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Functional Principal Component Analysis
of Aircraft Trajectories
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Abstract
In Functional Data Analysis (FDA), the underlying structure of a raw observa-

tion is functional and data are assumed to be sample paths from a single stochastic
process. Functional Principal Component Analysis (FPCA) generalizes the stan-
dard multivariate Principal Component Analysis (PCA) to the infinite-dimensional
case by analyzing the covariance structure of functional data. By approximating
infinite-dimensional random functions by a finite number of random score vectors,
FPCA appears as a dimension reduction technique just as in the multivariate case
and cuts down the complexity of data. This method is applied to aircraft trajectories
and the problem of registration is discussed when phase and amplitude variations
are mixed.

Keywords. Functional Data Analysis, Principal Component Analysis, Random
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Introduction

Principal Component Analysis (PCA) was one of the first methods of multivariate sta-
tistical analysis to be generalized to functional data that are assumed to be drawn from a
continuous stochastic process. In this work, we will focus on Functional Principal Com-
ponent Analysis (FPCA) which is an useful tool providing common functional compo-
nents explaining the structure of individual trajectories. In Section 1, the general frame-
work for Functional Data Analysis (FDA) is presented and the FPCA approach is for-
malized in Section 2. In Section 3, the registration problem is considered when phase
variation due to time lags and amplitude variation due to intensity differences are mixed.
Finally, FPCA is applied to aircraft trajectories that can be viewed as functional data.

1. FUNCTIONAL DATA ANALYSIS AND RANDOM FUNCTION

Functional Data Analysis (FDA) consists in studying a sample of random functions ge-
nerated from an underlying process. This point of view differs from standard statistical
approaches: the nature of observations is different as we assume that the underlying struc-
ture of a raw observation is functional. Rather than on a sequence of individual points
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or finite-dimensional vectors as in a classical approach, we focus on problems raised by
the analysis of a sample of functions (curves or images), when data are assumed to be
drawn from a continuous stochastic process X . The sample of data consists of n functions
x1(t), . . . ,xn(t), t ∈ J, where J is a compact interval. Rather than a N-dimensional vector
(xi1, . . . ,xiN)

T as in multivariate case, we entirely observe a function xi(t), i = 1, . . . ,n.
This yields a vector of functions rather than a n×N data matrix, where each function xi
consists of infinitely many values xi(t), t ∈ J. General definitions of functional variables
and functional data are given in [7] as follows.

Definition 1.1 A random variable X = {X(t), t ∈ J} is called functional variable (f.v.) if
it takes values in an infinite dimensional space (a functional space H ). An observation
x of X is called a functional datum.

Definition 1.2 A functional dataset x1, . . . ,xn is the observation of n functional variables
X1, . . . ,Xn identically distributed as X (or n realizations of the f.v. X).

Usually, the functional variable X can be viewed as a second order stochastic process
and H as the separable Hilbert space L2(J) of square integrable functions defined on
the interval J. The associated inner product for such functions is 〈x,y〉=

∫
x(t)y(t)dt and

the most common type of norm, called L2-norm, is related to the above inner product
through the relation ‖x‖2 = 〈x,x〉. In a functional context, equivalence between norms
fails and the choice of a preliminary norm becomes crucial that can be drawn by the
shape of the functions, as noted in [7].

Let X be a square integrable functional variable with values in the separable Hilbert
space H . We can define the usual functional characteristics of X , for all s, t ∈ J, as:

• the mean function µ(t) = E [X(t) ],
• the covariance function CovX (s, t) = σ(s, t) = E [X(s)X(t) ]−E [X(s) ]E [X(t) ],
• the variance function VarX (t) = σ2(t) = E

[
X(t)2

]
− (E [X(t) ])2,

In the following, we will assume that X is centered, i.e. µ = 0, otherwise, subsequent re-
sults refer to X−µ . In addition, the covariance operator induced by the covariance func-
tion, plays a crucial role in functional data analysis, particularly in Functional Principal
Component Analysis, as will be seen in the next section.

Definition 1.3 The covariance operator Γ : H −→H is defined by

∀v ∈H , Γv(t) =
∫

J
σ(s, t)v(s)ds.

