
HAL Id: hal-03771986
https://enac.hal.science/hal-03771986v1

Submitted on 21 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

From Dual Connections to Almost Contact Structures
Emmanuel Gnandi, Stéphane Puechmorel

To cite this version:
Emmanuel Gnandi, Stéphane Puechmorel. From Dual Connections to Almost Contact Structures.
Mathematics , 2022, �10.3390/math10203822�. �hal-03771986�

https://enac.hal.science/hal-03771986v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Article

From Dual Connections to Almost Contact Structures

1Emmanuel Gnandi, 2 Stéphane Puechmorel
1, 2 ENAC, Université de Toulouse, kpanteemmanuel@gmail.com, 2, ENAC, Université de Toulouse,
stephane.puechmorel@enac.fr

* Corresponding author: stephane.puechmorel@enac.fr; Tel.: +33-5-62259503

Version September 7, 2022 submitted to Mathematics

Abstract: A dualistic structure on a smooth Riemaniann manifold 𝑀 is a triple (𝑀 , 𝑔,∇) with 𝑔 a Riemaniann1

metric and ∇ an affine connection, generally assumed to be torsionless. From 𝑔 and ∇, the dual connection ∇∗
2

can be defined and the triple (𝑀 ,∇,∇∗) is called a statistical manifold, a basic object in information geometry.3

In this work, we give conditions based on this notion for a manifold to admit an almost contact structure and4

some related structures: almost contact metric, cosymplectic, and coKähler in the three-dimensional case.5

6

Keywords: dual connections, auto-dual connections, torsionless dual connections, auto-dual torsionless7

connection(Levi-Civita connection), gauge equation of dual connections, almost cosymplectic structure, almost8

symplectic structure, symplectic structure, cosymplectic structure, almost contact structure, almost contact metric9

structure, coKhaler structure.10

1. Introduction11

Finding characteristic obstructions to the existence of structures is a particularly important question arising
in mathematics. In this work, we give conditions for an orientable manifold to admit an almost contact
structure(almost cosymplectic structure), almost contact metric structure, cosymplectic(symplectic mapping
torus) structure, using the notion of dual connections that was introduced in the context of information geometry
[1,2]. We will also use information geometry to describe the relationships between the structures on an even
dimensional manifold and the corresponding ones on an odd dimensional manifold. Going back to the original
paper [3], given a differentiable manifold 𝑀 of odd dimension 2𝑛 + 1, an almost contact structure is defined by
a triple (𝜙, 𝜉, 𝜂) with 𝜙 ∈ 𝑇1

1 (𝑀), 𝜉 ∈ 𝑇 (𝑀), 𝜂 ∈ 𝑇∗ (𝑀) and such that:

𝜂(𝜉) = 1 (1.1)
𝜙2 = −Id + 𝜂 ⊗ 𝜉 (1.2)

A manifold with an almost contact structure can also be defined equivalently as one whose structure group is12

reductible to𝑈 (𝑛) × 1.13

From the above equation, one can easily deduce the next proposition:14

Proposition 1.1.

rank 𝜙 = 2𝑛 (1.3)
𝜙𝜉 = 0 (1.4)
𝜂𝜙 = 0 (1.5)
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The proof is elementary and relies only on basic linear algebra. In fact, if 𝑝 ∈ 𝑀 and 𝑋 ∈ 𝑇𝑝𝑀 ≠ 0 is such
that 𝜂(𝑋) = 0, then 𝜙2 (𝑋) = −𝑋 , and 𝑋 ∉ ker 𝜙. From 1.2, 𝜂(𝜙2 (𝑋)) = −𝜂(𝑋) + 𝜂(𝜉)𝜂(𝑋) = 0 and using the
previous remark it implies 𝜂(𝜙(𝑋)) = 0. Since 𝜙2 (𝜉) = 0, it comes at once that 𝜙(𝜉) = 0. A Riemannian metric
𝑔 on 𝑀 is said to be adapted to the almost contact structure if it satisfies for all vector fields 𝑋 ,𝑌 :

𝑔 (𝜙(𝑋), 𝜙(𝑌 )) = 𝑔(𝑋 ,𝑌 ) − 𝜂(𝑋)𝜂(𝑌 ) (1.6)

Using 1.4 and the above definition it comes:

𝜂(𝑋) = 𝑔(𝑋 , 𝜉) (1.7)

and in turn:
𝑔 (𝜙(𝑋), 𝜉) = 0 (1.8)

The endomorphism 𝜙 is skew-symetric with respect to an adapted metric:

𝑔 (𝑋 , 𝜙(𝑌 )) = −𝑔 (𝜙(𝑋),𝑌 ) (1.9)

and thus gives rise to a canonical 2-form Ω:

Ω(𝑋 ,𝑌 ) = 𝑔 (𝑋 , 𝜙(𝑌 )) (1.10)

When Ω = 𝑑𝜂, the almost contact structure is said to be a contact metric structure. Finally, if 𝜉 is Killing,15

then the structure is said to be 𝐾-contact. Any 3-dimensionnal oriented Riemannian manifold (𝑀 , 𝑔) admits an16

almost contact structure with 𝑔 as adapted metric [4]. For classification of almost contact metric structures (see17

also[5]).18

In 1969 M. Gromov [6] proved that, any almost contact open manifold M admits a contact structure. A similar19

result is proved in case of closed oriented 3-dimensionnal manifold by Lutz [7] and Martinet [8], the case of20

5-dimensional is proved by J. Etnyre [9] and the work of R. Casals, D.M. Pancholi and F. Presas [10]. In []21

Matthew Strom Borman, Yakov Eliashberg et Emmy Murphy22

Being an almost contact manifold is a purely topological condition. In dimension 5, it boils down to the vanishing23

of the third integral Stiefel-Whitney class. In [11], this property is used to classify simply connected almost24

contact manifolds. Recall that almost cosymplectic manifold(cf. [12],[13]) of dimension 2𝑛 + 1 is a triple25

(𝑀 ,𝜔, 𝜂) such that the 2-form 𝜔 and the 1-form 𝜂 satisfy 𝜔𝑛 ∧ 𝜂 ≠ 0. In the language of 𝐺-structures, an almost26

cosymplectic structure can be defined equivalently as an 1 × 𝑆𝑝(𝑛, 𝑅)-structure.27

From [13], every almost cosymplectic structure on 𝑀 induces an isomorphism of 𝐶∞ (𝑀)-modules

♭(𝜂,𝜔) :

{
X(𝑀) → Ω1 (𝑀)
𝑋 ↦→ 𝑖𝑋𝜔 + 𝜂(𝑋)𝜂

for every vector field 𝑋 ∈ X(𝑀). A vector bundle isomorphism (denoted with the same symbol) ♭(𝜂,𝜔) : 𝑇𝑀 →
𝑇★𝑀 is also induced. Then the vector field

𝜉 = ♭−1
(𝜂,𝜔) (𝜂)

on M is called the Reeb vector field of the almost cosymplectic manifold (𝑀 , 𝜂,𝜔) and is characterized by the
following conditions

𝑖𝜉𝜔 = 0 and 𝑖𝜉𝜂 = 1

Conversely, we have the following characterization of almost cosymplectic manifolds that follows from28

[13][proposition 2]29
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Proposition 1.2. Let M be a manifold endowed with a 1-form 𝜂 and a 2-form 𝜔 such that the map ♭(𝜂,𝜔) : 𝑇𝑀 →30

𝑇★𝑀 is an isomorphism. Assume also that there exists a vector field 𝜉 such that 𝑖𝜉𝜔 = 0 and 𝜂(𝜉) = 1. Then, M31

has odd dimension and (𝑀 , 𝜂,𝜔) is an almost cosymplectic manifold with Reeb vector field 𝜉.32

By a cosymplectic manifold, we mean a (2n+1)-manifold M together with a closed 1-form 𝜂 and a closed33

2-form 𝜔 such that 𝜂 ∧𝜔𝑛 is a volume form. This was P. Libermann’s definition in 1959 [14], under the name of34

cosymplectic manifold. The pair (𝜂,𝜔) is called a cosymplectic structure onM. In [15], Blair gives an equivalent35

definition of cosymplectic manifolds, which is more often referred to in the literature, see [16],[17],[18],[19],[20],36

[21], [22]. From Blair[15] an almost contact metric structure (𝜃, 𝜉, 𝜂, 𝑔) on an odd-dimensional smooth manifold37

M is cosymplectic if 𝑑𝜂 = 𝑑Ω = 0, where Ω is the fundamental 2-form. The cosymplectic manifolds can be38

thought of as an odd-dimensional counterpart of symplectic manifolds. In fact, on any cosymplectic manifold39

(𝑀 , 𝜂,𝜔) the so-called horizontal distribution ker 𝜂 is integrable to a symplectic foliation of codimension 1. On40

the other hand, one has the following result due to Manuel de Léon and Martin Saralegi:41

Theorem 1.1 ([23]). Let M be a manifold and 𝜔, 𝜂 two differential forms on M with degrees 2 and 1 respectively.42

Consider, on 𝑌 = 𝑀 ×R, the differential 2-form Ω = 𝑝𝑟★𝜔 + 𝑝𝑟★𝜂 ∧ 𝑑𝑡, where 𝑡 ∈ R and 𝑝𝑟 : 𝑌 → 𝑀. Then:43

(𝑀 , 𝜂,𝜔) is a cosymplectic manifold if and only if (𝑌 ,Ω) is a symplectic manifold.44

The Darboux theorem admits an equivalent in cosymplectic structure.
Any cosymplectic manifold (𝑀, 𝜂,𝜔) of dimension 2n + 1 admits around any point local coordinates
(𝑡, 𝑞𝛼, 𝑝𝛼),𝛼 = 1, ..., 𝑛, such that:

