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Abstract

Abstract

This thesis focuses on the statistical study of aircraft trajectories.

First, we propose a literature review that identifies relevant statistical approaches in the
analysis of trajectory data. The framework of Functional Data Analysis (FDA) is partic-
ularly instructive as it highlights two major challenges in processing such data: the need
to reconstruct trajectories to evaluate them at different temporal resolutions and the exis-
tence of phase variations that are important to correct statistically. The reconstruction of
trajectory data has specific features. We are particularly interested in taking into account
a positivity constraint for altitude and the reconstruction of the angular components of the
flight (longitude, latitude, wind direction). Furthermore, several methods for correcting
phase variations are compared. We apply elastic registration to drone and commercial
aircraft trajectories with very good results. Moreover, we suggest a judiciously chosen
distance in the amplitude space, allowing for the clustering of trajectories in the presence
of phase variations.

The second part of the thesis is devoted to the comparison of spatial interpolation methods
for meteorological data used in aviation. We develop a geostatistical framework adapted
to two specific case studies. Our model reliably associates meteorological conditions with
trajectory data, particularly for temperature values.

Finally, we develop a Hidden Markov Model (HMM) for the segmentation of flight phases,
whose nature, number, and sequence may or may not be known. We apply this model
to the segmentation of commercial aviation flights and a helicopter flight. Our method
produces results of similar quality to existing approaches while providing an estimate of
the uncertainty associated with the segmentation.
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Résumé

Résumé

Cette thèse porte sur l’étude statistique des trajectoires d’aéronefs.

Dans un premier temps, nous proposons une revue de la littérature qui permet d’identifier
les approches statistiques pertinentes dans l’analyse de données de trajectoires. Le cadre
de l’analyse statistique des données fonctionnelles est particulièrement instructif car il
met en lumière deux défis majeurs dans le traitement de telles données : la nécessité de
reconstruire les trajectoires pour les évaluer à différentes résolutions temporelles, ainsi que
l’existence de variations de phase qu’il est important de corriger sur le plan statistique. La
reconstruction de données de trajectoires présente des spécificités. Nous nous intéressons
notamment à la prise en compte d’une contrainte de positivité pour l’altitude et à la
reconstruction des composantes angulaires du vol (longitude, latitude, direction du vent).
Plusieurs méthodes de correction des variations de phase sont par ailleurs comparées. Nous
appliquons un alignement élastique à des trajectoires de drone et d’avion commercial avec
de très bons résultats. De plus, nous suggérons une distance judicieusement choisie dans
l’espace des amplitudes permettant de faire un clustering de trajectoires en présence de
variations de phase.

Un deuxième volet de la thèse est consacré à la comparaison de méthodes d’interpolation
spatiale pour des données météorologiques utilisées dans l’aviation. Nous développons
un cadre géostatistique adapté à deux cas d’étude en particulier. Notre modèle permet
d’associer des conditions météorologiques à des données de trajectoires avec une grande
fiabilité, notamment pour les valeurs de température.

Enfin, nous développons un modèle de Markov caché pour la segmentation de phases de vol,
dont la nature, le nombre et l’enchaînement peuvent être connus ou non. Nous appliquons
ce modèle à la segmentation de vols de l’aviation commerciale et d’un vol d’hélicoptère.
Notre méthode produit des résultats de qualité similaire à ceux des approches existantes
tout en fournissant une estimation de l’incertitude liée à la segmentation.
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Introduction

Introduction

The emergence of new terminology in a scientific field often serves to cement old ideas
into the vocabulary. In statistics, the rise of the paradigm called “Object Oriented
Data Analysis” (OODA) follows this pattern. This term was introduced by Haonan
Wang and J. S. Marron in an article published in The Annals of Statistics in 2007
([Wang and Marron, 2007]). Object Oriented Data Analysis refers to the statistical anal-
ysis of complex data, which cannot be seen as realizations of random variables or random
vectors in a Euclidean space. The context in which this term emerged and its deliberate
analogy with object-oriented programming are detailed by J. S. Marron and Ian J. Dryden
([Marron and Dryden, 2021], Chapter 18, p.361).

