Statistical Analysis of Aircraft Trajectories: a Functional Data Analysis Approach - ENAC - École nationale de l'aviation civile
Communication Dans Un Congrès Année : 2017

Statistical Analysis of Aircraft Trajectories: a Functional Data Analysis Approach

Florence Nicol

Résumé

In Functional Data Analysis, the underlying structure of a raw observation is functional and data are assumed to be sample paths from a single stochastic process. When data considered are functional in nature thus infinite-dimensional, like curves or images, the multivariate statistical procedures have to be generalized to the infinite-dimensional case. By approximating random functions by a finite number of random score vectors, the Principal Component Analysis approach appears as a dimension reduction technique and offers a visual tool to assess the dominant modes of variation, pattern of interest, clusters in the data and outlier detection. A functional statistics approach is applied to univariate and multivariate aircraft trajectories.
Fichier principal
Vignette du fichier
functional_pca_camera.pdf (2.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01799104 , version 1 (24-05-2018)

Identifiants

  • HAL Id : hal-01799104 , version 1

Citer

Florence Nicol. Statistical Analysis of Aircraft Trajectories: a Functional Data Analysis Approach. Alldata 2017, The Third International Conference on Big Data, Small Data, Linked Data and Open Data, Apr 2017, Venice, Italy. pp.51-56/ISBN: 978-1-61208-457-2. ⟨hal-01799104⟩

Collections

ENAC DEVI
199 Consultations
694 Téléchargements

Partager

More