𝜔 =

𝑛∑︁
𝛼=1

𝑑𝑞𝛼 ∧ 𝑑𝑝𝛼, 𝜂 = 𝑑𝑡, 𝜉 =
𝜕

𝜕𝑡

In 2008, HONGJUN LI main theorem in [16] asserts that cosymplectic manifolds are equivalent to symplectic45

mapping tori. The main idea of Li’s proof comes from the theorem of Tischler[24], which states that: A compact46

manifold admits a non-vanishing closed 1-form if and only if the manifold fibres over a circle. This assertion is47

also equivalent to: A compact manifold is a mapping torus if and only if it admits a non-vanishing closed 1-form.48

The codimension-one, co-orientable foliations defined by the kernel of nowhere-zero closed one form are termed49

unimodular foliations. In [25] for the codimension one co-orientable, the existence of an unimodular foliation is50

equivalent to a vanishing modular class.51

Theorem 1.2 ([25]). The first obstruction class(The modular class) 𝑐F vanishes identically if and only if we can52

chose 𝜂 the defining one-form of the foliation F to be closed.53

In section 2, we briefly summarize results about the gauge equation for dual connections. There is no claim of54

originality here, only a reformulation of the previous results obtained by Pr. M. Boyom. In section 3, we discuss55

the relationship between skew-symmetric solutions of maximal rank of the gauge equation and the existence of56

almost cosympletic structure, almost contact metric structure and cosymplectic structure(symplectic mapping57

torus). Finally, the case of dimension 3 coKähler manifolds is treated in the final part of the article.58

2. Gauge transformations and parallelism59

In this section, (𝑀 , 𝑔) is a smooth Riemannian manifold. As usual, for a vector bundle 𝐸 → 𝑀 , Γ(𝐸) denotes
the space of smooth sections. For any affine connection ∇, its dual connection ∇∗ is defined by the relation(
∇∗
𝑌
𝑋
)♭

= ∇𝑌 𝑋
♭, or equivalently as satisfying for any vector fields 𝑋 ,𝑌 , 𝑍 in 𝑇𝑀 , the equation:

𝑍 (𝑔 (𝑋 ,𝑌 )) = 𝑔 (∇𝑍𝑋 ,𝑌 ) + 𝑔
(
𝑋 ,∇∗

𝑍𝑌
)

(2.1)
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The equation 2.1 proves by symmetry that ∇∗∗ = ∇.60

On 1-forms, the duality relation becomes (∇𝑋𝜔)♯ = ∇∗
𝑋
𝜔♯, for any 1-form 𝜔 and vector field 𝑋 .61

The levi-civita connection ∇𝑙𝑐 is self-dual and for any connection ∇ without torsion:

∇ = ∇𝑙𝑐 − 1
2
𝐷, ∇∗ = ∇𝑙𝑐 + 1

2
𝐷 (2.2)

with 𝐷 = ∇∗ − ∇ a (2,1)-tensor (since the difference of two affine connections is a tensor).62

The relationship between the curvatures of two dual connections is given by :

𝑔(𝑅∇ (𝑋 ,𝑌 )𝑉 ,𝑊) = −𝑔(𝑉 , 𝑅∇∗ (𝑋 ,𝑌 )𝑊).

A connection ∇ in 𝑇𝑀 is said to be metric if ∇𝑔 = 0, i.e.:

𝑋 .(𝑔(𝑌 , 𝑍)) = 𝑔(∇𝑋𝑌 , 𝑍) + 𝑔(𝑌 ,∇𝑋𝑍), for any vector fields X,Y,Z.

Metric connections are not unique, but differ only by the torsion. As a consequence of ∇𝑔 = 0 one has

𝑔(𝑅∇ (𝑋 ,𝑌 )𝑉 ,𝑊) = −𝑔(𝑉 , 𝑅∇ (𝑋 ,𝑌 )𝑊).

Proposition 2.1. 𝐷 is symmetric in its first two arguments. Furthermore, for any vector fields 𝑋 ,𝑌 , 𝑍:

𝑔 (𝐷 (𝑍 , 𝑋),𝑌 ) = 𝑔 (𝑋 ,𝐷 (𝑍 ,𝑌 ))

Lemma 2.1. If ∇ is torsionless, then so is ∇∗.63

Proof. Only a sketch of the proof is given here. The starting point is the same as for establishing Koszul formula:

𝑌 (𝑔 (𝑋 , 𝑍)) = 𝑔 (∇𝑌 𝑋 , 𝑍) + 𝑔
(
𝑋 ,∇∗

𝑌 𝑍
)

𝑍 (𝑔 (𝑋 ,𝑌 )) = 𝑔 (∇𝑍𝑋 ,𝑌 ) + 𝑔
(
𝑋 ,∇∗

𝑍𝑌
)

𝑋 (𝑔 (𝑌 , 𝑍)) = 𝑔 (∇𝑋𝑌 , 𝑍) + 𝑔
(
𝑌 ,∇∗

𝑋𝑍
)

It comes:

𝑌 (𝑔 (𝑋 , 𝑍)) − 𝑍 (𝑔 (𝑋 ,𝑌 )) + 𝑋 (𝑔 (𝑌 , 𝑍)) =
− 𝑔

( (
∇𝑋 + ∇∗

𝑋

)
𝑍 ,𝑌

)
+ 𝑔 ( [𝑌 , 𝑋], 𝑍) − 𝑔 ( [𝑍 , 𝑋],𝑌 )

+ 𝑔
(
𝑋 ,∇∗

𝑌 𝑍 − ∇∗
𝑍𝑌

)
since ∇ + ∇∗ = 2∇𝑙𝑐, Koszul formula yields:

𝑔
(
𝑋 ,∇∗

𝑌 𝑍 − ∇∗
𝑍𝑌

)
= 𝑔 (𝑋 , [𝑌 , 𝑍])

and the lemma follows. □64

Proof. The first claim is a consequence of ∇ being torsionless and lemma: 2.1

𝐷 (𝑋 ,𝑌 ) = ∇∗
𝑋𝑌 − ∇𝑋𝑌 = ∇∗

𝑌 𝑋 + [𝑋 ,𝑌 ] − ∇𝑌 𝑋 − [𝑋 ,𝑌 ] = 𝐷 (𝑌 , 𝑋)
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For the second, the starting point is equation 2.1 rewritten with the expressions from equation 2.2:

𝑍 (𝑔 (𝑋 ,𝑌 )) = 𝑔
(
∇𝑙𝑐
𝑍 𝑋 ,𝑌

)
+ 𝑔

(
𝑋 ,∇𝑙𝑐

𝑍 𝑌

)
− 1

2
𝑔 (𝐷 (𝑍 , 𝑋),𝑌 ) + 1

2
𝑔 (𝑋 ,𝐷 (𝑍 ,𝑌 ))

Using the defining property of the Levi-Civita connection:

𝑔 (𝐷 (𝑍 , 𝑋),𝑌 ) − 𝑔 (𝑋 ,𝐷 (𝑍 ,𝑌 )) = 0

and the claim follows. □65

Proposition 2.2. The tensor:
𝑇 : (𝑋 ,𝑌 , 𝑍) ↦→ 𝑔 (𝐷 (𝑍 , 𝑋),𝑌 )

is totally symmetric. Futhermore, 𝑇 (𝑋 ,𝑌 , 𝑍) = (∇𝑍𝑔) (𝑋 ,𝑌 )66

Proof. The symmetry comes from the one of 𝐷. For the second part of the proposition:

(∇𝑍𝑔) (𝑋 ,𝑌 ) = 𝑍 (𝑔 (𝑋 ,𝑌 )) − 𝑔 (∇𝑍𝑋 ,𝑌 ) − 𝑔 (𝑋 ,∇𝑍 ,𝑌 )
= 𝑔

(
∇∗
𝑍𝑋 ,𝑌

)
− 𝑔 (∇𝑍𝑋 ,𝑌 )

= 𝑔 (𝐷 (𝑍 , 𝑋),𝑌 ) .

□67

Given a torsionless connection ∇, a (1,1)-tensor 𝜃 is said to satisfy the gauge equation if for all vector fields
𝑋 ,𝑌 :

∇∗
𝑋𝜃𝑌 = 𝜃∇𝑋𝑌 (2.3)

Equivalently, using the tensor 𝐷:

∇𝜃 = − (𝐷 ⊗ 1) 𝜃 (2.4)
∇∗𝜃 = − (1 ⊗ 𝐷) 𝜃 (2.5)(
∇𝑙𝑐 + 1

2
(1 ⊗ 𝐷 + 𝐷 ⊗ 1)

)
𝜃 = 0 (2.6)

with:
(𝐷 ⊗ 1) (𝜃) (𝑋 ,𝑌 ) = 𝐷 (𝑋 , 𝜃𝑌 ) , (1 ⊗ 𝐷) (𝜃) (𝑋 ,𝑌 ) = 𝜃𝐷 (𝑋 ,𝑌 ).