The covariance operator is a linear Hilbert-Schmidt operator in the functional space of
square integrable functions L2(J) associated to the Hilbert-Schmidt kernel σ [4].

Note that X is a functional space H -valued random function and its observation x
is a non-random function of H . Usually, in practice, functional data x1, . . . ,xn are ob-
served discretely: we only observe a set of function values on a set of arguments that
are not necessarily equidistant or the same for all functions. Because data are observed
on a discretized grid, it could make sense to apply standard multivariate statistical tools
where at each time value t j, the observed vector-functions (xi(t j))i=1,...,n can be viewed
as variable vectors. Yet in recent years, advances in computing and data storage have in-
creased the number of observations on ever finer grids. Standard methods of multivariate



statistics have became inadequate, being plagued by the “curse of dimensionality”, as the
number of variables has became much more important than the number of individuals.
As a result, statistical methods developed for multivariate analysis of random vectors are
inoperative and FDA is a relevant alternative of multivariate statistical tools. As exam-
ples, we can mention functional principal component analysis, functional discriminant
analysis and functional linear models.

Discretized data have thereby to be transformed into functional data, as is requested
in this framework, especially when observations are noisy. Most procedures developed
in FDA are based on the use of interpolation or smoothing methods in order to estimate
the functional data from noisy observations. Examples of such methods outlined in [14]
are, among others, kernel estimation, local polynomial estimation, smoothing splines, B-
splines and basis function expansions such as a Fourier basis or wavelets. When the ob-
served data are noisy, it may be important to combine smoothing techniques within func-
tional data analysis. Finally, we can distinguish two important characteristics of func-
tional data: data are intrinsiquely functional in nature (considered to be elements of an
infinite-dimensional space) and the observed measurements are viewed as the values of
sample paths with possibly measurement error. Then, in FDA, two types of errors have
often to be considered: sampling error in random functions generated from an underlying
process, and measurement error when functions are unknown, discrete noisy data.

For illustrating, in Air Traffic Management (ATM), the aircraft trajectory data
fi(t) = (xi(t),yi(t),zi(t)), i = 1, . . . ,n, collected over time are effectively producing three
dimensional functions over the observed intervals [0,Ti]. There is no way to measure fi
at each time point, because aircraft trajectories are measured with radars. We only have
access to values at given times with about Ni radar measurements for each trajectory
made over slightly different intervals [0,Ti]. Time arguments at which trajectories are

Figure 1. Sample of aircraft trajectories (Paris-Toulouse).

observed are not necessarily the same for each aircraft and may vary from one record
to another. Although each observation could be viewed as Ni data points rather than one
function, the collection of points possess a certain smoothness property that facilitates
functional data interpretation. However, the assumption that all aircraft trajectories are
sample paths from a single stochastic process defined on a time interval [a,b] is clearly
not satisfied: departure times are different and the time to destination is related to the
aircraft type and the wind experienced along the flight. Ensuring a common starting time
is very easy, just by assigning time 0 to the start of the flight and shifting accordingly all



sample times along the trajectory as in Figure 1. The issue arising from aircraft type and
exogeneous stochastic factors is more challenging. The remaining individual time varia-
tion, due to differences in dynamics, which occurs in addition to amplitude variation, is
a more complex problem, well known in FDA as registration problem.

Aircraft trajectories exhibit high local variability both in amplitude and in dynamics.
We could be interested in exploring the ways in which aircraft trajectories vary and high-
light their characteristic features. Some of these features are expected to be there but
other aspects may be surprising and can eventually be related to other variables such as
wind, temperature, route or aircraft type. An extended problem is to bring out the com-
mon features between different routes. Visualization and classification of such trajecto-
ries may be another interesting problem in an exploratory analysis. One may identify air-
crafts with outlying trajectories that may be studied or removed before proceeding fur-
ther analysis. In addition, a principal component analysis would be helpful to generate
new aircraft trajectory samples.

2. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS

Multivariate Principal Component Analysis (PCA) is a powerful exploratory statistical
method which synthetizes the quantity of data information by creating new descriptors
when we observe more than two numeric variables [12,9]. The main idea of PCA relies
on creating a small number of new uncorrelated variables with maximal variance as li-
near combination of the originally correlated variables. PCA was one of the first methods
of multivariate analysis to be generalized to the infinite-dimensional case [1,13,19]. As
for the covariance matrix in the multivariate standard case, the variance and covariance
functions of functional variables are difficult to interpret and one goal is to analyze the
variability of functional data in a understandable manner. Functional Principal Compo-
nent Analysis (FPCA) is a useful tool for studying functional data providing common
functional components explaining the structure of individual trajectories. By approxi-
mating infinite-dimensional random functions by a finite number of random score vec-
tors, FPCA appears as a dimension reduction technique just as in the multivariate case
and cuts down the complexity of the data. Finally, FPCA can be seen from two different
points of view: a non-parametric point of view and a semi-parametric model, these two
approaches being connected by the Karhunen-Loève decomposition.

2.1. Generalization to the infinite-dimensional case

In FDA, the counterparts of variable values xi = (xi1, . . . ,xip)
T are function values xi(t),

i = 1, . . . ,n. Many properties of standard PCA can be generalized to infinite dimension,
replacing matrices by linear operators, summations over j by integrations over t to define
the inner product in the square integrable functional Hilbert space H .

In a non-parametric point of view, the variability of the sample is characterized by
spectral decomposition of the sample covariance operator. Suppose that X is a centered
square integrable random function of H . As in multivariate PCA, we want to find weight
functions γi such that the variance of the linear combination 〈γi,X〉 is maximal

max
γi∈H

Var(〈γi,X〉) subject to 〈γi,γk〉= δik, k ≤ i. (1)



The solutions are obtained by solving the Fredholm functional eigenequation∫
J

σ(s, t)γi(t)dt = λiγi(s), s ∈ J,

that can be expressed by means of the covariance operator Γ induced by the covariance
function σ such that

Γγi(s) = λiγi(s), s ∈ J, (2)

where γi is now an eigenfunction rather than an eigenvector, corresponding to the eigen-
values λi of the covariance operator Γ, and the maximum variance is equal to λi. The
eigenfunctions γi of the covariance operator Γ are called functional principal components
or principal component functions and the random variables θi = 〈γi,X〉=

∫
J γi(t)X(t)dt

are called principal component scores of X into the γi-direction [14].

2.2. Estimation

When the covariance function is unknown, we can replace it by its sample version

σ̂n(s, t) =
1
n

n

∑
j=1

X j(s)X j(t), s, t ∈ J,

where X1, . . . ,Xn are independant functional variables identically distributed as X . The
sample covariance function σ̂n induces the sample covariance operator Γ̂n as follows

Γ̂nv(t) =
∫

J
σ̂n(s, t)v(s)ds =

1
n

n

∑
j=1
〈X j,v〉X j(t), v ∈H .

The estimators γ̂1, . . . , γ̂n are then obtained by solving the empirical version of the Fred-
holm eigenequation, for i = 1, . . . ,n,

Γ̂nγ̂i(s) = λ̂iγ̂i(s), s ∈ J,

where γ̂1, . . . , γ̂n are the eigenfunctions of Γ̂n, ordered by the corresponding eigenvalues
λ̂1 ≥ λ̂2 ≥ ·· · ≥ λ̂n ≥ 0 and they form an orthogonal basis of the linear space spanned
by X1, . . . ,Xn. The scores θi j = 〈γ̂i,X j〉 into the γi-direction, j = 1, . . . ,n, are centered
and uncorrelated random variables such that 1

n ∑
n
j=1 θ 2

i j = λ̂i. Dauxois et al. [5] showed

consistency and asymptotic properties of Γ̂n, γ̂i and λ̂i under mild assumptions.
Several estimation methods of scores and principal component functions were deve-

loped for FPCA and asymptotic results was studied in [5]. Rao [13] and Tucker [19] first
introduced the earliest approach of PCA that linked factor analysis methods with growth
curve models. This method is based on numerical integration or quadrature rules when
functional data are discretized to a fine grid of time arguments that span the interval J.
When the design points are the same for all the observed functions x1, . . . ,xn, the func-
tional eigenequation can be approximated by using quadrature rules. Assume that func-



tions are observed (or estimated by using interpolation or smoothing techniques) at the
same time arguments, no necessarily equally spaced. This yields an n×N data matrix

x1(t1) x1(t2) . . . x1(t j) . . . x1(tN)
x2(t1) x2(t2) . . . x2(t j) . . . x2(tN)

...
... . . .

