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Abstract— This paper presents an original method to
evaluate air traffic complexity metrics. Several complex-
ity indicators, found in the litterature, were implemented
and computed, using recorded radar data as input.
A principal component analysis (PCA) provides some
results on the correlations between these indicators.
Neural networks are then used to find a relationship
between complexity indicators and the actual sector
configurations. Assuming that the decisions to group
or split sectors are somewhat related to the controllers
workload, this method allows to identify which types
of complexity indicators are significantly related to the
actual workload.

I. INTRODUCTION

Much research has been conducted over the last

decade to help understanding air traffic complexity and

controller workload. The inadequacy of the aircraft

count to appropriately reflect the traffic complexity has

now been acknowledged for a long-time, and com-

plementary indicators such as "traffic mix", "number

of potential conflicts" and others, have been (and still

are) designed. A linear combination of these variables,

often referred to as dynamic density, is likely to better

fit traffic complexity than individual indicators. It is

used throughout most studies, where the correllation of

a set of indicators with a quantifiable variable, assumed

to represent the actual traffic complexity, is maximized.

A possible shortcoming of this methodology is that

potentially non-linear relations between indicators are

missed (see [1] and the concern of Eurocontrol when

writing calls for proposals). But, more importantly,

the choice of the dependent variable is crucial to

determine how well complexity is actually measured.

Indeed, physical activity, as used in [2] and [3], miss

the important cognitive part of the controller activity.

On the other hand, physiological indicators ([4], [5])

seem difficult to exploit and how well they relate

to traffic complexity is unclear. Finally, widely used

subjective ratings ([6], [7]) provide high quality data

(as they obviously relate to the kind of complexity

investigated), but are often seen as subject to biases

(such as the recency effect denounced in [5], and the

possibility of raters errors in the case of "over-the

shoulder workload ratings" [8]). In all of these cases,

data are very expensive to collect, as they require the

active participation of controllers. Databases are often

small and might exhibit low variability, which may

in turn harm the statistical relevance of the results.

This phenomenom is acknowledged in [7], where the

overfitting of data is clearly a consequence of a lack

of observations rather than a misspecification of the

neural network. Finally, as these complexity metrics

may be used to design computer-assisted control tools

or traffic management tools, and to help organizing

airspace, it is surprising to notice that the question of

the relevance of the complexity measured to the final

goal is scarcely discussed. The question really is to un-

derstand which complexity is measured and how well

it relates to the foreseen application (benchmarking,

improvements in airspace organization, design of new

tools...).

This paper is motivated by former studies on optimal

airspace sector configurations ([9], [10]) and intends to

improve the criterion used therein to evaluate sector

configurations. The basic idea, introduced in [11],

is that the decisions to split a sector, mostly taken

when the controller is close to overload, are linked

to traffic complexity and may therefore provide an

acceptable dependent variable. Interestingly enough,

collecting data on sector configurations does not re-

quire controllers active participation, as current out-

comes from control centers can be used, while related

flight informations are available from recorded radar

tracks. As such, raw data needed in our study are

noticeably cheap to collect and might be produced in

large quantities. The price to pay is that these data are

noisy, as we may not be sure that a sector splitting

(resp. merging) decision is directly related to overload

(resp. underload). Other factors might distort data, such

as training of unexperienced controllers, meteorologi-

cal hazards, military airspace use... However, we will

assume that the impact of these phenomena on the

accuracy of the results is limited, particularly because



of the kind of complexity we are looking at here.

Indeed, this work is conducted in the perspective of

future pre-tactical applications (e.g. sector planning)

and thus does not ask for as much details as studies

of instantaneous workload would (on the opposite,

benchmarking of ATC centers would require an even

coarser granularity, as indicators are averaged on wide

temporal and geographical horizons [12], [13]). To

investigate the link between complexity indicators and

sector configurations, we use neural networks, as non-

linear interactions are suspected.

The paper is organized as follows. Section II briefly

describes the indicators used throughout the study,

while section III presents the raw data from which the

final database is built. A Principal Component Analysis

(PCA) is then performed in section IV to restrain

the dimensionality of the data. Neural networks are

introduced in section V and their results are presented

and discussed in section VI. Section VII concludes.

II. AIR TRAFFIC COMPLEXITY INDICATORS

The accuracy of the results of a study related to air

traffic complexity is strongly dependent of the diver-

sity and quality of the chosen individual complexity

indicators. Many have been suggested to help describe

the controllers workload, and it is hardly possible

to implement the entire pool. In order to limit the

number of variables to be (re)programmed and present

indicators that are representative of the dynamic den-

sity litterature, we focused on the ones selected by

Kopardekar [6] in its unified complexity metric1. These

indicators, such as references of studies where they

were used and where definitions may be found, are

presented in Table I. We also implemented several

indicators inspired by studies conducted elsewhere in

the SDER (former CENA). Definitions are indicated

in appendix2. Finally, we also used incoming flows

as explanatory variables, as they may be a significant

factor in the decision to split (or merge) a sector.