When ∇ = ∇𝑙𝑐, equation 2.6 yields: ∇𝑙𝑐𝜃 = 0. In this case, equation 2.6 indicates that local solutions exist
provided the conditions of [26] are satisfied. In coordinates, the gauge equation becomes, with Einstein convention
of summation on repeated indices:

𝜕𝑘𝜃
𝑗

𝑖
= Γ𝑏

𝑖𝑘𝜃
𝑗

𝑏
− Γ

𝑗

𝑎𝑘
𝜃𝑎𝑖 − 𝜃𝑎𝑖 𝐷

𝑗

𝑎𝑘
(2.7)

where the Γ𝑘
𝑖 𝑗
are the Christoffel symbols of ∇. It is convenient to use an orthonormal frame (𝑋1, . . . , 𝑋𝑛) and its

associated coframe
(
𝜔1 = 𝑋♭

1, . . . ,𝜔
𝑛 = 𝑋♭

𝑛

)
to represent the tensor 𝐷:

𝐷𝑘
𝑖 𝑗 = Γ𝑘

𝑖 𝑗 + Γ
𝑗

𝑖𝑘
(2.8)

where all the coefficients are expressed in the orthonormal frame/coframe, that is:

𝐷 = 𝐷𝑘
𝑖 𝑗𝑋𝑘 ⊗ 𝜔𝑖 ⊗ 𝜔 𝑗
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Definition 2.2. Let 𝜃 be a (1,1)-tensor. Its adjoint 𝜃∗ is defined, for all vector fields 𝑋 ,𝑌 , by the relation:

𝑔 (𝜃𝑋 ,𝑌 ) = 𝑔 (𝑋 , 𝜃∗𝑌 )

Proposition 2.3. If 𝜃 is a solution of the gauge equation for ∇, then so is its adjoint 𝜃∗.68

Proof. For any vector fields 𝑋 ,𝑌 , 𝑍:

𝑔
(
(∇∗

𝑍𝜃)𝑋 ,𝑌
)
= 𝑔

(
∇∗
𝑍 (𝜃𝑋),𝑌

)
− 𝑔

(
𝜃∇∗

𝑍𝑋 ,𝑌
)

(2.9)

= 𝑍 (𝑔 (𝜃𝑋 ,𝑌 )) − 𝑔
(
𝜃𝑋 ,∇𝑌

𝑍

)
− 𝑔

(
𝜃∇∗

𝑍𝑋 ,𝑌
)

(2.10)

= 𝑍 (𝑔 (𝑋 , 𝜃∗𝑌 )) − 𝑔 (𝑋 , 𝜃∗∇𝑍𝑌 ) − 𝑔
(
∇∗
𝑍𝑋 , 𝜃

∗𝑌
)

(2.11)
= 𝑔 (𝑋 ,∇𝑍𝜃

∗𝑌 ) − 𝑔 (𝑋 , 𝜃∗∇𝑍𝑌 ) (2.12)

Since 𝜃 satisfies the gauge equation, ∇∗
𝑍
𝜃 = −𝜃𝐷 (𝑍 , .), thus:

𝑔
(
(∇∗

𝑍𝜃)𝑋 ,𝑌
)
= −𝑔 (𝜃𝐷 (𝑍 , 𝑋),𝑌 ) = −𝑔 (𝐷 (𝑍 , 𝑋), 𝜃∗𝑌 ) = −𝑔 (𝑋 ,𝐷 (𝑍 , 𝜃∗𝑌 ))

and so:

0 =𝑔 (𝑋 ,𝐷 (𝑍 , 𝜃∗𝑌 )) + 𝑔 (𝑋 ,∇𝑍𝜃
∗𝑌 ) − 𝑔 (𝑋 , 𝜃∗∇𝑍𝑌 ) (2.13)

= 𝑔
(
𝑋 ,∇∗

𝑍𝜃
∗𝑌

)
− 𝑔 (𝑋 ,∇𝑍𝜃

∗𝑌 ) + 𝑔 (𝑋 ,∇𝑍𝜃
∗𝑌 ) − 𝑔

(
𝑋 , 𝜃∗∇∗

𝑍𝑌
)

(2.14)
= 𝑔

(
𝑋 ,∇∗

𝑍𝜃
∗𝑌

)
− 𝑔 (𝑋 , 𝜃∗∇𝑍𝑌 ) (2.15)

This equation implies in turn the required property:

∇∗
𝑍𝜃

∗𝑌 = 𝜃∗∇𝑍𝑌

□69

Remark 2.3. This proposition generalizes theorem 10.3.2 in [27]. It implies that if a tensor is a solution of the70

gauge equation, so are its symmetric and skew-symmetric parts.71

Proposition 2.4. Let 𝜃 be a skew-symmetric solution of the gauge equation. Let the tensor 𝑝𝜃 be defined for all
vector fields 𝑋 ,𝑌 by:

𝑝𝜃 (𝑋 ,𝑌 ) = 𝑔 (𝜃𝑋 ,𝑌 )

Then 𝑝 is ∇ parallel, or equivalently, for any vector fields 𝑋 ,𝑌 , 𝑍:(
∇∗
𝑍𝑔

)
(𝜃𝑋 ,𝑌 ) = 𝑔 ((∇𝑍𝜃) 𝑋 ,𝑌 )

Proof. For any vector fields 𝑋 ,𝑌 , 𝑍:

(∇𝑍 𝑝𝜃 ) (𝑋 ,𝑌 ) = 𝑍 (𝑝𝜃 (𝑋 ,𝑌 )) − 𝑝𝜃 (∇𝑍𝑋 ,𝑌 ) − 𝑝𝜃 (𝑋 ,∇𝑍𝑌 )
= 𝑔

(
∇∗
𝑍𝜃𝑋 ,𝑌

)
+ 𝑔 (𝜃𝑋 ,∇𝑍𝑌 ) − 𝑔 (𝜃∇𝑍𝑋 ,𝑌 ) − 𝑔 (𝜃𝑋 ,∇𝑍𝑌 )

= 𝑔
( (
∇∗
𝑍𝜃 − 𝜃∇𝑍

)
𝑋 ,𝑌

)
= 0
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On the other hand: (
∇∗
𝑍𝑔

)
(𝜃𝑋 ,𝑌 ) = 𝑍 (𝑔 (𝜃𝑋 ,𝑌 )) − 𝑔

(
∇∗
𝑍𝜃𝑋 ,𝑌

)
− 𝑔

(
𝜃𝑋 ,∇∗

𝑍𝑌
)

= 𝑔 (∇𝑍𝜃𝑋 ,𝑌 ) − 𝑔
(
∇∗
𝑍𝜃𝑋 ,∇𝑍𝑌

)
= −𝑔 (𝐷 (𝑍 , 𝜃𝑋),𝑌 )

and by the gauge equation:
−𝑔 (𝐷 (𝑍 , 𝜃𝑋),𝑌 ) = 𝑔 ((∇𝑍𝜃)𝑋 ,𝑌 )

proving the second assertion. □72

Corollary 2.1. let 𝜃 be a solution of the gauge equation. Then the next two conditions are equivalent.73

1. ∇𝜃 = 074

2. ∇ is metric connection, for the metric g.75

Proof. By using the second assertion of Proposition 3.4, we have

(−∇𝑍𝑔) (𝜃𝑋 ,𝑌 ) =
(
∇∗
𝑍𝑔

)
(𝜃𝑋 ,𝑌 ) = 𝑔 ((∇𝑍𝜃) 𝑋 ,𝑌 )

The proposition is demonstrated. □76

Remark 2.4. In the case of torsionless dual connections, ∇ is exactly the Levi-Civita connection of the metric g.77

Corollary 2.2. Let 𝜃 be a solution of the gauge equation of dual torsionless connections. The tensor 𝑝𝜃 is closed78

and ∇-coclosed.79

Proof. For a torsionless connection ∇ and a 𝑘-form 𝜔:

𝑑𝜔𝜃 (𝑋0, . . . , 𝑋𝑘) =
𝑘∑︁

𝑖=0

(−1)𝑖
(
∇𝑋𝑖

𝜔
) (
𝑋0, . . . , �̂�𝑖 , . . . , 𝑋𝑘

)
Since ∇𝑝𝜃 = 0, the previous formula applied to 𝑝𝜃 shows that 𝑑𝑝𝜃 = 0. From [28], the codifferential relative to
∇ acting on differential forms as follows:

𝛿∇𝜔 = −𝑡𝑟𝑔∇𝜔

the previous formula applied to 𝑝𝜃 shows that 𝛿∇𝑝𝜃 = 0, then 𝑝𝜃 is ∇-coclosed. □80

3. From Dual Connections to Almost contact manifold81

3.1. Gauge equation of dual connections .82

Theorem 3.1. The following assertions are equivalent:83

1. 𝑀 of dimension 2𝑛 + 1 admits an almost cosymplectic structure(almost contact structure),84

2. The gauge equation of dual connections on 𝑀 admits a skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛.85

Proof. Let’s prove the necessary part (1) implies (2): Assume that M admits an almost contact structure (𝜔, 𝜂),
there exists a vector field 𝜉 such that 𝑖𝜉𝜔 = 0 and 𝜂(𝜉) = 1. For all 𝑥 ∈ 𝑀, it exists an adapted frame
(𝑋0, 𝑋1, ..𝑋𝑛, �̂�1, ., �̂�𝑛) of 𝑇𝑥𝑀 such that

𝑋0 = 𝜉𝑥 and (𝑋1, ..𝑋𝑛, �̂�1, .., �̂�𝑛) is a symplectic basis of 𝐻 = 𝑘𝑒𝑟 (𝜂).
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The adapted coframe
(
𝛼0 = 𝑋♭

0, . . . , �̂�
𝑛 = �̂�♭

𝑛

)
satisfy :

𝜔𝑥 = 𝛼1 ∧ 𝛼1 + ..... + 𝛼𝑛 ∧ 𝛼𝑛 and 𝜂𝑥 = 𝛼0.

Let (𝑌0, .,𝑌𝑛,𝑌1, ...,𝑌𝑛) and (𝑋0, ., 𝑋𝑛, �̂�1, ..., �̂�𝑛) be two adapted frames at x. we have86

𝑌𝑖 = 𝐶
𝑗

𝑖
𝑋 𝑗 + 𝐷 𝑗

𝑖
�̂� 𝑗 and 𝑌𝑖 = −𝐷 𝑗

𝑖
𝑋 𝑗 +𝐶 𝑗

𝑖
�̂� 𝑗

where 𝐶,𝐷 ∈ 𝐺𝑙 (𝑛,R). Hence the two frames are related by the (2𝑛 + 1) × (2𝑛 + 1) matrix S:87

©«
𝐶 𝐷 0
−𝐷 𝐶 0
0 0 1

ª®®¬
Since the structure group of 𝑀 is reducible to Sp(𝑛,R) × 1, one can find a adapted connection ∇ preserving 𝜔, 𝜉:

∇𝜉 = 0 and ∇𝜔 = 0.

From [15], to a almost cosymplectic structure (𝜔, 𝜂) there exists an almost contact metric structure (𝜃, 𝜉, 𝜂, 𝑔) on
M with the same 𝜉 and 𝜂, whose fundamental 2-form Ω coincides with 𝜔. we define a metric g on M by

𝑔(𝑋 ,𝑌 ) = 𝑔𝐻 (𝑋 ,𝑌 ), 𝑔(𝑋 , 𝜉) = 0, 𝑔(𝜉, 𝜉) = 1, ∀𝑋 ,𝑌 ∈ Γ(𝐻).