In fact, statisticians have long been interested in complex data. The most famous exam-
ple is provided by Sir Ronald Aylmer Fisher’s 1953 article, which initiated the statistical
analysis of spherical data ([Fisher, 1953]). Such data can be found in geology, oceanogra-
phy, as well as meteorology and astrophysics, as evidenced by the illustrations in the 1987
reference book by N. I. Fisher, T. Lewis, and B. J. J. Embleton ([Fisher et al., 1987]). In
directional statistics, the observations are unit vectors in the plane or three-dimensional
space. For this particular field, one can refer to the book by Peter E. Jupp and Kanti V.
Mardia, first published in 1972 ([Jupp and Mardia, 1999]).

Complex data are not limited to directional data, far from it. Images, sounds, functions,
geometric shapes, and probability densities are all examples of complex data, each cor-
responding to different subdomains of modern statistics. The non-Euclidean spaces to
be considered are therefore very diverse. One might think of Lie groups, Riemannian
manifolds, or tree spaces in the sense of graph theory.

Unsurprisingly, the analysis of complex data is indeed complex. Several factors can explain
this. A few are listed below.

• The definition of the object of study is not unique when working with com-
plex data. For a medical application, CT scan data can be studied as images, but, after
an organ segmentation procedure, this data can also be analyzed within the framework
of geometric shape analysis.

• A good numerical representation of complex data must be found. Classical
data analysis typically relies on a matrix representation. In statistical analysis software,
it is common to represent individuals in rows and variables in columns. However,
these conventions are less clear when dealing with sounds or trees because a matrix
representation is not always suitable. The non-Euclidean space in which the data
resides is then paired with a so-called feature space, which is often easier to represent.

• Exploratory analysis and visualization must be adapted to complex data.
For directional data, the visual impression left by a standard histogram critically de-
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pends on where the circle is cut. Instead, one might opt for a circular histogram
([Jupp and Mardia, 1999], Section 1.2, p.1).

• The mean and modes of variation around this mean must be correctly de-
fined. Here, the analysis of complex data relies on a long statistical tradition, notably
the pioneering works of Maurice Fréchet, which are utilized in the following (for exam-
ple, [Fréchet, 1948]).

The main objective of this thesis is to establish a statistical framework for the analysis of
aircraft trajectories, which are considered as complex objects. Two main elements motivate
the establishment of such a framework.

• The increasing availability of trajectory data with often very fine temporal resolution
reinforces the need for suitable analysis methods.

• The existing statistical literature on trajectory data can be extended in light of recent
methodological developments.

These two motivating factors are the subject of the following section.

0.1 Motivation

Trajectory data have particular characteristics that require adapting tra-
ditional statistical analysis methods

Several international institutions regularly provide data on airlines, airports, and air traffic,
sometimes even on a daily basis. Let us consider two particular institutions. The Federal
Aviation Administration (FAA), a U.S. government agency responsible for regulations
and controls concerning civil aviation in the United States, compiles numerous data and
statistical reports on its website. Meanwhile, Eurocontrol, the European organization for
the safety of air navigation, provides data on delays, greenhouse gas emissions, and air
traffic.

The story is somewhat different when it comes to trajectory data, which generally do not
receive systematic and proactive communication from major international institutions. A
notable exception is the Aviation Data Repository for Research established by Eurocon-
trol (discussed further below). Starting from 2005, the prolonged silence from institutions
contrasts with the emergence of commercial enterprises and non-profit associations that,
in practice, contribute to greater availability of trajectory data. These include commer-
cial services like FlightAware or Flightradar24, as well as the non-commercial initiative
OpenSky Network. The latter originated from a research project involving the Swiss Fed-
eral Office for Defence (Armasuisse), the University of Kaiserslautern (Germany), and
the University of Oxford (United Kingdom) ([Schäfer et al., 2014] provides a description
of the initial research project). These initiatives are made possible by the dissemination
of Automatic Dependent Surveillance-Broadcast (ADS-B), a surveillance technology de-
signed to allow aircraft to periodically broadcast their flight status. This technology is
now mandatory in most airspace regions. For more details, one may refer to Junzi Sun’s
work ([Sun, 2021]). Common state parameters included in ADS-B transmissions are the
aircraft’s position, altitude, and speed, among others.
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The temporal resolutions of Eurocontrol trajectory data and ADS-B trajectory data differ
significantly. To provide a clearer perspective, consider the following approximate figures:

• During the period from March 1, 2022, to March 31, 2022, Eurocontrol provides 576,148
trajectories (based on the actual flight points file from the Aviation Data Repository
for Research, discussed below). The median flight duration is just under two hours. In
terms of median values, a flight consists of 25 time-indexed positions.