III. INPUT DATA

The indicators are computed every round minute of

the day, using recorded radar data, environnement data

(sector description), and recorded sector configurations

of the five french ATC centers. The sector configura-

tions are recorded every round minute of the day, which

explains our choice concerning the frequency at which

we compute the indicators.

1Though we were not always able to find an explicit for-
mula, and thus missed seamingly important indicators like, e.g.,
"MET_airspace structure". Note that this difficulty to get clear
definitions is also reported by Eurocontrol in [14].

2Further informations and discussions about indicators are to be
found in the internal note [15].

Indicator Definition Used in

Nb Number of aircraft [16] [7] [17] [6]

Nb2 Squared number of aircraft [17] [6]

σ2
gs Variance of ground speed [7] [6]

Nds Number of descending aircraft [2] [16] [7] [6]

Ncl Number of climbing aircraft [6] [2] [16] [7]
σ2

gs

gs
Ratio of standard deviation [7] [6]

of speed to average speed

F5 Incoming flow (hozizon 5mn) [11]
F15 Incoming flow (hozizon 15mn) [11]
F30 Incoming flow (hozizon 30mn) [11]
F60 Incoming flow (hozizon 60mn) [11]

vprox_1 Vertical proximity [7] [17] [6]
vprox_2 See appendix [7] [17] [6]
hprox_1 Horizontal proximity [7] [17] [6]

Dens [18]
track_disorder [18]
speed_disorder [18]

Div [18]
Conv See appendix [18]

sensi_d [18]
insen_d [18]
sensi_c [18]
insen_c [18]

inter_vert [13]
avg_vs See appendix [13]

inter_hori [13]

creed_ok See appendix [19], [20]
creed_pb [19], [20]

TABLE I

CHOSEN SUBSET OF AIR TRAFFIC COMPLEXITY INDICATORS

Radar data is available in several forms: records

made by each center, with one position every twelve

seconds, in average, and a global record of the five

centers, with one position every three minutes. Several

months of global records were available, whereas the

centers local records were not readily available, at least

for a sufficiently long period of time. So we used

the global records (made by the IMAGE system), and

interpolated the aircraft positions in order to get one

position per minute. As many trajectory changes may

occur within three minutes of flight, the computed po-

sitions are not highly accurate, and this may introduce

a bias in the indicators values. However, this bias is

most probably of small importance in our problem:

we just want to predict when a sector will be merged

into another one, or split in several smaller sectors. We

are not considering the instant workload, which may

require a very high level of accuracy on the aircraft

position, speed, and so on. To be sure that this bias is

small, we should compare the computed positions, and

maybe also the indicators values, using local centers

records, and global records, on small data samples.

This is left for future work.

Several months of recorded traffic are available.

However, considering the volume of data, it would be

tedious to run several experimentations on very large



data samples. So, we have restricted our choice, at least

for the moment, to one day of traffic (1st june, 2003).

Once we have found the most significative complexity

indicators, it will be possible to re-train the neural

network on larger data samples.

On the chosen day, 103 different sectors were armed.

The term "sector" means here either an elementary

sector, or a set of elementary sectors merged together,

and handled on a single controller’s working position.

The air traffic complexity indicators were computed for

each of these sectors, every minute of the day, together

with the sector status (merged, armed, or split). This

data was split into two sets : about sixty percent was

randomly selected in order to train the neural network,

and the rest was used to test the trained network on

fresh data.

This single day of traffic already provides a big

volume of data, as detailed in table II, with a great

diversity of geographic sectors, and with enough data

in each class of sector status.

Total Merged Armed Split

Train 71270 46.6% 27.0% 26.4%

Test 47513 46.4% 27.0% 26.6%

TABLE II

NUMBER OF MEASURES AVAILABLE, ON THE 1ST JUNE OF 2003.

Before applying the neural network to complexity

indicators and sector statuses, let us first discuss the

correlations between the indicators, using a principal

component analysis method.

IV. PRINCIPAL COMPONENT ANALYSIS

Including incoming flows, we end up with 27 com-

plexity indicators. Given the neural network greediness

in numbers of parameters and the high multicollinear-

ity of the data, we will use principal components

rather than individual indicators for our experiments.

6 main components were identified (corresponding to

eigenvalues greater than 1), that covered more than 76

% of the variance of the data set. These components

are interpreted below.

C1: Eigenvalue 12.6, 46.7 % of the variance of the

data set. Appart from vprox_1 and vprox_2, all

variables are strongly (and positively) correlated

with this component, explaining its high associ-

ated eigenvalue. This component may be seen as

a "size factor", and we follow [6] on the term

"Overall monitoring". This component is strongly

representative of the aircraft count.