... . . .
...

xi(t1) xi(t2) . . . xi(t j) . . . xi(tN)
...

... . . .
... . . .

...
xn(t1) xn(t2) . . . xn(t j) . . . xn(tN)


.

The discretization method stands on the approximation of the integrals by a sum of dis-
crete values as ∫

f (t)dt '
N

∑
j=1

ω j f (t j),

where N is the number of time arguments, t j are the time arguments called quadrature
points and ω j are the weights called quadrature weights. Numerical quadrature schemes
can be used to involve a discrete approximation of the functional eigenequation Eq. (2)

ΣnW γ̃m = λ̃mγ̃m, (3)

where Σn = (σ̂n(ti, t j))i, j=1,...,N is the sample covariance matrix evaluated at the quadra-
ture points and W is a diagonal matrix with diagonal values being the quadrature weights.
The solutions γ̃m = (γ̃m(t1), . . . , γ̃m(tN)) are the eigenvectors associated with the eigen-
values λ̃m of the matrix ΣnW . The orthonormality constraints are now

N

∑
j=1

ω j γ̃l(t j)γ̃m(t j) = γ̃
T
l W γ̃m = δlm, l,m = 1, . . . ,N.

The eigenvectors γ̃m form an orthonormal system relatively to the metric defined by the
weight matrix W . In general, the choice of interpolation functions is equivalent to the
choice of a metric. A naive approach consists in directly determining the eigenvectors of
the discretized sample covariance matrix Σn. This may lead to determine wrong results
because the resulting principal components may not form an orthonormal system in a
functional sense, except if the metric W is the identity matrix. In Eckstein [6], a standard
PCA procedure was applied on a discretized ground speed dataset. Data are not consid-
ered as functions but the dataset is defined by a serie of variables that are the ground
speed at each given time. This dataset consists of 180 ground speed measurements at 1
second intervals for a large number of departures. In this particular case, the solutions
correspond with those obtained by a FPCA procedure because the weight matrix W is
the identity matrix. Otherwise an orthonormalization correction is needed using Gramm-
Schmidt procedure.

A more sophisticated method is based on expansion of functional data on known ba-
sis functions such as a Fourier basis or spline functions. Functional data are estimated by
their projections x̃i onto a linear functional space spanned by K known basis functions.



This method will better take into account the functional nature of the data and implies
to reduce the eigenequation to discrete or matrix form. Furthermore, in many applica-
tions, functional data are assumed to be smooth, and yet, the estimated principal com-
ponents functions may be rough and present important variability because of sampling
error, observation noise and the choice of basis functions. Rather than first smoothing
functional data before proceeding with FPCA [14], it makes sense to incorporate this
smoothness assumption into the estimation procedure [16,18]. The smoothed FPCA ap-
proaches, also called regularized FPCA in [14], are based on the well-known roughness
penalty approaches. Detailed algorithms of these methods are available in [14].

2.3. From Karhunen-Loève representation to functional principal components

An important characterization of FPCA as a semi-parametric model directly results from
the Karhunen-Loève decomposition. Indeed, the eigenfunctions γ1,γ2, . . . of the covari-
ance operator Γ form an orthonormal basis of the functional space H so that

X(t) =
+∞

∑
i=1

θiγi(t),

where the principal component scores θi = 〈γi,X〉 are centered and uncorrelated random
variables such that Var(θi ) = λi ≥ 0. Another important property for FPCA involves the
best L-term approximation property.

Proposition 2.1 For any further orthogonal basis ψ1,ψ2, . . . of H and every L ∈N,

E

[
‖X−

L

∑
i=1

θiγi‖2

]
≤ E

[
‖X−

L

∑
i=1
〈ψi,X〉ψ‖2

]
.

