Functional principal component analysis of aircraft trajectories - ENAC - École nationale de l'aviation civile
Communication Dans Un Congrès Année : 2013

Functional principal component analysis of aircraft trajectories

Florence Nicol
Connectez-vous pour contacter l'auteur

Résumé

In Functional Data Analysis (FDA), the underlying structure of a raw observation is functional and data are assumed to be sample paths from a single stochastic process. Functional Principal Component Analysis (FPCA) generalizes the standard multivariate Principal Component Analysis (PCA) to the infinite-dimensional case by analyzing the covariance structure of functional data. By approximating infinite-dimensional random functions by a finite number of random score vectors, FPCA appears as a dimension reduction technique just as in the multivariate case and cuts down the complexity of data. This method is applied to aircraft trajectories and the problem of registration is discussed when phase and amplitude variations are mixed.
Fichier principal
Vignette du fichier
isiatm2013_submission_102.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00867957 , version 1 (30-09-2013)

Identifiants

  • HAL Id : hal-00867957 , version 1

Citer

Florence Nicol. Functional principal component analysis of aircraft trajectories. ISIATM 2013, 2nd International Conference on Interdisciplinary Science for Innovative Air Traffic Management, Jul 2013, Toulouse, France. ⟨hal-00867957⟩
307 Consultations
2239 Téléchargements

Partager

More