C2: Eigenvalue 2.78, 10 % of the variance of the

data set. This component is strongly correlated

with avg_vs, σ2
gs and σgs/gs (resp. 0.70, 0.69 and

0.68). Accounting for the impact on ground speed

of vertical evolution of aircraft, this component

may be seen as related to the ground speed

variance, and the aircraft vertical evolutions.

C3: Eigenvalue 1.96, 7.3 % of the variance of the

data set. This component is mainly correlated with

incoming flows.

C4: Eigenvalue 1.25, 4.6 % of the variance of the data

set. Appart from variables directly related to the

traffic volume (N , inter_hori), the correlation on

this component is high with insen_c and CREED

indicators, and thus might be related to converging

flows and anticipation of conflicts.

C5: Eigenvalue 1.06, 3.9 % of the variance of the

data set. This component is strongly correlated

with Div and insen_p, and seems therefore mostly

linked with divergent flows.

C6: Eigenvalue 1.03, 3.8 % of the variance of the data

set. This component is strongly correlated with the

vertical proximity measures ([7]), and could stand

for the monitoring of vertical separation (near the

minimas).

Notice that we extracted only 6 components, thus

significatively less than the 12 components (briefly)

described in [6]. This might be explained by the lack,

at the point of the project, of indicators related to the

sector geometry.

V. NEURAL NETWORKS

A. General presentation

Artificial neural networks are algorithms inspired

from the biological neurons and synaptic links. An arti-

ficial neural network is a graph, with vertices (neurons,

or units) and edges (connections) between vertices.

There are many types of such networks, associated to

a wide range of applications: pattern recognition (see

[21] and [22]), control theory,...

Beyond the similarities with the biological model, an

artificial neural network may be viewed as a statistical

processor, making probabilistic assumptions about data

([23]). Some train data is used to determine a statistical

model of the process which produced this data. Once

correctly trained, the neural network uses this model

to make predictions on new data.

Neural networks are closely related to the Bayesian

probabilities. They may be used for unsupervised

learning (density estimation problems), and, mainly,

supervised learning problems (regression, classifica-

tion). Density estimation is not in the scope of our

paper, so we will not detail it. The aim of regression

is to find a statistical model producing an output y
from input variables (let us denote them by x), so

that the output y is as close as possible to a target

variable, which we shall denote by t. In the case of

classification problems, the target variables represent



class labels, and the aim is to assign each input vector

x to a class.

We will use a specific class of neural networks,

referred to as feed-forward networks, or multi-layer

perceptrons (when the activation function is logistic).

In such networks, the units (neurons) are arranged in

fully-connected layers: an input layer, one or several

hidden layers, and an output layer. Figure 1 shows an

example of such a network.
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Fig. 1. Example of a feed-forward network with one hidden layer

For a network with one hidden layer, the output

vector y = (y1, ..., yk, ..., yq)
T is expressed as a

function of the input vector x = (x1, ..., xi, ..., xp)
T

as follows:

yk = Ψ(

q∑

j=1

wjkΦ(

p∑

i=1

wijxi + w0j) + w0k) (1)

where the wij and wjk are weights assigned to the

connections between the input layer and the hidden

layer, and between the hidden layer and the output

layer, respectively, and where w0j and w0k are biases

(or threshold values in the activation of a unit). Φ is an

activation function, applied to the weighted output of

the preceding layer (in that case, the input layer), and

Ψ is a function applied, by each output unit, to the

weighted sum of the activations of the hidden layer.

This expression can be generalized to networks with

several hidden layers.

The output error – i.e. the difference between the

target values t and the output y computed by the

network – will depend on the parameters w (weights

and biases). The training aims at choosing these pa-

rameters, so as to minimize a chosen function of the

output error.

In the case of regression, the minimized function

is the sum of quadratic errors. For classification prob-

lems, it is best to consider a log-likelihood function.

The network is then designed with one output unit per

class. When the output of such an unit is 1, the input

x is assigned to the class corresponding to the unit,

and when the output is 0, it is not. Let us consider a

problem with C classes. The log-likelihood function

minimized during training is the following, known as

cross entropy:

E(w) = −
N∑

n=1

C∑

k=1

t
(n)
k ln(y

(n)
k ) (2)

where t(n) and y(n) are the nth target and output

vectors, respectively.

Several optimization methods may be used to min-

imize E(w), when training the network. Let us cite

backpropagation, which consists in successive modi-

fications of the weights assigned to the connections

between the layers, starting with the output layer.

These modifications take account of the relative im-

portance of each weight in the output error variations.

Other local optimizations using the gradient of the

error (BFGS, conjugate gradients, for example) are also

widely used. A variety of global optimization methods

(simulated annealing, evolutionary algorithms) are also

proposed in the literature. These global methods usu-

ally perform better than the local methods when there

are many local minima for the error function, but they

are generally much slower.