This means that the finite expansion ∑
L
i=1 θiγi is the best approximation of X with a given

number L of components. Then, the maximization problem in Eq. (1) is equivalent to the
minimization problem of the mean integrated square error

min
γ1,...,γL

E

[
‖X−

L

∑
i=1

θiγi‖2

]
(4)

that is solved by the first L eigenfunctions γ1,γ2, . . . ,γL of the covariance operator Γ or-
dered by the corresponding eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λL. The two approaches are then
connected by the Karhunen-Loève decomposition for which the integrated mean squared
error in Eq. (4) is minimum if γ1, . . . ,γL are the first L eigenfunctions of Γ and θi = 〈γi,X〉.
Because each functional variable X j admits the Karhunen-Loève decomposition,

X j(t) =
n

∑
i=1

θi j γ̂i(t), j = 1 . . . ,n,

we can interpret the random scores θi j = 〈γ̂i,X j〉 as proportionality factors that represent
strengths of the representation of each individual trajectory by the ith principal compo-



nent function. Furthermore, FPCA provides eigenfunction estimates that can be inter-
preted as “modes of variation”. These modes have a direct interpretation and are of inte-
rest in their own right. They offer a visual tool to assess the main directions in which
functional data vary. As in the multivariate case, pairwise scatterplots of one score against
another may reveal patterns of interest and clusters in the data. In addition, these plots
may also be used to detect outliers and explain individual behaviour relatively to modes
of variation.

As in the multivariate PCA, we can easily measure the quality of the representation
by means of the eigenvalue estimators. The ith eigenvalue estimator λ̂i measures the
variation of the scores into the γ̂i-direction. The percentage of total variation τi explained
by the ith principal component and the cumulated ratio of variation τC

L explained by the
first L principal components are then computed from the following ratio

τi =
λ̂i

∑
n
i=1 λ̂i

, τ
C
L =

∑
L
k=1 λ̂k

∑
n
i=1 λ̂i

.

The amount of explained variation will decline on each step and we expect that a
small number L of components will be sufficient to account for a large part of variation.
Determining a reasonable number L of components is often a crucial issue in functional
analysis. Indeed, choosing L = n components may be inadequate and high values of
L are associated with high frequency components which represent the sampling noise.
A simple and fast method to choose the dimension L is the scree plot that plots the
cumulated proportion of variance explained by the first L components against the number
of included components L. Alternative procedures to estimate an optimal dimension can
be found in [11] and [2].

3. THE REGISTRATION PROBLEM

The process of registration, well known in the field of functional data analysis [17,8,
14], is an important preliminary step before further statistical analysis. Indeed, a serious
drawback must be considered when functions are shifted, owing to time lags or general
differences in dynamics. Phase variation due to time lags and amplitude variation due to
intensity differences are mixed and it may be hard to identify what is due to each kind
of variation. This problem due to such mixed variations can hinder even the simplest
analysis of trajectories.

Firstly, standard statistical tools such as pointwise mean, variance and covariance
functions, may not be appropriate. For example, a sample mean function may badly sum-
marize sample functions in the sense that it does not accuratly capture typical charac-
teristics as illustrated in Figure 2. In addition, more complex analysis such as trajec-
tory clustering may be failed because distance between two similar trajectories may be
wrongly inflated by phase variation. In the case of FPCA, some functional components
may not correspond to effects added to a mean function but rather to a transformation
of time arguments and they may be shifted from function to function. Then, FPCA may
produce too many components and some components can be expressed as derivatives of
others.
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A registration method consists in aligning features of a sample of functions by non
decreasing monotone transformations of time arguments, often called warping functions.
These time transformations have to capture phase variation in the original functions and
transform the different individual time scales into a common time interval for each func-
tion. Generally speaking, a non decreasing smooth mapping hi : [a,b]→ [ci,di], with
[ci,di] the original time domain of the trajectory, is used to map each trajectory yi to a
reference trajectory x, usually called target or template function, already defined on [a,b].
In this way, remaining amplitude differences between registered (aligned) trajectories
yi ◦hi can be analyzed by standard statistical methods. The choice of a template function
is sometimes tricky and it may be simply selected among the sample trajectories as a
reference with which we want to synchronize all other trajectories. Note that warping
functions hi have to be invertible so that for the same sequence of events, time points on
two different scales correspond to each other uniquely. Moreover, we require that these
functions are smooth in the sense of being differentiable a certain number of times.