• In comparison, according to [Sun, 2021] (Section 3.6, p.38), ADS-B position messages
are transmitted at a frequency of 2 Hz (twice per second) during flight.

These examples highlight the substantial difference in temporal resolution. Other tra-
jectory data exist but are unfortunately difficult to access. In this context, notable
data sources include those from the Flight Data Recorder (FDR), commonly known
as the black box. These data are particularly rich. According to information from
the BEA (Bureau of Enquiry and Analysis for Civil Aviation Safety), “the number
of parameters and information recorded per second varies from tens to several thou-
sands, depending on the type of aircraft and the technology of the onboard equipment”
([Bureau d’enquêtes et d’analyses pour la sécurité de l’aviation civile, 2024]).

Although temporal resolutions vary greatly from one data source to another, the challenges
associated with the analysis of trajectory data are of a similar nature.

• Flights vary in duration, which complicates statistical analysis.

• For a given flight, it is very common to observe positions or speeds at irregular time
intervals. Across a set of flights, observation times are generally all different.

• Some trajectories are atypical and/or exhibit outlier values.

There exists a statistical framework tailored for the analysis of trajectory
data

To address these challenges, a series of studies, notably conducted at the École Nationale
de l’Aviation Civile (ENAC), has laid important mathematical foundations.

As early as 2007, Stéphane Puechmorel and Daniel Delahaye proposed a functional per-
spective for studying aircraft trajectories, which were previously only considered within the
realm of Air Traffic Management (ATM) ([Puechmorel and Delahaye, 2007]). Modeling
trajectories as functional objects offers several advantages, including:

• More parsimonious storage of trajectory data ;

• Providing a mathematical basis for the notion of distance between two trajectories.

To be precise, this contribution invokes two mathematical frameworks. Firstly, it involves
the differential geometry of curves, and secondly, the statistical analysis of functional
data. For E being a state space (such as R3), differential geometry allows associating each
trajectory “ : [a, b] æ E with a parameterized curve “ : (a, b) æ E, typically assumed
to be of class C1, C2 or C3. If considering a C3 curve, geometric quantities of interest
such as curvature and torsion can be defined. These quantities involve derivatives of the

23



0.1 Motivation

parameterized curve, which are generally unknown in practice. Methods from functional
data analysis are then employed. Specifically, a smoothing or interpolation step of the
data allows for the estimation of these derivatives.

This fruitful research program has been further developed and expanded in a series
of subsequent contributions (for example, [Delahaye et al., 2014], [Puechmorel, 2015],
[Andrieu et al., 2016]). Starting from 2008, it has been applied to predic-
tion problems ([Delahaye et al., 2008], [Tastambekov et al., 2010]) and clustering
([Suyundykov et al., 2010], [Puechmorel et al., 2018]). Principal component analysis of
aircraft trajectories has been proposed by [Nicol, 2013a] and [Nicol, 2013b]. A similarity
measure for trajectories has been developed by [Nicol and Puechmorel, 2017a].

A part of this thesis work involves extending the existing statistical frame-
work

Several elements of this thesis work stem from extending the statistical framework de-
scribed above.

• Considering state spaces other than R
3 or R

6, and thus integrating new com-
ponents of the trajectory into statistical analysis. The information contained
in the majority of trajectory data today extends beyond the position and velocity of
the object (where the state space is typically R

3 or R
6). Let’s consider examples of

these new measurements. For many data sources, values for wind speed and direction
are often available. In Flight Data Recorder (FDR) data, the amount of fuel consumed
is accessible (though this information remains particularly sensitive for airlines, and
thus such data are rarely accessible to researchers). For drone flights, it’s common to
measure the battery voltage evolution during the flight. In all these situations, it’s nec-
essary to consider state spaces other than R

3 or R6 because positions and velocities are
not the only components of the trajectory that are relevant to examine. Moreover, even
if only position were considered, studying long-haul flights would require considering
state spaces like S

2 ◊ R.