B. Neural networks applied to our problem

For our problem, we have chosen three-layers feed-

forward networks, denoted IαHβOγ in the rest of the

paper, with α units in the input layer, β units in the

hidden layer, and γ units in the output layer. The input

variables are normalized, by substracting the mean

value and dividing by the standard deviation.

There are many possible choices for the functions

Ψ and Φ, depending on the problem being adressed.

A common choice for Φ is the logistic function :

Φ(z) =
1

1 + e−z
(3)

This is the activation function that was used in

our experiments. As we adress a classification prob-

lem – assign each input vector (a list of complexity

indicators values) to a class representing the sector

status (merged, armed, or split) – we have chosen to

minimize the cross entropy function. Therefore, the

transfer function Ψ applied to the output layer, must

be the softmax function:

Ψ(zk) =
ezk

∑C
m=1 ezm

(4)

The nnet package of the R language was used

(see http://www.r-project.org/ for details

on the R language and environnment). In this package,

developped by Pr B. D. Ripley, a quasi-newton min-

imization method (BFGS) is used for the network’s

learning. The parameters of the nnet tool are the

range parameter (default 0.5), defining the range into



which the initial random weights are chosen, the pa-

rameter for weight decay (default 0), and the maximum

number of iterations. The training stops either if the fit

criterion (the cross entropy in our case) falls below

a chosen parameter abstol (default 1.0e-4), or if the

improvement of the fit criterion is less than 1− reltol
(the default value for reltol is 1.0e-8).

Several combinations of air traffic complexity indi-

cators, or of principal components, will be tested. The

number of input units of the network will be chosen

equal to the cardinal of the evaluated set of indicators

(or components). The number of hidden units is 15

(this choice is discussed later). The output layer is

made of three units, one for each class (merged, armed,

or split).

So a target vector t(n) with value (1, 0, 0) means that

the considered sector was merged with other sectors

when the nth measure of the vector of complexity in-

dicators was made. Armed sectors will be represented

by (0, 1, 0). A value of (0, 0, 1) will mean that the

sector was previously split in two or more sectors at

the time x was measured. Of course, the actual output

of the neural network will not be exact values 0 or 1. It

will be triples (a, b, c) of floating-point values between

0 and 1, each value being the probability to belong to

a class. The input vector x(n) will be assigned to the

class of highest probability.

C. Evaluation of the neural network’s outputs

A well-known problem, when using neural net-

works (or other regression methods), is overfitting: with

enough parameters and enough training cycles, it is

always possible to find a good fit for a given data set.

So one may find a perfect fit for a chosen data sample,

and then feel disappointed when the trained network

makes wrong predictions on fresh data. So, we will

systematically proceed as follows: train the network

on a randomly chosen data sample (called train), then

check the results, first on the same data sample, and

second on a fresh data sample (called test), that was

not used for the training.

In order to evaluate the outputs of several different

models, we have to compare the neural networks

predictions to the actual target values. We may use

the fit criterion (cross entropy) but it does not reflect

the influence of the number of weights (and biases)

in the neural network. It is known (see [23]) that a

network with too few weights may not be able to

capture all the variations of the response to the input x,

whereas a network with too many weights will more

likely be subject to overfitting. In the next sections,

we will compare several sets of input variables, of

various sizes. Consequently, the number of weights in

the network will not remain constant, and this variation

will bias the results.

We will therefore use the Akaike information cri-

terion ([24]): AIC = 2λ − 2ln(L), where λ is the

number of unadjusted parameters of the model (i.e.

the number of weights and biases of the network), and

ln(L) is the log-likelihood. This criterion is strongly

related to information theory, and more specifically to

the Kullback-Leibler distance (K-L) between a candi-

date model and the "true" model. In our case, the AIC

is written as follows:

AIC = 2λ − 2
N∑

n=1

C∑

k=1

t
(n)
k ln(y

(n)
k ) (5)

One should be aware that AIC is a relative criterion,

which can only be used to compare a set of candidate

models relative to a same "true" model: as this true

model is unknown, the corresponding term in the K-

L distance was considered as a constant and dropped,

in the AIC. As we would like to compare predictions

made on the train test and on the test set, which are

of different size, we will divide the AIC by N , the

number of data items, and use: AICavg = AIC
N

.

In addition to the numerical results provided by the

Akaike information criterion, we shall also consider the

global proportion of correctly classified input vectors,

and also the percentage of correct classifications for

each class. One must be aware, however, that the

rate of correct classifications is not the criterion being

maximized by the neural network, so we should remain

cautious when comparing the different classification

rates. However, these percentages are easily under-

standable and may allow us to make some interesting

statements on the results.

VI. RESULTS

A. Preliminary results, discussion on the parameters

Before making statements about how significant the

indicators (or combinations of indicators) are, let us

first check if the chosen network is efficient on our

problem, and consider how to choose the network and

training parameters.