Most of literature deals with two kinds of registration methods: landmark registra-
tion and goodness-of-fit based registration methods. A classical procedure called marker
or landmark registration aims to align curves by identifying locations ti1, . . . , tiK of cer-
tain structural features such as local minima, maxima or inflexion points, which can
be found in each curve [3,10,8]. Curves are then aligned by transforming time in such
a way that marker events may occur at the same time t01, . . . , t0K , giving hi(t0k) = tik,
k = 1, . . . ,K. Complete warping functions hi are then obtained by smooth monotonic in-
terpolation. This non-parametric method is able to estimate possibly non-linear transfor-
mations. However, marker events may be missing in certain curves and feature location
estimates can be hard to identify. Finally, phase variation may remain between too widely
separated markers.

4. APPLICATION TO AIRCRAFT TRAJECTORIES

4.1. The aircraft trajectory dataset

We now apply the previously described FPCA technique to a 1077 aircraft trajectory
dataset. These data consist of radar tracks between Paris Orly, Charles de Gaulle (CDG)
and Toulouse Blagnac airports recorded during two weeks. Most of the aircrafts are Air-
bus A319 (25%), A320 (41%) and A321 (24%), followed by Boeing B733 (4%) and



B463 (2%) a member of British Aerospace BAe 146 family. Other aircraft types (A318,
A333, B738, E120, AT43, AT45 and AT72) account for a smaller amount of aircrafts.
Radar measurements are observed in the range of 4-6960 seconds at 4 seconds inter-
vals. As noted in Section 1, the assumption that all trajectories are sample paths from

Figure 3. Sample of aircraft trajectories on the range of 4-200 seconds (left panel) and whole trajectories
between Toulouse and Paris Charles de Gaulle airports. The heavy solid line is the mean of trajectories.

a single stochastic process defined on a time interval is clearly not satisfied in the case
of aircrafts: departure times are different, even on the same origin-destination pair and
the time to destination is related to the aircraft type and the wind experienced along the
flight. Without loss of generality, we will assign a common starting time 0 to the first
radar measurement of the flights. Trajectory altitudes in Figure 3 consist of a sequence of
flight levels (FL) measured in hundreds of feet and connected by climb or descent phases.
These data exhibit high local variability in amplitude and in phase but our goal is to an-
alyze the amplitude variability by means of a FPCA technique. As observed raw data
were passed through pre-processing filters, we get radar measurements at a fine grid of
time arguments with few noise. We have then used the discretization method described in
Section 2. We will first focus on departure trajectories to avoid the registration problem.
Next, we will analyze whole trajectories and compare FPCA results for unregistered and
registered trajectories.

4.2. Departure data

As phase variation may badly influence FPCA, each track was reduced to the range of
4-200 seconds for which phase variations seem negligible. Figure 4 displays the first
four principal component functions for these track data after the overall mean has been
removed from each track. Note that principal component functions are defined only to
within a sign change. The percentage 88.1% of total variation explained by the first prin-
cipal component indicates that this type of variation strongly dominates all other types
of variation. The first principal component is a negative function, decreasing with time.
It quantifies an overall decrease in altitude that we can call overall effect (PC1). This
effect begins to be important around 100 seconds after takeoff and is growing with time.
Aircrafts with high negative scores would show especially above-average tracks display-
ing more important climb rates increasing with time. As the second principal component
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Figure 4. The left panel gives the scree plot of the cumulated variance explained by principal components and
the right panel displays the first four principal component curves of aircraft trajectories.

must be orthogonal to the first one, it will define a less important mode of variation. It
accounts for 6.7% of total variation and consists of a high negative contribution for the
0-140 seconds climb phase with minimum at around 60 seconds followed by a much less
important positive contribution. As the third and fourth components are required to be
orthogonal to the first two components as well as to each other, they account for small
proportions of total variation. The third component accounts for only 2.6% of total vari-
ation and consists of negative contributions for the two 0-90 seconds and 170-200 se-
conds phases. The fourth principal component is difficult to interpret and accounts for a
very small percent of total variation. Nevertheless, we can see that it looks like the third
principal component except for a time shift.

