On the geodesic distance in shapes K-means clustering - ENAC - École nationale de l'aviation civile
Pré-Publication, Document De Travail Année : 2018

On the geodesic distance in shapes K-means clustering

Résumé

Using Information Geometry tools, we represent landmarks of a complex shape as probability densities in a statistical manifold. Then, in the setting of shapes clustering through a K-means algorithm, we evaluate the discriminative power of two different shapes distances. The first, derived from Fisher-Rao metric, is related with the minimization of information in the Fisher sense and the other is derived from the Wasserstein distance which measures the minimal transportation cost.
Fichier principal
Vignette du fichier
geodkmean.pdf (875.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01852144 , version 1 (31-07-2018)
hal-01852144 , version 2 (04-10-2018)

Identifiants

  • HAL Id : hal-01852144 , version 1

Citer

Stefano Antonio Gattone, Angela de Sanctis, Stéphane Puechmorel, Florence Nicol. On the geodesic distance in shapes K-means clustering. 2018. ⟨hal-01852144v1⟩
180 Consultations
421 Téléchargements

Partager

More