The (1, 1)-tensor 𝜃 : 𝑇𝑀 −→ 𝑇𝑀 is defined by:

𝜃𝑋 = 𝐽𝑋 , 𝜃𝜉 = 0 ∀𝑋 ∈ Γ(𝐻)

where 𝐽2𝑋 = −𝐼𝑑𝐻 where 𝐼𝑑𝐻 denotes the identity map on 𝐻 and 𝑔𝐻 is a metric on H such that

Ω(𝑋 ,𝑌 ) = 𝑔𝐻 (𝐽𝑋 ,𝑌 ) ∀𝑋 ,𝑌 ∈ Γ(𝐻).

We have
𝜔(𝑋 ,𝑌 ) = Ω(𝑋 ,𝑌 ) = 𝑔(𝜃𝑋 ,𝑌 ) and 𝑔(𝜃𝑋 ,𝑌 ) = −𝑔(𝑋 , 𝜃𝑌 )

We have
∇𝜔 = ∇Ω = 0

𝑋 .Ω(𝑌 , 𝑍) −Ω(∇𝑋𝑌 , 𝑍) −Ω(𝑌 ,∇𝑋𝑍) = 0

𝑋 .𝑔(𝜃𝑌 , 𝑍) − 𝑔(𝜃∇𝑋𝑌 , 𝑍) − 𝑔(𝜃𝑌 ,∇𝑋𝑍) = 0

By duality between ∇,∇∗, we have
𝑔(∇∗

𝑋𝜃𝑌 , 𝑍) − 𝑔(𝜃∇𝑋𝑌 , 𝑍) = 0

we deduce that
∇∗
𝑋𝜃𝑌 = 𝜃∇𝑋𝑌 and 𝑔(𝜃𝑋 ,𝑌 ) = −𝑔(𝑋 , 𝜃𝑌 )

So 𝜃 is skew-symmetric solution of the gauge equation such that 𝑟𝑎𝑛𝑘 (𝜃) = 2𝑛.
The sufficient part (2) implies (1):
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Let 𝜃 be a skew-symmetric solution of the gauge equation. By assumption the rank of 𝜃 is 2n, so 2-form
𝑝𝜃 has maximal rank, i.e. 𝑝𝑛𝜃 vanishes nowhere. Associated to 𝑝𝜃 is its 1-dimensional kernel distribution
𝑘𝑒𝑟 𝑝𝜃 . Since 𝑀 is orientable, by using the Hodge operator ★ on 𝑀, we define a one form 𝜂𝜃 such that :
𝜂𝜃 =★ 𝑝𝑛

𝜃
and satisfy naturaly 𝑝𝑛

𝜃
∧ 𝜂𝜃 ≠ 0. The 2-form 𝑝𝜃 defines a line bundle 𝑙𝑝𝜃

= ∪𝑝∈𝑀 {𝑝, ker 𝑝𝜃 }.
Let 𝜉𝜃 be the unique section of 𝑙𝑝𝜃

satisfying 𝑖𝜉𝜃𝜂𝜃 = 1. The one-form 𝜂𝜃 induces an hyperplane distribution
by:𝐻𝜂𝜃 = 𝑘𝑒𝑟𝜂𝜃 which is everywhere transverse to 𝑙𝑝𝜃

. We see that (𝑝𝜃 , 𝜂𝜃 ) determines a splitting

𝑇𝑀 = (𝑙𝑝𝜃
, 𝜉𝜃 ) ⊕ (𝐻𝜂𝜃 , 𝑝𝜃 )

of the tangent space of M into a framed line bundle and a almost-symplectic hyperplane-bundle (𝐻𝜆𝜃 , 𝑝𝜃 ), where88

𝑝𝜃 is the restriction of 𝑝𝜃 to 𝐻𝜂𝜃 .89

□90

Corollary 3.1. In almost cosymplectic manifold (𝑀,𝜔, 𝜂), with 𝑀 of dimension 2𝑛 + 1, there are91

always dual connections (∇,∇∗) adapted to the distributions 𝑘𝑒𝑟𝜔 and 𝑘𝑒𝑟𝜂, that is ∇Γ∞ (𝑘𝑒𝑟𝜔) ⊂92

Γ∞ (𝑘𝑒𝑟𝜔) and ∇∗Γ∞ (𝑘𝑒𝑟𝜂) ⊂ Γ∞ (𝑘𝑒𝑟𝜂).93

Proof. Let (𝜔, 𝜂) be an almost cosymplectic structure on 𝑀 . It exists ∇ such that:

∇𝜔 = 0, ∇𝜉 = 0.

(i)∇𝜔 = 0, let 𝑌 ∈ Γ∞ (𝑘𝑒𝑟𝜔). By using the identity

𝑋 .𝜔(𝑌 , 𝑍) −𝜔(∇𝑋𝑌 , 𝑍) −𝜔(𝑌 ,∇𝑋𝑍) = 0.

we have
∇Γ∞ (𝑘𝑒𝑟𝜔) ⊂ Γ∞ (𝑘𝑒𝑟𝜔).

(ii)∇𝜉 = 0, By duality, we have:
(∇∗𝜂) (𝑋 ,𝑌 ) = 𝑔(∇𝑋𝜉,𝑌 ).

So ∇∗𝜂 = 0. By a simple calculation we have:

∇∗Γ∞ (𝑘𝑒𝑟𝜂) ⊂ Γ∞ (𝑘𝑒𝑟𝜂).

□94

Corollary 3.2. Let 𝑀 be a manifold of dimension 2𝑛 + 1, Let put 𝑊 = 𝑀 ×R. The following assertions are95

equivalent:96

1. The gauge equation of dual connections on 𝑀 admits a skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛,97

2. 𝑀 admits an almost cosymplectic structure(almost contact structure),98

3. 𝑊 admits an almost symplectic structure,99

4. The gauge equation of dual connections on𝑊 admits a skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛 +2.100

Proof. (1)⇐⇒ (2) is exactly the assertion of the previous theorem.
Let us proves that (2)⇐⇒ (3):
The necessary part “(2) =⇒ (3)”:Starting from a almost cosymplectic structure (𝜔, 𝜂), from [15] there exist an
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almost contact metric (𝜃, 𝜉, 𝜂, 𝑔) on M associated to the almost cosymplectic structure , from [29] we known that
𝑊 = 𝑀 ×R admits a almost complex structure J defined by:

𝐽 (𝑋 , 𝑓 𝜕
𝜕𝑠

) = (𝜃𝑋 − 𝑓 𝜉, 𝜂(𝑋) 𝜕
𝜕𝑠

).

we know that from [30] the existence on a manifold of almost complex structures is equivalent to almost symplectic
structures.
The sufficient part “(2)⇐=(3) ”Let denote by 𝑝 : 𝑊 = R × 𝑀 → 𝑀 the canonical projection and by
𝑙 (𝑎) = (0, 𝑎) : 𝑀 → 𝑊 = R ×𝑀 a fixed section. Let Ω is almost symplectic 2-form on𝑊 ie (Ω𝑛+1 ≠ 0), let 𝑠
the coordinate in R and 𝜕

𝜕𝑠
the corresponding coordinate vector field on R, we define (𝜂,𝜔) by

𝜔 = 𝑙∗Ω , 𝜂 = 𝑙∗𝑖 𝜕
𝜕𝑠
Ω.

We claim that on𝑊 = 𝑀 ×R we have
Ω = 𝑝∗𝜔 + 𝑝∗𝜂 ∧ 𝑑𝑠.

Then from [23], we known that Ω𝑛+1 = (𝑛 + 1)𝑝∗ (𝜂 ∧𝜔𝑛) ∧ 𝑑𝑠. The 2-form Ω satisfies Ω𝑛+1 ≠ 0 thus 𝜂 ∧𝜔𝑛 is101

volume form on 𝑀 , and consequently the pair (𝜂,𝜔) is almost cosymplectic structure on M.102

Let us proves that (3) ⇐⇒ (4) : The necessary part “(3) =⇒ (4)”. Let Ω an almost symplectic on𝑊 , from
[31],[32], there exist almost-symplectic connections ∇ defined by

∇𝑋𝑌 = ∇0
𝑋𝑌 + 𝐴(𝑋 ,𝑌 )

Where ∇0 is the linear connection on𝑊 , defined by:

∇0
𝑋Ω(𝑌 , 𝑍) = Ω(𝐴(𝑋 ,𝑌 ), 𝑍).

The almost-symplectic connections satisfy:
∇Ω = 0

There exist a skew symmetric 𝜃 ∈ Γ(𝑇𝑊★ ⊗ 𝑇𝑊) and Riemannian on𝑊 such that the identity:

Ω(𝑋 ,𝑌 ) = 𝑔(𝜃𝑋 ,𝑌 ), 𝜃2 = −𝐼𝑑𝑇𝑊

.103

The identity
∇Ω = 0

implies that :
𝑋 .Ω(𝑌 , 𝑍) −Ω(∇𝑋𝑌 , 𝑍) −Ω(𝑌 ,∇𝑋𝑍) = 0

𝑋 .𝑔(𝜃𝑌 , 𝑍) − 𝑔(𝜃∇𝑋𝑌 , 𝑍) − 𝑔(𝜃𝑌 ,∇𝑋𝑍) = 0

𝑔(∇∗
𝑋𝜃𝑌 − 𝜃∇𝑋𝑌 , 𝑍) = 0

so we have
∇∗
𝑋𝜃𝑌 = 𝜃∇𝑋𝑌 and 𝑟𝑎𝑛𝑘 (𝜃) = 𝑟𝑎𝑛𝑘 (Ω) = 2𝑛 + 2.