A helpful graphical representation proposed in [14] facilitates the interpretation of
each principal component. It consists in visualizing effects of each functional principal
component on the overall mean function by adding and substracting a suitable multiple
of each principal component. Figure 5 displays the overall effect increasing with time
due to the first principal component. The second principal component indicates a mode
of variation corresponding to early climb rates. Aircrafts with high negative scores would
display higher climb rates up to 140 seconds and later slightly reverting to the mean
path. On the other hand, those with high positive scores would display smaller climb
rates and trajectories seem to be linear. We call this effect the takeoff effect (PC2). We
can also easily see the effect of the third component on the overall mean. Aircrafts with
high negative scores would display an overall trajectory up to 70 seconds followed by a
constant flight level during 60 seconds (4000 feet), later reverting to higher climb rates to
compensate it. We call this effect the first level effect (PC3). Furthermore, we can visua-
lize the effect due to the fourth principal component that we call time shift effect (PC4).
High negative scores would display earlier first flight level (3000 feet) at 120 seconds.

Finally, pairwise scatterplots of aircraft scores may reveal patterns of interest and
clusters in aircraft trajectories by route and aircraft type. In addition, these plots may
also be used to detect outliers. For simplifying scatterplots, FPCA was applied to a 145
aircraft trajectory dataset between Toulouse Blagnac and Paris Charles de Gaulle airports
and we have grouped together AT43, AT45, AT72 and E120 aircraft types, now labeled
AT type. We have found similar components to those observed previously. The scatter-
plot in the left panel of Figure 6 displays aircraft scores by aircraft type of the overall
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Figure 5. The effects on the mean aircraft trajectory (solid curve) of adding (+) and substracting (-) a multiple
of each of the first four functional principal components.

effect (PC1) against the takeoff effect (PC2). Clearly, the first component divides aircraft
trajectories in two groups: AT, B463 and most of A321 with positive PC1 scores (under-
average trajectories with overall lower climb rates) and A319, B733 with negative scores
(above-average trajectories with overall higher climb rates). The second component cor-
responding to the takeoff effect (PC2) divides trajectories in a different manner: AT, B463
and A319 with positive scores (slower takeoff) and A320, A321 with negative scores
(faster takeoff). Then, we can see that smallest aircraft types such as AT and E120 should
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Figure 6. Scatterplots of the individual trajectory scores by aircraft type.

display overall lower climb rates associated with slower takeoff. In addition, A319 and
A321 aircrafts trajectories are completely different: A319 aircrafts have negative PC1
scores (overall higher climb rates) associated with positive PC2 scores (slow takeoff)



while A321 aircrafts have positive PC1 scores (overall lower climb rates) associated with
negative PC3 scores (fast takeoff).

The second scatterplot in the middle panel of Figure 6 shows aircraft scores by
aircraft type of the overall effect (PC1) against the first level effect (PC3). Firstly, we
clearly detect one outlier with very high negative PC1 score and very high positive PC3
score due to a B733 aircraft. This aircraft displays a very atypical trajectory with a global
high climb rate and no first level effect to compensate it. Moreover, the third component
divides trajectories in two groups: AT, B463, B733 with positive scores (no first level
effect) and A320, most of A321 with negative scores associated with a first level effect.

The third scatterplot in the right panel of Figure 6 gives aircraft scores of the first
level effect (PC3) against the time shift effect (PC4). The fourth component divides tra-
jectories in two groups: AT, B733 with positive scores (later first level) and A320 with
negative scores (ealier first level).We can find again the same outlier than the previous
one with one very high positive PC4 score. This B733 aircraft has an overall above-
average trajectory with fast takeoff and no early first level effect to compensate it. We
can easily summaryze the previous results in Table 1. Note that phase variation may pro-

Table 1. Individual scores by aircraft type

Aircraft type PC1 PC2 PC3 PC4 Outlier

AT, E120, B463 + + + +
A320 0 - - -
B733 - - + + *
A319 - + 0 0
A321 + - - 0

duce too many components and trajectories may be characterized by only three principal
components rather than four components. To improve results, phase variation should be
removed by using a registration procedure.