Figure 2 shows the evolution of the cross entropy

criterion during the network’s training. The input vari-

ables were the six main components found by the PCA,

and also the sector’s volume, so the input layer of the

network had 7 units. We have chosen a hidden layer

with 15 units. The output layer had 3 units, each one

representing a class, as explained in section V. The

maximum number of cycles was set to 1500, but the

training actually stopped at 1010 cycles, because the

algorithm was unable to significantly improve the cross

entropy criterion.

Several questions may arise, concerning the param-

eters choices, and their influence on the results. In this
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Fig. 2. Evolution of the cross entropy criterion with the number
of training cycles, using the main 6 components and the volume as
input (network I2H15O3)

study, we will use the default values for the following

nnet parameters: the stop criteria abstol and reltol,
and the weight decay parameter, set to decay = 0. The

range in which the network’s weights and biases are

initialized depends on the range of the input variables,

that we have normalized. A parametric study with all

components plus the sector volume as input and with

15 units in the hidden layer shows that the best results,

averaged on two runs for each value of the range

parameter, were obtained with a range value of 0.4.

So we shall use 0.4 for the nnet range parameter.

It may have been useful to make another parametric

study, trying to find the optimum number of hidden

units by minimizing the AIC, but this is rather time-

consuming (it should be repeated for each set of input

variables). So we have chosen, after a few trials, a

hidden layer of 15 units.

B. Model selection

Let us now select the best model among several

candidate models. A model is a trained neural network

and set of input variables that we expect to provide a

good explanation of the sector status (merged, armed,

or split). We use the PCA components plus the sector

volume as input variables. The sector volume was not

analyzed in the PCA, but as we have not implemeted

any indicator using the sector geometry, we will use the

volume as a proxy for metrics such as "space available

around conflicts" or "distance to sector boundary".

An iterative approach is used: we shall first use com-

ponent C1 (representative of the number of aircraft)

as input to the neural network, then add the volume,

and continue with the five other main components,

successively added in the order found by the PCA. At

last, we will use all the 27 components, and the sector

volume, as input. The AICavg criterion (see section

V-C) is used to select the best model.

For each set of input variables, five training runs are

made. The reason for this is the following: the training

method of nnet is a local optimization method which

starts at a randomly chosen point (the initial weights),

and which follows the steepest descent of the error

function being optimized. This error function may

have several local minima, so choosing different initial

weight values may lead to different results. Although

these local minima are often fairly close, several runs

will comfort our results.

Figure 3 shows, for train and test data, how the

AICavg criterion evolves when adding components to

the set of input variables. The mean values, averaged

on the five runs, are presented. This figure should

be interpreted as follows: when the AIC significantly

decreases when introducing a new variable in the

model, this means that this variable improves the pre-

diction of the sector status. When the AIC increases or

remains constant, this means that the benefit provided

by the additional variables is offset by the complexity

it implies on the model (increase in the number of

parameters)3.
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Fig. 3. Values of the AICavg criterion for the different sets of
input variables

The two curves, train and test, are fairly close,

except at the last point (V +AllC), which corresponds

to the model {V ; C1; ...; C27}. For this last point, the

AIC criterion is improved on train data, whereas it

remains nearly the same on test data, which shows a

little overfitting of the neural network on train data.

Otherwise, the results on train and test data are quite

consistent, so the neural networks are able to generalize

efficiently on fresh data.

The AIC criterion is significantly improved when

adding the sector volume to the component C1 (aircraft

count). Component C2, which is mostly related the

3We could have used the Schwartz BIC criterion instead of the
AIC. As it assigns a heavier penalty to additionnal parameters, it
may have been easier to interpret.



speed variance and the aircraft vertical evolutions

also improves the criterion, although much less than

the sector volume. Small improvements are brought

by component C3 (incoming flows), and also by C4,

mostly related to the converging flows and the conflict

anticipation. The components C5 (diverging flows) and

C6 (monitoring of vertical proximity) bring no signif-

icant improvement. The use of the other components

does not improve the prediction, as shown by the last

point of the test curve.

It might look surprising that the aircraft proximity

(horizontal or vertical) is of little influence on the

sector status explanation. But, as was already stated

in [7], the aircraft have already been separated (in

the other dimension) before the proximity situation

occurs, which explains why it is not very useful. The

anticipation of future aircraft proximity (component

C4), is more significant.

C. Classification rates

Tables III and IV give the proportions of correct

classifications made by the neural networks (the best

of the five runs), using train data as input, or test data,

respectively. The second column of each table shows

the global rate of correct classifications. The three

last columns detail the results for each class (merged,

armed, or split). As previously stated on figure 3, the

results on test data are quite consistent with the results

on train data.