The sufficient part “(3)⇐=(4)104

Let 𝜃 be a skew-symmetric solution of the gauge equation of dual connections (∇,∇∗) on 𝑊 = 𝑀 ×R of105

𝑟𝑎𝑛𝑘 (𝜃) = 2𝑛 + 2. The 2-form 𝑝𝜃 is non-degenerate on𝑊 , then 𝑝𝜃 is almost symplectic structure on𝑊 . □106

Proceeding the same way, we have the following corollary:107
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Corollary 3.3. Let 𝑀 be an even dimensional manifold of dimension 2𝑛, Let put 𝑊 = 𝑀 ×R. The following108

assertions are equivalent:109

1. The gauge equation of dual connections on 𝑀 admits a skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛,110

2. 𝑀 admits an almost symplectic structure(almost contact structure),111

3. 𝑊 admits an almost cosymplectic structure(almost contact structure),112

4. The gauge equation of dual connections on𝑊 admits a skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛.113

Proposition 3.1. Let (𝜃, 𝜂, 𝜉) be an almost contact manifold. The following assertions are equivalent:114

1. ∇𝜃 = 0, ∇𝜉 = 0,115

2. ∇𝜃 = 0, ∇𝜂 = 0.116

Proof. Let (𝜃, 𝜂, 𝜉) an almost contact structure ie :

𝜃 ◦ 𝜃 + 𝐼 = 𝜂 ⊗ 𝜉, 𝜆(𝜉) = 1

By a simple calculations, we have

(∇𝑋𝜃) (𝜃𝑌 ) + 𝜃 ((∇𝑋𝜃)𝑌 ) = 𝜂(𝑌 ) (∇𝑋𝜉) + ((∇𝑋𝜂)𝑌 )𝜉.

we deduce the equivalence. □117

Proposition 3.2. Let (𝜔, 𝜂) be an almost cosymplectic manifold with associated almost contact metric structure118

(𝜃, 𝜂, 𝜉, 𝑔). If ∇𝜔 = 0, then the next assertions are equivalent:119

1. ∇𝜃 = 0,120

2. g is ∇-paralell ie (∇𝑔 = 0),121

3. (∇𝑋𝜉)♭ = ∇𝑋𝜂 or ∇𝑋𝜉 = (∇𝑋𝜂)♯.122

Proof. Let proves that (1)⇐⇒ (2):
Let us proves that (2)=⇒(1):For any 𝑋 ,𝑌 , 𝑍 , it comes:

∇𝑍 (𝜔) (𝑋 ,𝑌 ) = 𝑍 (𝑔(𝜃𝑋 ,𝑌 )) − 𝑔(𝜃∇𝑍𝑋 ,𝑌 ) − 𝑔(𝜃𝑋 ,∇𝑍𝑌 )
= 𝑔(∇𝑍𝜃𝑋 ,𝑌 ) + 𝑔(𝜃𝑋 ,∇𝑍𝑌 ) − 𝑔(𝜃∇𝑍𝑋 ,𝑌 ) − 𝑔(𝜃𝑋 ,∇𝑍𝑌 )
= 𝑔(∇𝑍𝜃𝑋 ,𝑌 ) − 𝑔(𝜃∇𝑍𝑋 ,𝑌 )
= 𝑔((∇𝑍𝜃)𝑋 ,𝑌 )

So we deduce the necessary part.123

Let proves the sufficient part (1)=⇒(2) Recall that from Proposition 3.4, ∇𝜔 = 0 is equivalent to ∇∗
𝑋
𝜃𝑌 = 𝜃∇𝑋𝑌 ,124

(1) implies ∇𝑋𝜃𝑌 = ∇∗
𝑋
𝜃𝑌 , we deduce that ∇ = ∇∗, then ∇𝑔 = 0. This proves the sufficient part.125

Let proves that (1)⇐⇒ (3):126

Let proves the sufficient part (1)=⇒(3): Assume that ∇𝜃 = 0, then ∇ = ∇∗, by using the formula
(
∇∗
𝑌
𝑋
)♭

=127

∇𝑌 𝑋
♭(resp,(∇𝑋𝜔)♯ = ∇∗

𝑋
𝜔♯), we deduce that (∇𝑋𝜉)♭ = ∇𝑋𝜂(resp, ∇𝑋𝜉 = (∇𝑋𝜂)♯).128

Let proves the necessary part (3)=⇒(1):By simple observations (∇𝑋𝜉)♭ = ∇𝑋𝜂 =
(
∇∗
𝑋
𝜉
)♭, so ∇ = ∇∗, then (1) is129

demonstrated. □130

3.2. Gauge equation of selfdual connections131

When ∇ = ∇∗, the gauge equation is equivalent to

(∇𝑋𝜃)𝑌 = 0 ∀𝑋 ,𝑌 ∈ X(𝑀).
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Theorem 3.2. The following assertions are equivalent:132

1. 𝑀 admits an almost contact metric structure,133

2. It exists a metric on 𝑀 such that the gauge equation of self dual connections with respect to it admits a134

skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛.135

Proof. This is essentially a corollary of theorem 3.1. Let proves that (1) implies (2).
Let (𝜃, 𝜉, 𝜂, 𝑔)-structure(almost contact metric structure) on M, from [29][Theorem 11],[33][Theorem 2], there
exist an linear connection such that:

∇𝜉 = 0 ,∇𝜃 = 0, ∇𝜂 = 0, ∇𝑔 = 0.

We deduce that 𝜃 is skew-symmetric solution of the selfdual connection ∇ and the rank(𝜃)=2n.136

Let proves that (2) implies (1).137

Let 𝜃 be a skew-symmetric solution of the gauge equation of selfdual connections ∇ such that rank 𝜃 = 2𝑛. From138

3.1, M admits an almost cosymplectic structure. From [15], there exists an almost contact metric structure139

(𝜃, 𝜉, 𝜂, 𝑔) on M.140

□141

Corollary 3.4. Let 𝑀 be a 2𝑛 + 1 dimensional manifold, Let put 𝑊 = 𝑀 ×R, the following assertions are142

equivalents:143

1. The gauge equation of selfdual connections on 𝑀 admits a skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛,144

2. 𝑀 admits an almost contact metric structure,145

3. 𝑊 = 𝑀 ×R has an almost Hermitian structure,146

4. The gauge equation of selfdual connections on𝑊 admits a skew-symmetric solution 𝜃 such that rank 𝜃 =147

2𝑛 + 2.148

Proof. (1)⇐⇒ (2) is exactly the assertion of the previous theorem. Let us proves that (2) ⇐⇒ (3) :149

The necessary part “(2) =⇒ (3)” Let (𝜃, 𝜉, 𝜂, 𝑔) be a almost contact metric structure on 𝑀, from [15] the pair150

(𝐽, ℎ) where 𝐽 is almost complex structure defined by:𝐽 (𝑋 , 𝑓 𝜕
𝜕𝑠
) = (𝜃𝑋 − 𝑓 𝜉, 𝜂(𝑋) 𝜕

𝜕𝑠
) and ℎ = 𝑔 + 𝑑𝑡2 is a151

product metric on 𝑊 , we have ℎ(𝐽 (𝑋 , 𝑓 𝜕
𝜕𝑡
), 𝐽 (𝑌 , 𝑓 𝜕

𝜕𝑡
)) = ℎ((𝑋 , 𝑓 𝜕

𝜕𝑡
), (𝑌 , 𝑓 𝜕

𝜕𝑡
)), the pair (𝐽, ℎ) is an almost152

Hermitian structure in𝑊 .153

The sufficient part “(2)⇐=(3)"Let (𝐽, ℎ) an almost Hermitian structure on𝑊 . The almost Hermitian form defined
by Ω(𝑋 ,𝑌 ) = ℎ(𝐽𝑋 ,𝑌 ) is a non-degenerate 2-form on𝑊 . Let 𝑠 the coordinate in R and 𝜕

𝜕𝑠
its coordinate vector

field on R. We define (𝜂,𝜔) by:
𝜔 = 𝑙∗Ω , 𝜂 = 𝑙∗𝑖 𝜕

𝜕𝑠
Ω.

where the canonical projection and by 𝑙 (𝑎) = (0, 𝑎) : 𝑀 → 𝑊 = R × 𝑀. The pair (𝜔, 𝜂) is an almost154

cosymplectic structure on𝑀 . From [15] there exists an almost contact metric structure (𝜃, 𝜉, 𝜂, 𝑔) on 𝑀 .155

(3) ⇐⇒ (4) :The necessary part “(3) =⇒ (4)” Let (𝐽, ℎ) be an almost Hermitian structure on 𝑊 . From
[34][Theorem 15.1, corolarry 1] almost Hermitian connections exist, namely, linear connections ∇ ( Bismut
connection, Chern connection) defined by:

∇ = ∇ℎ − 1
2
𝐽∇ℎ𝐽

satisfying:
∇𝐽 = 0 and ∇ℎ = 0.
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Then the gauge equation of selfdual connections on 𝑀 admits a skew-symmetric solution 𝐽 such that rank 𝐽 =156

2𝑛 + 2.157

The sufficient part “(3)⇐=(4)"Let 𝜃 be a skew-symmetric solution of the gauge equation of selfdual connections158

∇ on𝑊 = 𝑀 ×R of the 𝑟𝑎𝑛𝑘 (𝜃) = 2𝑛 + 2. The 2-form 𝑝𝜃 is non-degenerate on𝑊 . There exist on𝑊 an almost159

Hermitian structure (𝐽, ℎ) such that 𝑝𝜃 (𝑋 ,𝑌 ) = ℎ(𝐽𝑋 ,𝑌 ). □160

3.3. Gauge equation of torsionless dual connections , modular class and cosymplectic manifold(symplectic161

mapping torus)162

Theorem 3.3. The following assertions are equivalent:163

1. 𝑀 admits an cosymplectic structure(symplectic mapping torus),164

2. The gauge equation of dual torsionless connections admits a skew-symmetric solution 𝜃 such that165

rank 𝜃 = 2𝑛 and the modular class of the image of 𝜃 vanishes.166

Proof. Let us proves that (1) implies (2)
Assume that M admits a cosymplectic structure (𝜔, 𝜂), with 𝑑𝜂 = 0, 𝑑𝜔 = 0, such that 𝜂 ∧ 𝜔𝑛 ≠ 0 is a
volume-form. From [15], it exists an almost contact metric structure (𝜃, 𝜉, 𝜂, 𝑔) on 𝑀 , where 𝜉 is the Reeb vector
field defined by 𝑖𝜉𝜔 = 0 and 𝜂(𝜉) = 1) and (𝜃, 𝑔) may be obtained by polarizing 𝜔 on the codimension one
foliation H = 𝑘𝑒𝑟 (𝜂). It satisfies the following identities:

𝜂(𝜉) = 1, 𝜃2 = −Id + 𝜂 ⊗ 𝜉, 𝑔(𝜃𝑋 , 𝜃𝑌 ) = 𝑔(𝑋 ,𝑌 ) − 𝜂(𝑋)𝜂(𝑌 )

The fundamental 2-form Ω of the almost contact metric structure coincides with 𝜔, so we have

Ω(𝑋 ,𝑌 ) = 𝜔(𝑋 ,𝑌 ) = 𝑔(𝜃𝑋 ,𝑌 ).

