From Dual Connections to Almost Contact Structures - ENAC - École nationale de l'aviation civile
Article Dans Une Revue Mathematics Année : 2022

From Dual Connections to Almost Contact Structures

Emmanuel Gnandi
  • Fonction : Auteur
  • PersonId : 1081700
Stéphane Puechmorel
  • Fonction : Auteur
  • PersonId : 1162282
  • IdHAL : puechmst

Résumé

A dualistic structure on a smooth Riemaniann manifold M is a triple ( M, g, ∇) with g a Riemaniann metric and ∇ an affine connection generally assumed to be torsionless. From g and ∇, dual connection ∇∗ can be defined. In this work, we give conditions on the basis of this notion for a manifold to admit an almost contact structure and some related structures: almost contact metric, contact, contact metric, cosymplectic, and co-Kähler in the three-dimensional case.
Fichier principal
Vignette du fichier
almost_contact_dual_connections.pdf (442.61 Ko) Télécharger le fichier

Dates et versions

hal-03771986 , version 1 (21-09-2022)

Licence

Identifiants

Citer

Emmanuel Gnandi, Stéphane Puechmorel. From Dual Connections to Almost Contact Structures. Mathematics , 2022, ⟨10.3390/math10203822⟩. ⟨hal-03771986⟩

Collections

ENAC
96 Consultations
136 Téléchargements

Altmetric

Partager

More