Set Global Merged Armed Split

{C1} 72.91% 81.92% 44.90% 85.61%

{V ; C1} 79.34% 86.26% 59.01% 87.89%

{V ; C1; C2} 80.70% 86.93% 60.79% 90.04%

{V ;C1; C2; C3} 80.84% 87.32% 60.23% 90.43%

{V ; C1; ...;C4} 82.03% 87.87% 63.02% 91.15%

{V ; C1; ...;C5} 81.80% 88.23% 61.77% 90.88%

{V ; C1; ...;C6} 81.83% 88.09% 62.16% 90.85%

{V ; C1; ...;C27} 83.36% 88.63% 65.61% 92.19%

TABLE III

CORRECT CLASSIFICATIONS ON TRAIN DATA

Set Global Merged Armed Split

{C1} 72.61% 81.64% 44.41% 85.40%

{V ; C1} 79.12% 85.56% 59.14% 88.12%

{V ; C1; C2} 80.48% 86.58% 60.74% 89.82%

{V ;C1; C2; C3} 80.42% 86.71% 60.04% 90.08%

{V ; C1; ...;C4} 81.82% 87.78% 62.77% 90.74%

{V ; C1; ...;C5} 81.59% 88.19% 61.44% 90.49%

{V ; C1; ...;C6} 81.65% 87.98% 61.88% 90.64%

{V ; C1; ...;C27} 82.67% 88.04% 64.51% 91.68%

TABLE IV

CORRECT CLASSIFICATIONS ON TEST DATA

When using only the component C1 (aircraft count)

as input, the neural network already makes more then

72% of correct predictions. However, the rate for the

armed class is less than 45%, which is not very

good. Once again, we see that the use of the sector

volume (denoted V ) greatly improves the prediction

of the sector status, with more than 79% of correct

classifications, globally, and a rate of about 59% for

the armed class. The classification rates when adding

C2 climb to 81% for the global rate, and about 60% for

the armed class. Adding C3 does not increase the rates,

although it improved the AIC. C4 slightly improves the

results, whereas C5 and C6 provide no improvement.

At most, when considering the sector volume and the

4 first components, we have about 82% of correct

classifications, and about 63% of correct classifications

for the armed class.

The last line of both tables, with all components and

the volume, shows the best classification rates, whereas

the AIC showed no improvement in the same case. The

apparently good results of the last line are certainly due

to the higher number of network’s parameters than in

the previous models. They do not mean that the model

with all components is the best one.

In order to verify this assumption, we have tried

another network for the {V ; C1; ...; C4} model, with

about the same number of parameters than the

{V ; C1; ...; C27} model. This last model was assessed

with a network I28H15O3, where there were 483
weights and biases. Let us take a I5H53O3 net-

work, with 53 units in the hidden layer, for the

{V ; C1; ...; C4} model. This network has 480 parame-

ters. Table V shows that the classification results, with

this network, are better than the ones obtained with all

components and the volume in table III and IV.

Set Global Merged Armed Split

{V ; C1; ..; C4}train 84.34% 89.74% 67.61% 91.88%

{V ; C1; ..; C4}test 83.84% 89.32% 67.26% 91.09%

TABLE V

CORRECT CLASSIFICATION RATES FOR THE {V ;C1; ...;C4}

MODEL, WITH A I5H53O3 NETWORK

When considering the detailed results, for each class,

on the three tables, we see that the merged and split

classes have better classification rates than the armed

class. This is not a surprise, as the cloud of points

representing the measures of the armed class, in the

variables space, is located "between" the clouds repre-

senting the two other classes. The neural network aims

at finding the frontiers between these clouds, and this

is more difficult with two frontiers instead of one.

To conclude this section, we have seen that the

best model is able to classify correctly about 84% of

the input vectors. We may still slightly improve these

results by running a parametric study on the number



of hidden units, for this model, still minimizing the

AIC criterion. But this is rather time-consuming, and

our results are already quite good, considering that

our data is rather noisy. Let us remind that we have

assumed that the decisions to split or to merge sectors

had a single cause, that is the workload. This may not

always be the case in reality, where there could be

other reasons: controllers training, hardware failures,

and so on. In a next step of our research, we may try

to improve our results by filtering the data – at least

the sector split decisions – using an approximation of

the workload (the number of aircraft for example).

D. Discussion on the results, comparison with other

works

To summarize the previous results, the AIC criterion

(figure3) allowed us to select the best model among the

ones we have tested. This model uses a subset of only

5 input variables {V ; C1; ...; C4}, among the 28 that

we have considered.

The proportions of correct classifications (tables III

and IV) show that the use of the sector volume sig-

nificantly improves the network’s prediction, by 6.5%,

when compared to the sole aircraft count C1. There is

a relatively small improvement (around 3%), between

the sector volume + aircraft count model and the

best model. The other components bring no significant

improvement.

Other works, like [7] and [6] for example, have

already stated that the aircraft count model is not

very efficient in predicting the controller’s workload. In

these studies, the improvement brought by other com-

plexity indicators was much higher than what is shown

in our results. There may be several explanations to

this.