The condition 𝜂 ∧ 𝜔𝑛 ≠ 0 implies that the restriction of 𝜔 to the leaves of the codimension one foliation
H = 𝑘𝑒𝑟 (𝜂) is symplectic form. From [35] the connections ∇ define by

∇𝑋𝑌 = ∇0
𝑋𝑌 + 1

3
𝑁 (𝑋 ,𝑌 ) + 1

3
𝑁 (𝑌 , 𝑋) ∀𝑋 ,𝑌 ∈ Γ(H).

is symplectic connections on H, where ∇0 is any torsionless linear connection H, define by:

∇0
𝑋𝜔(𝑌 , 𝑍) = 𝜔(𝑁 (𝑋 ,𝑌 ), 𝑍) ∀𝑋 ,𝑌 , 𝑍 ∈ Γ(H)

According to the decomposition of the tangent bundle as:

𝑇𝑀 = 𝐶∞ (𝑀)𝜉 ⊕ H

where 𝜋 : 𝑇𝑀 −→ H denote the corresponding projection. The symplectic connections ∇ admits a torsionless
lift ∇̃:

∇ := 𝜋∇̃|𝐻 and ∇̃𝜉 = 0.

Please note that ∇𝜔 = 0 implies :
∇̃𝜔 = 0 and ∇̃𝜉 = 0.

We have, by using Blair’s definition:

𝜔(𝑋 ,𝑌 ) = Ω(𝑋 ,𝑌 ) = 𝑔(𝜃𝑋 ,𝑌 ) and 𝑔(𝜃𝑋 ,𝑌 ) = −𝑔(𝑋 , 𝜃𝑌 )
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It comes:

∇̃𝜔 = ∇̃Ω = 0

𝑋 .Ω(𝑌 , 𝑍) −Ω(∇̃𝑋𝑌 , 𝑍) −Ω(𝑌 , ∇̃𝑋𝑍) = 0

𝑋 .𝑔(𝜃𝑌 , 𝑍) − 𝑔(𝜃∇̃𝑋𝑌 , 𝑍) − 𝑔(𝜃𝑌 , ∇̃𝑋𝑍) = 0

𝑔(∇̃∗
𝑋𝜃𝑌 , 𝑍) − 𝑔(𝜃∇̃𝑋𝑌 , 𝑍) = 0

we deduce that
∇̃∗
𝑋𝜃𝑌 = 𝜃∇̃𝑋𝑌 and 𝑔(𝜃𝑋 ,𝑌 ) = −𝑔(𝑋 , 𝜃𝑌 )

So 𝜃 is skew-symmetric solution of the gauge equation of torsionless dual connections (∇̃, ∇̃∗) such that
𝑟𝑎𝑛𝑘 (𝜃) = 2𝑛.
By a simple observations, we have:

𝑘𝑒𝑟 (𝜃) = 𝑘𝑒𝑟 (𝜔).

We deduce that
𝑖𝑚(𝜃) = 𝑘𝑒𝑟 (𝜔)⊥ = 𝑘𝑒𝑟 (𝜂).

Then from [25], the modular class of the image of 𝜃 vanishes.
Let now proves that (2) implies (1).
Let 𝜃 be a skew-symmetric solution of the gauge equation of torsionless dual connections (∇,∇∗). From corollary
2.2, 𝑝𝜃 is ∇-parallel, therefore it is closed. By assumption the rank of 𝜃 is 2n, so 2-form 𝑝𝜃 has maximal rank, i.e.
such that 𝑝𝑛

𝜃
vanishes nowhere. We associate to 𝑝𝜃 a one-dimensional foliation 𝑘𝑒𝑟 𝑝𝜃 = 𝑘𝑒𝑟 (𝜃). From 2.4 𝑝𝜃 is

∇-parallel, so the foliation 𝑘𝑒𝑟 𝑝𝜃 is ∇-parallel i.e. (∇Γ(𝑘𝑒𝑟 𝑝𝜃 ) ⊂ Γ(𝑘𝑒𝑟 𝑝𝜃 )). By using the duality of (∇,∇∗):

𝑋 .𝑔(𝑣, 𝑣⊥) = 𝑔(∇𝑋𝑣, 𝑣⊥) + 𝑔(𝑣,∇∗
𝑋𝑣

⊥)

we deduce that im(𝜃) is ∇∗-parallel i.e. ∇∗Γ(𝑖𝑚𝜃) ⊂ Γ(𝑖𝑚𝜃). By using the orientation on 𝑀 together with 𝑝𝑛
𝜃
,167

we orient 𝑘𝑒𝑟 𝑝𝜃 . So im(𝜃) is transversally codimension one foliation. By assumption the modular class of the168

image of 𝜃 vanishes, from [25] there exist a closed one form 𝜂𝜃 on M suchr that im(𝜃)=𝑘𝑒𝑟𝜂𝜃 . We deduce that169

(𝑝𝜃 , 𝜂𝜃 ) is cosymplectic structure on M. □170

Proceeding the same way as corollary 3.1, we have171

Corollary 3.5. In cosymplectic manifold (𝑀2𝑛+1,𝜔, 𝜂), there are always dual connections torsionless (∇,∇∗)
adapted to the distributions 𝑘𝑒𝑟 (𝜔) and 𝑘𝑒𝑟 (𝜂). By adapted we means that

∇(Γ∞𝑘𝑒𝑟 (𝜔)) ⊂ Γ∞𝑘𝑒𝑟 (𝜔) ,∇∗ (Γ∞𝑘𝑒𝑟 (𝜂)) ⊂ Γ∞𝑘𝑒𝑟 (𝜂).

Using the same technique as in the proof of theorem 3.3, it comes:172

Corollary 3.6. Let 𝑀2𝑛+1 be an odd dimensional manifold, Let put𝑊 = 𝑀2𝑛+1 × S1, the following assertions173

are equivalents:174

1. The gauge equation of dual torsionless connections on 𝑀2𝑛+1 admits a skew-symmetric solution 𝜃 such175

that rank 𝜃 = 2𝑛 and the modular class of image of 𝜃 vanishes,176

2. 𝑀2𝑛+1 admits a cosymplectic structure,177

3. 𝑊 admits an symplectic structure,178

4. The gauge equation of dual torsionless connections on𝑊 admits a skew-symmetric solution 𝜃 such that179

rank 𝜃 = 2𝑛 + 2.180



Version September 7, 2022 submitted to Mathematics 15 of 21

Corollary 3.7. Let 𝑀2𝑛 be an even-dimensional manifold, let put𝑊 = 𝑀2𝑛 × S1, the following assertions are181

equivalents:182

1. The gauge equation of dual torsion-less connections on 𝑀2𝑛 admits a skew-symmetric solution 𝜃 such that183

rank 𝜃 = 2𝑛.184

2. 𝑀2𝑛 admits a symplectic structure.185

3. 𝑊 admits an cosymplectic structure186

4. The gauge equation of dual torsionless connections on𝑊 admits a skew-symmetric solution 𝜃 such that187

rank 𝜃 = 2𝑛 and the modular class of image of 𝜃 vanishes.188

Proof. (1)⇐⇒ (2) is exactly the same intuition as (3)⇐⇒ (4) of the previous corollary (4.4). (3)⇐⇒ (4) is189

the same intuition as (1)⇐⇒ (2) of the previous corollary (4.4). Let us proves that (2)⇐⇒ (3):“190

The necessary part (2) =⇒ (3)” Let (𝑀2𝑛,Ω) be a symplectic manifold, consider the symplectic mapping191

torus𝑊 = 𝑀2𝑛
𝜑 =

𝑀2𝑛×[0,1]
(𝑚,0)∼(𝜑𝑚,1) , where 𝜑 is a symplectic diffeomorphism. From [16]𝑊 admits an cosymplectic192

structure. Let take 𝜑 = 𝐼𝑑 then𝑊 = 𝑀2𝑛 × S1 =
𝑀2𝑛×[0,1]
(𝑚,0)∼(𝑚,1) admits a cosymplectic structure.193

The sufficient part “(2)⇐=(3)194

Let (Ω, 𝜂) a cosymplectic on𝑊 = 𝑀2𝑛 × S1, let consider fibre bundle 𝑀2𝑛 → 𝑊 = 𝑀2𝑛
𝐼𝑑

→ S1 , consider the195

map 𝑙 : 𝑀2𝑛 → 𝑊 , the 2-form define by 𝜔 = 𝑙∗Ω is symplectic structure on 𝑀2𝑛. □196

3.4. Gauge equation of torsionless selfdual connection(Levi-Civita connection) and existence of CoKhaler197

structure in three dimensional manifold.198

3.4.1. Gauge equation selfdual torsionless connection(∇𝑙𝑐)199

Proposition 3.3. The 2-form 𝑝𝜃 is harmonic, i.e. Δlc𝑝𝜃 = 0.200

Proof. For a torsionless connection ∇ and a 𝑘-form 𝜔:

𝑑𝜔 (𝑋0, . . . , 𝑋𝑘) =
𝑘∑︁

𝑖=0

(−1)𝑖
(
∇𝑋𝑖

𝜔
) (
𝑋0, . . . , �̂�𝑖 , . . . , 𝑋𝑘

)
Since ∇𝑝𝜃 = 0, the previous formula applied to 𝑝𝜃 shows that 𝑑𝑝𝜃 = 0. Let 𝜃 be a skew-symmetric solution
gauge equation 2-form 𝑝𝜃 : (𝑋 ,𝑌 ) ↦→ 𝑝𝜃 (𝑋 ,𝑌 ) = 𝑔(𝜃𝑋 ,𝑌 ).

