Press, Berkshire House, London, UK, second edition edition, 1995.

[5] Massimo de Gregorio. On the reversibility of multi-discriminator systems. Technical Report
Technical Report 125/97, Istituto di Cibernetica-CNR, 1997.

[6] D. S. Carvalho, H. C. C. Carneiro, F. M. G. Franca, and P. V. Lima. B-bleaching: Agile
overtraining avoidance in the wisard weightless neural classifier. Furopean Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning, pages
515-520, April 2013.

[7] Bruno P.A. Grieco, Priscila M.V. Lima, Massimo De Gregorio, and Felipe M.G. Franca.
Producing pattern examples from “mental” images. Neurocomputing, 73(7-9):1057 — 1064,
2010.

[8] Kazimali M. Khaki. Weightless Neural Networks for Face and Pattern Recognition: an
evaluation using open-source databases. PhD thesis, Brunel University, London, 2013.