In [7], Chatterji and Sridhar show workload predic-

tion rates (on test data) ranging from less than 16% to

54%, for their medium workload class, and from 0%

to 100% for their high workload class. However, their

results with test data were not consistent with the ones

obtained with train data. They honestly state that they

were unable to draw reasonable conclusions from these

results, as they had too few measures in the medium

and high workload classes.

In [6], Kopardekar and Magyarits apply a linear

regression on subjective complexity ratings. The results

were not given in percentages of correct classifications.

The R2 criterion of the regression was used to compare

the candidate models. The results presented in [6] show

some significant differences of R2 values between the

aircraft count model and the model based on dynamic

density (which is viewed as a linear combination of

several indicators). Kopardekar and Magyarits also

lacked measures, but for very low and high workload

traffic.

Both studies ([7], [6]) use subjective complexity

ratings, provided by air traffic controllers who assessed

the traffic complexity of several traffic samples, only

during periods when the sector was armed4. In our

study, we use the actual sector status, recorded for

several elementary sectors and groups of sectors, as-

suming that the sector status is related to the controllers

workload. So we have only three levels of workload:

low, when the sector is merged with other sectors,

normal use, when the sector is armed, and too high

when the sector has been split into smaller sectors.

We have the feeling that the studies [7] and [6] focus

on the normal use load interval, and that the use of

complexity ratings within this domain magnifies the

observed phenomenons.

Aside from these considerations, another, and more

straightforward, explanation of the relatively small

differences between our candidate models – when com-

paring the classification rates – resides in the nature of

the data used in our study. We simply have a great

number of measures for which there is no doubt as to

which class they belong to, even when using the worst

possible model. For example, when there are 2 aircraft

in a given sector, it is most likely merged with other

sectors. On the opposite, when there are 60 aircraft in

a sector, it has certainly been split into several sectors.

We may have exhibited much higher variations in the

results, by computing the classification rates using only

measures collected around the times when the sector

configurations changed.

VII. CONCLUSION

In conclusion, we were able to select the best model,

among several candidate models, establishing a func-

tional relationship (equation V-A with the weights of

the trained network) between the air traffic complexity

indicators and the sector status. Assuming that the

decisions to merge or to split a sector are statisti-

cally related to the controllers workload, this original

method provides an objective way to validate the com-

plexity metrics. Our method also has the advantage, in

comparison to other methods, to use widely available

data (sector configurations and radar tracks recorded

by the ATC centers), noticeably cheap to collect, as

the active participation of air traffic controllers is not

required.

Neural networks, minimizing the cross entropy func-

tion of the output error, showed good results, consistent

on train and test data. The Akaike information criterion

proved useful in selecting the best model, avoiding

the bias due to the different number of parameters

in the candidate models. In the iterative approach that

4This is not explicitly stated in the papers, but we assume so, as
they lacked measures for high workload traffic situation.



was used, the highest improvement, when comparing

to the aircraft count model, was brought when in-

troducing the sector volume as a new input variable.

Smaller improvements were provided by components

C2 (speed variance and aircraft vertical evolutions),

C3 (incoming flows), and C4 (converging flows and

conflict anticipation).

So far, we have only considered the PCA compo-

nents in our study. The next step of our research may be

to select a subset of individual indicators, issued from

the components of the best model, and re-iterate the

approach presented in this paper. This would provide

a more direct and simple relationship between the

indicators and the sector status, by avoiding to compute

the components from all the indicators.

The neural network approach used in this study

seems appropriate for the granularity we are interested

in and the foreseen applications, either strategical (sec-

tor design) or pre-tactical (sector planning). We are

also fairly confident that decisions to split or merge

sectors may allow to assess the instantaneous work-

load as well, and could therefore be used to improve

tactical tools (PRESAGE). To this end, other statistical

methods should be investigated to take into account the

serial correlation of sector status, looking closely at the

sector splitting times. We plan to tackle this issue in a

close future, using dynamic discrete choice models.

Finally, another issue that we intend to address, in

relation to the complexity indicators, is the prediction

of optimal sector configurations. Previous works ([9],

[10]) proposed several algorithms to compute optimal

sector configurations, using sector capacities and in-

coming flows. The output of the neural network is a

triple of probabilities, allowing to decide when a sector

should be split, or merged. We may derive a realistic

workload indicator – and also threshold values – from

these probabilities, which could be used to compute

optimal sector configurations.
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APPENDIX: COMPLEXITY METRICS

Delahaye and Puechmorel metrics

To present the geometrical indicators introduced in [18],
we need to define several quantities:

• The vector representing the distance between two air-

craft is denoted by
−−−→
XiXj where Xi (resp. Xj ) stands

for the location of aircraft i (resp. j).
• The "oblical" distance between two aircraft (i and j) is

denoted by

d
ob
ij =

q

<
−−−→
XiXj ,

−−−→
XiXj > , (6)



where < ., . > stands for the appropriate scalar product.
• We denote by −→v ij = −→v j − −→v i the speed difference

between two aircraft.
• The derivative of the "oblical" distance between two

aircraft is denoted by vij and writes

vij =
<

−−−→
XiXj ,−→v ij >

dob
ij

. (7)

• We introduce a weighting function f . As suggested in
[25], we used

f(dob
ij ) =

e−α(dob
ij )2 + e−βdob

ij

2
, (8)

with α = 0.002, β = 0.01, the dob being expressed in
nautical miles.