𝛿𝑙𝑐𝑝𝜃 (𝑌1, ....,𝑌𝑟−1) = −
2𝑛∑︁
𝑖=0

(∇𝐸𝑖
𝑝𝜃 ) (𝐸𝑖 ,𝑌1, ....,𝑌𝑟−1)

Δlc𝑝𝜃 = 𝑑 (𝛿𝑙𝑐𝑝𝜃 ) + 𝛿𝑙𝑐 (𝑑𝑝𝜃 ) = 0.

□201

3.4.2. Gauge equation solution and pseudo-Kahler structure.202

The pseudo-Kahler manifold were introduced by André Lichnerowicz in [36].203

Definition 3.4. An 2n-dimension manifold (𝑀 , 𝑔,Ω) is pseudo-Kahler, when we can define on it a Riemannian204

metric and a quadratic form Ω of rank 2n with zero covariant derivative in this metric.205

Proposition 3.4. Let 𝑀 be a 2𝑛 dimensional manifold. The following assertions are equivalent:206

1. 𝑀 admits a pseudo-Kahler structure,207
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2. It exists a metric 𝑔 such that the gauge equation of selfdual torsionless connection on 𝑀 admits a208

skew-symmetric solution 𝜃 such that rank 𝜃 = 2𝑛.209

Proof. Let us proves (1)=⇒(2): Assume that M admits a pseudo-Kahler structure (Ω, 𝑔), from the Definition
4.7, we have ∇𝑙𝑐Ω = 0 and Ω𝑛 ≠ 0. There exist a skew-symmetric 𝜃 of rank 2n, such that:

Ω(𝑋 ,𝑌 ) = 𝑔(𝜃𝑋 ,𝑌 ) ∀𝑋 ,𝑌 ∈ X(𝑀).

From the identity
∇𝑙𝑐Ω = 𝑔(∇lc𝑍𝜃𝑋 ,𝑌 ) − 𝑔(𝜃∇lc𝑍𝑋 ,𝑌 )

The condition ∇𝑙𝑐Ω = 0 implies that ∇𝑙𝑐𝜃 = 0.210

(2)=⇒(1): Let g be a metric on M and by ∇𝑙𝑐 his levi-Civita connection. Let 𝜃 the skew-symmetric solution of the211

linear equation ∇𝑙𝑐𝜃 = 0 such that the rank of 𝜃 is 2n. From proposition 4.3, we have ∇𝑙𝑐𝑝𝜃 = 0 and 𝑝𝑛
𝜃
≠ 0.212

We deduce that (𝑔, 𝑝𝜃 ) is pseudo-kahler structure on M.213

□214

3.5. Gauge equation solution and curvature215

For a fixed 𝑝 ∈ 𝑀 , the Riemaniann metric 𝑔 admits an orthonormal basis 𝑋1, . . . , 𝑋𝑛 in 𝑇𝑝𝑀 .With respect to it,
𝜃 is represented by a skew-symmetric matrix Θ with entries Θ𝑖 𝑗 = 𝑔(𝜃𝑋 𝑗 , 𝑋𝑖). It is well-known from elementary
linear algebra that it exists a basis 𝑍1, . . . 𝑍2𝑚, 𝑍2𝑚+1, . . . 𝑍𝑛 and real numbers 𝜆1, . . . ,𝜆𝑚 such that:

Θ𝑍2𝑘−1 = 𝜆𝑘𝑍2𝑘 , Θ𝑍2𝑘 = −𝜆𝑘𝑍2𝑘−1, 𝑘 = 1 . . . 𝑚

Θ𝑍2𝑚+𝑘 = 0, 𝑘 = 1, . . . , 𝑛 − 2𝑚

Furthermore, the basis 𝑍1, . . . , 𝑍𝑛 can be chosen to be orthonormal. This is due to the fact that in any case:
Θ2𝑍𝑖 = −𝜆2

𝑘 (𝑖)𝑍𝑖 , where 𝜆 is 0 if 𝑖 > 2𝑚 and 𝑘 (𝑖) = ⌊(𝑖 + 1)/2⌋ otherwise. It thus comes:

𝑔

(
𝜃

2
𝑍𝑖 , 𝑍 𝑗

)
= −𝜆𝑘 (𝑖)2𝑔

(
𝑍𝑖 , 𝑍 𝑗

)
= 𝑔

(
𝑍𝑖 , 𝜃

2
𝑍 𝑗

)
= −𝜆𝑘 ( 𝑗)𝑔

(
𝑍𝑖 , 𝑍 𝑗

)
if 𝜆𝑘 (𝑖) ≠ 𝜆𝑘 ( 𝑗) , then 𝑔

(
𝑍𝑖 , 𝑍 𝑗

)
= 0. Otherwise, 𝑍𝑖 , 𝑍 𝑗 belong to the same linear subspace of 𝑇𝑝𝑀 and can thus

be orthonormalized. In the 𝑍𝑖 , 𝑖 = 1 . . . 𝑛 basis, the matrix Θ is block-diagonal, with 𝑚 blocks of the form:(
0 −𝜆
𝜆 0

)
and the remaining entries all zero.216

Remark 3.5. As a complex matrix, Θ is diagonal in the base

𝑋2𝑘−1 − 𝑖𝑋2𝑘 , 𝑋2𝑘−1 + 𝑖𝑋2𝑘 , 𝑘 = 0 . . . 𝑚, 𝑍2𝑚+𝑘 , 𝑘 = 1 . . . 𝑚 − 2𝑁

with respective eigenvalues 𝑖𝜆𝑘 , ,−𝑖𝜆𝑘 ,0.217

Proposition 3.5. For any𝑈,𝑉 ∈ 𝑇𝑝𝑀 , the curvature tensor 𝑅(𝑈,𝑉) is block diagonal in the basis 𝑍𝑖 = 1 . . . 𝑛.218

Proof. Let𝑈,𝑉 ∈ 𝑇𝑝𝑀 be fixed. In the basis 𝑋1, . . . , 𝑋𝑛, 𝑅(𝑈,𝑉) is represented by an skew symetric matrix,219

still denoted by 𝑅(𝑈,𝑉). Since ∇lc
𝑋
◦ 𝜃 = 𝜃 ◦ ∇lc

𝑋
, 𝑅(𝑈,𝑉) andΘ commute, and since they are both diagonalizable220

(as complex matrices), they must have the same eigenspaces. □221
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Remark 3.6. The proposition 3.5 also shows that any gauge transformation 𝜃 ′ satisfying ∇lc
𝑋
◦ 𝜃 ′ = 𝜃 ′ ◦ ∇lc

𝑋
222

commutes with 𝑅(𝑈,𝑉), and so is block diagonal in the base 𝑍1, . . . , 𝑍𝑛. It must thus commute with 𝜃.223

Proposition 3.6. The curvature tensor 𝑅 is such that:

𝑅(𝑍2𝑘 , 𝑍2𝑘−1)𝑍2 𝑗 = −𝜇𝑘 𝑗𝑍2 𝑗−1

𝑅(𝑍2𝑘−1, 𝑍2𝑘)𝑍2 𝑗 = 𝜇𝑘 𝑗𝑍2 𝑗−1

𝑅(𝑍2𝑘 , 𝑍2𝑘−1)𝑍2 𝑗−1 = 𝜇𝑘 𝑗𝑍2 𝑗

𝑅(𝑍2𝑘−1, 𝑍2𝑘)𝑍2 𝑗−1 = −𝜇𝑘 𝑗𝑍2 𝑗

0 otherwise.

Proof. Let us first recall that for any 𝑋 ,𝑌 ,𝑈,𝑉 :

𝑔 (𝑅(𝑈,𝑉)𝑋 ,𝑌 ) = 𝑔 (𝑅(𝑋 ,𝑌 )𝑈,𝑉)

Then, using the expression of 𝑅 in the basis 𝑍𝑖 , 𝑖 = 1 . . . 𝑛, it comes that only the terms:

𝑅(𝑍2𝑘 , 𝑍2𝑘−1) = −𝑅(𝑍2𝑘−1, 𝑍2𝑘)

can be non-zero. The claim follows by using the block diagonal expression of 𝑅. □224

Remark 3.7. A direct computation shows that the Ricci tensor is diagonal in the basis 𝑍𝑖 , 𝑖 = 1 . . . 𝑛 and:

Ric(𝑍2𝑘 , 𝑍2𝑘) = Ric(𝑍2𝑘−1, 𝑍2𝑘−1) = 𝜇𝑘𝑘 .

