Windmill Farm Pattern Optimization using Evolutionary Algorithms - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Communication Dans Un Congrès Année : 2014

Windmill Farm Pattern Optimization using Evolutionary Algorithms


When designing a wind farm layout, we can reduce the number of variables by optimizing a pattern instead of considering the position of each turbine. In this paper we show that when reducing the problem to only two variables defining a grid, we can gain up to 3% of energy output on simple examples of wind farms dealing with many turbines (up to 1000) while dramatically reducing computation time. To achieve these results, we compared both a genetic algorithm and a differential evolution algorithm to previous results from the literature. These preliminary results should be extended to examples involving non-rectangular farm layouts and wind distributions that may require pattern deformation variables in order to increase solution diversity.
Fichier principal
Vignette du fichier
Vanaret_GECCO2014.pdf (798.78 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00996716 , version 1 (05-09-2014)



Charlie Vanaret, Nicolas Durand, Jean-Marc Alliot. Windmill Farm Pattern Optimization using Evolutionary Algorithms. GECCO 2014, Genetic and Evolutionary Computation Conference, Jul 2014, Vancouver, Canada. pp 181-182, ⟨10.1145/2598394.2598506⟩. ⟨hal-00996716⟩
208 Consultations
487 Téléchargements



Gmail Facebook X LinkedIn More