These indicators are defined pointwise. To get a value on the
controlled airspace, they have to be averaged on the different
aircraft. In [18], a density indicator is defined as follows

Dens(i) =

N
X

j=1

bf(dob
ij ) . (9)

Two indicators are introduced to reflect the variability in
headings (track_disorder) and speed (speed_disorder). There
are defined as

track_disorder(i) =
X

j 6=i

|θi − θj |f(dob
ij ) . (10)

speed_disorder(i) =
X

j 6=i

‖−→v ij‖f(dob
ij ) . (11)

Indicators Div et Conv respectively describe convergency and
divergency of the aircraft in the controlled sector.

Div(i) =

Nb
X

j = 1
j 6= i

1R− (vij) . |vij | f(dob
ij ) , (12)

Conv(i) =

Nb
X

j = 1
j 6= i

1R+ (vij) . |vij | f(dob
ij ) . (13)

Indicators Sd+ and Sd− are designed to set a weight on po-
tential conflicts that are difficult to solve. These "sensitivity"
indicators are defined by

Sd−(i) =

Nb
X

j = 1
j 6= i

1R− (vij) ‖
−→
∇vij‖f(dij) , (14)

Sd+(i) =

Nb
X

j = 1
j 6= i

1R+ (vij) ‖
−→
∇vij‖f(dij) . (15)

Note that components of the gradient are weighted so as
to reflect the difficulty of the respective manoeuvers5 . As
observed in [18], a situation with a high "sensitivity" is
easier to resolve for the air controller than one with a
low "sensitivity". As these indicators "increase" with the

5Reasonable weights were given by P. Averty and M. Tognoni.

number of aircraft, it is unclear whether they actually are
"complexity" or "simplicity" indicators. We thus define a last
pair of indicators, insen_c and insen_d as

insen_c =
Conv2

Sd+
and insen_d =

Div2

Sd−

. (16)

Modified PRU metrics

The work conducted by SDER-RFM for the Performance
Research Unit (citeRFM), though initially designed to com-
pare ATC centers on a daily basis, inspired the following
indicators :

• inter_hori: number of potential crossings (irrespective
of the aircraft direction on their trajectories) with angle
greater than 20 degrees.

• inter_vert: denote by n1, n2 et n3 the numbers of sta-
ble/climbing/descending aircraft. The indicator is then
defined as

inter_vert =
(n1n2 + n2n3 + n1n3)

(n1 + n2 + n3)
. (17)

• avg_vs: this is simply the average vertical speed of
controlled aircraft.

Metrics inspired from the CREED project

The work of P. Averty on conflict detection [19] inspired a
set of indicators. One of the ideas in [19] is that conflict per-
ception is "plannar". The author thus defines for converging
pairs of aircraft the following quantities

• Ed : minimum horizontal distance between aircraft.
• Efl : horizontal distance when the aircraft are vertically

separated (after the crossing).
• Da : the "anticipation degree", i.e. the distance between

the faster aircraft and the intersection of the aircraft
trajectories (in the horizontal plan). We replace this
variable to a modified Da, DaC, which stands for the
greater distance between one of the aircraft and the
point where, horizontally, the distance between aircraft
is the smallest. For explanations about this substitution,
we refer to [15].

Originally, these quantities are defined to describe conflict
perception. To translate the idea of [19] in terms of traffic
complexity, we assume that a conflict is all the more critic
that the expected separation (Ed and Efl) and the anticipation
(DaC) are small. We thus set

creed =
1

α Da + (1 − α)(β Ed + (1 − β) Efl)
, (18)

where α and β are parameters in [0; 1]6. Finally, aircraft pairs
considered in [19] are such that vertical separation occurs
prior to separation, as the converse situation is avoided as
much as possible by controllers. Accordingly, the complexity
associated with these latter pairs is likely to be greater and
we distinguished the two kind of conflicts by summing the
quantity fintroduced in (18) on both sets of aircraft, thus
creating two distinct indicators, creed_ok ("good pairs") and
creed_pb ("bad pairs").

6As for now, these parameters are set equal to 0.5, but are meant
to be adjusted and possibly vary with DaC to reflect the results of
ongoing research [20].


