Évaluation of air traffic complexity metrics using neural networks and sector status - ENAC - École nationale de l'aviation civile
Communication Dans Un Congrès Année : 2006

Évaluation of air traffic complexity metrics using neural networks and sector status

Résumé

This paper presents an original method to evaluate air traffic complexity metrics. Several complexity indicators, found in the litterature, were implemented and computed, using recorded radar data as input. A principal component analysis (PCA) provides some results on the correlations between these indicators. Neural networks are then used to find a relationship between complexity indicators and the actual sector configurations. Assuming that the decisions to group or split sectors are somewhat related to the controllers workload, this method allows to identify which types of complexity indicators are significantly related to the actual workload.
Fichier principal
Vignette du fichier
296.pdf (171.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00938105 , version 1 (13-05-2014)

Identifiants

  • HAL Id : hal-00938105 , version 1

Citer

David Gianazza, Kevin Guittet. Évaluation of air traffic complexity metrics using neural networks and sector status. ICRAT 2006, 2nd International Conference on Research in Air Transportation, Jun 2006, Belgrade, Serbia. pp xxxx. ⟨hal-00938105⟩
317 Consultations
329 Téléchargements

Partager

More