4.3. Whole trajectory data

We now consider whole trajectories between Toulouse and Paris Charles de Gaulle air-
ports and compare FPCA results obtained from unregistered and registered trajectories.
We can see in Figure 7 that unregistered trajectories exhibit high phase variation. These

Figure 7. Whole trajectories between Toulouse and Paris Charles de Gaulle airports: unregistered in the left
panel and registered in the middle panel. The heavy solid line is the mean of trajectories. The right panel
displays warping functions estimated by landmark registration.



differences in dynamics may disturb the sample mean function and consequently a FPCA
procedure. Altitude trajectories can be described as piecewise linear functions composed
by one maximum flight level connected by climb or descent phases. The registered mean
function is more representative of such structure of trajectories. Trajectories have been
registered by using a landmark registration procedure with three markers: the time to
destination and the two time locations of segments that match the maximum flight level.
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Figure 8. The first four principal components of aircraft trajectories: unregistred in the left panel and registered
in the middle panel. The right panel displays the scree plots of cumulated variance.

Figure 8 displays the first four principal components for unregistered trajectories in
the left panel and registered trajectories in the middle panel. For unregistered trajectories,
the fourth principal component looks like the third one except for a time shift. The first
principal component consists of a negative contribution for the 0-2500 seconds phase
followed by an important positive contribution. Figure 9 displays the effects of this prin-
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Figure 9. The effects on the mean aircraft trajectory (solid curve) of adding (+) and substracting (-) a multiple
of each of the first four principal components for unregistered trajectories in the three top panels and registered
trajectories in the three bottom panels.



cipal component on the mean function. We clearly visualize that this effect corresponds
to an increase in the differences between the maximum level and the descent phase: tra-
jectories with higher flight level have a faster descent phase and trajectories with lower
flight level have a slower descent phase. The second principal component corresponds to
an overall increase in altitudes and the third component displays a time shift in the arrival
phase and in the maximum flight level followed by two different descent phases. Phase
variation has probably disturbed the estimation of the principal components because am-
plitude and phase variation are mixed.

For registred trajectories, we can see in Figure 8 and Figure 9 that the first principal
component now corresponds to an overall increase in altitude and now accounts for the
main percentage of total variation with 76.3% rather than 15.7%. The second principal
component displays the differences between the maximum flight level and the descent
phase with a less important variation (11.9% of total variation rather than 62.4%). The
time shift effect is removed from the third component which corresponds to the two
different descent phases and represents only 3.8% of total variation rather than 9.9%.
These differences are due to phase variation that are mixed to amplitude variation when
trajectories are shifted. Finally, principal components of registered trajectories capture a
more important proportion of total variation than principal components of unregistered
trajectories. We only need three components to capture 92% of total variation instead of
four principal components in the case of unregistered trajectories. Then, a preliminary
registration procedure leads to reduce the number of principal components. Modes of
variation are more representative and will better explain the main directions in which
aircraft trajectories vary.

Conclusion

FPCA has many advantages. By characterizing individual trajectories through an empi-
rical Karhunen-Loève decomposition, FPCA can be used as a dimension reduction tech-
nique. Moreover, rather than studying infinite-dimensional functional data, we can focus
on a finite-dimensional vector of random scores that can be used into further statistical
analysis such as cluster analysis. In addition, the estimated coefficients are uncorrelated
and may be more convenient for subsequent applications. Finally, FPCA may be better
than alternative representation of functional data by fixed basis functions such as Fourier
series, wavelets or B-splines that may require a larger number of fixed basis functions to
correctly represent a given sample of trajectories. This idea is used in principal compo-
nent regression in which the regression function is expanding in the basis of the empirical
eigenfunctions.

FPCA is a powerful tool to analyze and visualize the main directions in which tra-
jectories vary. As in the multivariate case, pairwise scatterplots of scores may reveal
patterns of interest, clusters in the data and atypical trajectories. We have successfully
applied this technique to analyze aircraft trajectories and it can be easily extended to
the three dimensional case. Moreover, this technique may be useful to generate aircraft
trajectories by sampling the principal component scores. However, a FPCA procedure
should not be directly applied to whole trajectories because phase and amplitude varia-
tions may be mixed. This registration problem remains crucial because the assumption
that all trajectories are sample paths from a single stochastic process is not satisfied and
may be complex in the case of three dimensional aircraft trajectories.
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