Genetic crossover operator for partially separable functions - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Communication Dans Un Congrès Année : 1998

Genetic crossover operator for partially separable functions


Partial separation is a mathematical technique that has been used in optimization for the last 15 years. On the other hand, genetic algorithms are widely used as global optimizers. This paper investigates how partial separability can be used in conjunction with GA. In the first part of this paper, a crossover operator designed to solve partially separable global optimization problems involving many variables is introduced. Then, a theoretical analysis is presented on a test case, along with practical experiments on fixed size populations, with different kinds of selection methods.
Fichier principal
Vignette du fichier
519.pdf (297.24 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00937718 , version 1 (25-04-2014)


  • HAL Id : hal-00937718 , version 1


Nicolas Durand, Jean-Marc Alliot. Genetic crossover operator for partially separable functions. GP 1998, 3rd annual conference on Genetic Programming, Jul 1998, Madison, United States. pp xxxx. ⟨hal-00937718⟩
152 Consultations
159 Téléchargements


Gmail Facebook Twitter LinkedIn More