3.6. Gauge equation solution and K-cosymplectic Structures225

Definition 3.8. [17] A 2𝑛 + 1-dimensional manifold M is K-cosymplectic if it is endowed with a cosymplectic226

such that the Reeb vector field is Killing respect to some Riemannian metric on M.227

Remark 3.9. By using Blair definition of cosymplectic manifold, Giovanni Bazzoni and Oliver Goertsches in228

[17] proves that the previous definition is equivalent to cosymplectic structure (𝜃, 𝜉, 𝜂, 𝑔) such that the Reeb229

vector field 𝜉 is Killing.230

Proposition 3.7. In a 2𝑛 + 1-dimensional oriented Riemannian manifold (𝑀, 𝑔), if the gauge equation of231

selfdual torsionless(Levi-Civita connections) admits a skew-symmetric solution of rank 2𝑛. Then 𝑀 admits a232

K-cosymplectic structure.233

Proof. Let 𝜃 be a skew-symmetric solution of the gauge equation. By assumption the rank of 𝜃 is 2n, so234

2-form 𝑝𝜃 has maximal rank, i.e. such that 𝑝𝑛𝜃 vanishes nowhere.The gauge equation (∇𝑙𝑐𝜃 = 0) implies that235

∇𝑙𝑐𝑝𝜃 = 0(𝑑𝑝𝜃 = 0). The distribution 𝑘𝑒𝑟 𝑝𝜃 is ∇𝑙𝑐-paralell, then associated to 𝑝𝜃 is its 1-dimensional kernel236

distribution(foliation) 𝑘𝑒𝑟 𝑝𝜃 . By using the orientation on 𝑀 together with 𝑝𝑛𝜃 , we orient 𝑘𝑒𝑟 𝑝𝜃 . Let 𝜉𝜃 be a unit237

norm section in ker 𝑝𝜃 . Denote by H the mean curvature vector of the foliation 𝑘𝑒𝑟 𝑝𝜃238

H = (∇𝑙𝑐

𝜉𝜃
𝜉𝜃 ) |ker 𝑝⊥

𝜃

and 𝜂𝜃 be the volume form of 𝑘𝑒𝑟 𝑝𝜃 :

𝜂𝜃 (𝑋) = 𝑔(𝑋 , 𝜉𝜃 ) ∀𝑋 ∈ X(𝑀)
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We have by simple calculation

𝑑𝜂𝜃 (𝜉𝜃 , 𝑋) = 𝜉𝜃 . < 𝜉𝜃 , 𝑋 > −𝑋 .|𝜉𝜃 |2− < 𝜉𝜃 , [𝜉𝜃 , 𝑋] >

𝑑𝜂𝜃 (𝜉𝜃 , 𝑋) =< ∇lc 𝜉𝜃 𝜉𝜃 , 𝑋 > −1
2
𝑋 .|𝜉𝜃 |2 =< H, 𝑋 >

The 1-dimensional foliation ker 𝑝𝜃 is minimal foliation, then239

𝑑𝜂𝜃 (𝜉𝜃 , 𝑋) = 0 ∀𝑋 ∈ X(𝑀). (3.1)

The distribution ker𝜂𝜃 is ∇𝑙𝑐-paralell, then ker𝜂𝜃 is codimension one co-orientable foliation, by using the
integrability condition:

𝜂𝜃 ( [𝑋 ,𝑌 ]) = 0 ∀𝑋 ,𝑌 ∈ Γ(𝑘𝑒𝑟𝜂𝜃 )

we deduce that
𝑑𝜂𝜃 (𝑋 ,𝑌 ) = 0 ∀𝑋 ,𝑌 ∈ Γ(𝑘𝑒𝑟𝜂𝜃 ) (3.2)

From (4.5) and (4.6) we deduce that
𝑑𝜂𝜃 = 0

Then (𝑝𝜃 , 𝜂𝜃 ) is cosymplectic structure on M and 𝜉𝜃 his Reeb vector field.240

(i)
∇lc 𝜉𝜃 𝜉𝜃 = 0.

The flows lines of 𝜉𝜃 are geodesible flow.241

(ii) By calculations

(𝐿 𝜉𝜃
𝑔) (𝑋 ,𝑌 ) = 𝑔(∇𝑙𝑐

𝑋 𝜉𝜃 ,𝑌 ) + 𝑔(𝑋 ,∇
𝑙𝑐
𝑌 𝜉𝜃 ) = 0 ∀𝑋 ,𝑌 ∈ ker𝜂𝜃 .

Then 𝜉𝜃 is Riemannian flow.242

From [37](proposition 10.10), (i) and (ii) implies that Reeb vector field 𝜉𝜃 is Killing vector field ie(𝐿 𝜉𝜃
𝑔 = 0).243

□244

Corollary 3.8. Let M be a pseudo-Kahler manifold in sense of Lichnerowicz, the manifold𝑊 = 𝑀 × S1 admits245

K-cosymplectic structures.246

Proof. 𝑊 is a fiber bundle over S1, let 𝜋 : 𝑊 → S1 denote the natural projection on S1. Let 𝑑𝛼 be the angular
form on S1 and 𝑑

𝑑𝛼
its dual vector field on. It satisties 𝑑𝛼( 𝑑

𝑑𝛼
) = 1 , and so induces naturally on𝑊 a non-vanishing

closed 1-form 𝜂𝛼 = 𝜋★(𝑑𝛼) and a non-vanishing vector field 𝜉𝛼 such that:

𝜂𝛼 (𝜉𝛼) = 𝑑𝛼(
𝑑

𝑑𝛼
) = 1.

By assumption 𝑀 admit a pseudo-Kahler structure (𝑔,Ω𝜃 ), then on M we have :

∇Ω𝜃 = 0 and Ω𝑛
𝜃 ≠ 0.

Let 𝑝 : 𝑊 → 𝑀 denote the natural projection. Let denote by Ω̄𝜃 the closed 2-form defined by:

Ω̄𝜃 = 𝑝★Ω𝜃 .

We have
Ω̄𝑛

𝜃 ∧ 𝜂𝛼 ≠ 0 on 𝑊 .
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𝑘𝑒𝑟Ω̄𝜃𝑝 is one dimensional for all 𝑝 ∈ 𝑊 and Ω̄𝜃 determines a line bundle by:

𝑙Ω̄𝜃
= ∪𝑝∈𝑊 (𝑝, 𝑘𝑒𝑟Ω̄𝜃𝑝 )

𝑘𝑒𝑟 (𝜂𝛼) is a hyperplane distribution transverse to 𝑙Ω̄𝜃
and hence Ω̄𝜃 restricts to a nondegenerate form on 𝑘𝑒𝑟 (𝜂𝛼).

Let 𝜉𝛼 to be the unique section of 𝑙Ω̄𝜃
satisfying 𝜂𝛼 (𝜉𝛼) = 1. We see that Ω̄𝑛

𝜃
∧ 𝜂𝛼 ≠ 0, so the tangent bundle

T𝑀 splits as the direct sum of a line bundle with a preferred nowhere vanishing section, and a symplectic vector
bundle:

𝑇𝑀 = R𝜉𝜃 ⊕ (𝑘𝑒𝑟𝜂𝛼, Ω̄𝜃 ).

Let ℎ = 𝑔 + (𝑑𝛼)2 be a metric of W, 𝜉𝜃 is Killing for the metric ℎ, then (Ω̄𝜃 , 𝜂𝛼) is K-cosymplectic structure on247

𝑊 = 𝑀 × S1.248

□249

3.6.1. coKähler structure in dimension three and gauge equation solution250

Definition 3.10. An almost contact metric structure (𝜃, 𝜉, 𝜂, 𝑔) on an odd-dimensional smooth manifold 𝑀 is
coKähler if it is cosymplectic and normal, that is 𝑁𝜃 + 𝑑𝜂 ⊗ 𝜉 = 0, where 𝑁𝜃 is the Nijenhuis torsion of 𝜃, defined
as:

𝑁𝜃 (𝑋 ,𝑌 ) = 𝜃2 [𝑋 ,𝑌 ] − 𝜃 ( [𝜃𝑋 ,𝑌 ] + [𝑋 , 𝜃𝑌 ]) + [𝜃𝑋 , 𝜃𝑌 ].

As it is known, an almost contact metric structure is coKähler if and only if both ∇𝑙𝑐𝜂 = 0 and ∇𝑙𝑐Ω = 0, where251

∇𝑙𝑐 is the covariant differentiation with respect 𝑔 and Ω the fundamental 2-form of the almost contact metric252

structure. From [15](Theorem 6.7) we have the following assertion:253

Proposition 3.8. An cosymplectic manifold (𝑀 , 𝜃, 𝜉, 𝜂, 𝑔) is coKähler if and only if ∇𝑙𝑐𝜃 = 0.254

From [16], coKähler manifolds are odd-dimensional analog of Kähler manifolds:255

Theorem 3.11. [16] Any coKähler manifold is a Kähler mapping torus.256

coKähler manifolds coincide with cosymplectic manifolds in Blair’s sense.257

Theorem 3.12. Let M be a 3-dimensional manifold, the following assertions are equivalent:258

1. M admits a coKähler structure(Kähler mapping torus),259

2. It exists a metric on 𝑀 such that gauge equation of the Levi-Civita connection admits a non-zero260

skew-symmetric solution .261

Proof. The necessary part (1) implies (2): Assume that M admit a coKähler structure, then there exist a almost
contact metric structure (𝜃, 𝜉, 𝜂, 𝑔) on M where 𝜂 is a 1-form, 𝜃 is an endomorphism of T M, 𝜉 is a non-vanishing
vector field such that such that

𝜂(𝜉) = 1 and 𝜃2 = −𝐼 + 𝜂 ⊗ 𝜉.

The compatible Riemannian metric 𝑔 satifies :

𝑔(𝜃𝑋 , 𝜃𝑌 ) = 𝑔(𝑋 ,𝑌 ) − 𝜂(𝑋)𝜂(𝑌 ) and 𝑔(𝜃𝑋 ,𝑌 ) = −𝑔(𝑋 , 𝜃𝑌 ),
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for any two vector fields 𝑋 ,𝑌 ∈ X(M). From [15](Theorem 6.7) the Levi-Civita connection ∇𝑙𝑐 of the compabible262

metric 𝑔 satisfies ∇𝑙𝑐𝜃 = 0. It exists a metric g on M such that gauge equation of the Levi-Civita connection263

admits a non-zero skew-symmetric solution.264

Let proves the sufficient part (2) implies (1): Let 𝜃 be a skew-symmetric solution of the gauge equation(∇𝑙𝑐𝜃 = 0).265

By assumption the rank of 𝜃 is 2, from the Proposition 3.7, we known that M admits a K-cosymplectic structures.266

From [17][proposition 2.8] M admits a coKähler structure.267

□268

Remark 3.13. Let (M, 𝑔) be a closed orientable 3-dimensional Riemannian manifold such that the gauge equation
of Levi-Civita connection of g admits a skew-symmetric solution. From work of Etienne Ghys [38]

𝑀 ≃ { T2 × [0,1]
(𝑥,0) ∼ (𝐴𝑥,1) } ∪ {Seifert fiber space}

, where A is a Kahler isometry of T2.269
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