Predicting Aircraft Descent Length with Machine Learning
Résumé
Predicting aircraft trajectories is a key element in the detection and resolution of air traffic conflicts. In this paper, we focus on the ground-based prediction of final descents toward the destination airport. Several Machine Learning methods – ridge regression, neural networks, and gradient-boosting machine – are applied to the prediction of descents toward Toulouse airport (France), and compared with a baseline method relying on the Eurocontrol Base of Aircraft Data (BADA). Using a dataset of 15,802 Mode-S radar trajectories of 11 different aircraft types, we build models which predict the total descent length from the cruise altitude to a given final altitude. Our results show that the Machine Learning methods improve the root mean square error on the predicted descent length of at least 20 % for the ridge regression, and up to 24 % for the gradient-boosting machine, when compared with the baseline BADA method.
Domaines
Automatique / RobotiqueOrigine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...