Statistical analysis of additional components such as meteorological data, fuel consump-
tion, and battery status is central to many applications in “green aviation”. A predictive
model for contrail formation, for example, would likely utilize relative humidity data.

In general, a trajectory is considered to consist of multiple components, including posi-
tion values, velocity, and potentially meteorological data, among others. At a minimum,
a trajectory is always defined as a set of spatial positions indexed over time. These
components determine the dimension and nature of the state space. Depending on
operational needs, only certain components may be selected for statistical analysis.

• A comparison of interpolation and smoothing methods for reconstructing
trajectory data. Since the components of a trajectory are never observed continuously
over time, reconstructing trajectory data is often a preprocessing step necessary for
analyzing a set of flights. This is essential even for evaluating position or velocity values
on a common time grid. Depending on the presence or absence of measurement noise,
several smoothing and interpolation methods are proposed in the aerospace literature
([Delahaye et al., 2014]) and more broadly in statistical literature. Each application
generally requires its own specific framework. Commonly used methods include spline
functions (for example, [Puechmorel and Delahaye, 2007]) and wavelets (for example,
[Suyundykov et al., 2010]).
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In this study, we focus on comparing interpolation and smoothing methods. The choice
of framework depends on the specific characteristics of the data sources considered
(such as Eurocontrol data, ADS-B, FDR, drone trajectories, etc.). Since the studied
components vary in nature, emphasis is placed on interpolation and smoothing methods
that can accommodate constraints, particularly positivity constraints. It is undesirable,
for instance, to have negative values for altitude or wind speed. A regression model
is presented for smoothing angular components to reconstruct profiles of longitude,
latitude, and wind direction. This approach ensures that the reconstructed trajectories
adhere to physical constraints and enhance the fidelity of the data analysis process.

• Handling trajectories that are not exclusively those of commercial aviation.
So far, the trajectories studied have primarily originated from commercial aviation.
However, for this thesis, we also consider trajectories of drones or helicopters. This
extension does not require the development of an entirely new mathematical framework
for interpolation or smoothing problems. However, it is evident that other tasks such as
alignment and segmentation of such trajectories present new challenges. We elaborate
on these challenges further below.

The main contributions of this thesis work, incorporating the extensions discussed above,
are summarized in the next section.

0.2 Main contributions

Contextualization of statistical analysis of trajectories

Trajectory statistical analysis is not an established subfield of statistics but is rather
conceived as a set of methods derived from various areas of statistics and geometry. This
thesis begins with a general presentation of the OODA paradigm (Chapter 1), which
encompasses many approaches suited to trajectory analysis. Several relevant branches are
presented.

In line with the aforementioned contributions, Functional Data Analysis (FDA) takes
center stage. While the origins of this subfield within OODA can be traced back
several decades ([Müller, 2016]), the term FDA was introduced by [Ramsay, 1982] and
[Ramsay and Dalzell, 1991]. An overview of this branch of statistics, its history, and
methods is provided at the beginning of the chapter (Section 1.1.1). A brief literature
review reveals that to date, the study of motion within the FDA framework has primarily
found applications in biomechanics. Applications in aeronautics are notably scarce, and
the previously cited references serve as significant milestones in this regard. In FDA, a
trajectory is conceptualized as a multivariate functional dataset.

The FDA framework is not the only one applicable to the study of trajectories. In the first
chapter, there is also mention of Dynamic Data Analysis (DDA), a research domain notably
introduced by [Ramsay and Hooker, 2017]. The distinctive feature of this approach lies in
the use of differential equations in the analysis of functional data. We briefly refer to this
framework for completeness, although it is not further utilized in subsequent sections.

In line with the DDA approach, we recall that trajectory data analysis holds a specific
meaning within the context of flight mechanics. From this perspective, it is akin to the
study of the equations of motion, an approach particularly fruitful for predicting the
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short-term position of an aircraft. This prediction is often achieved by modeling the air-
craft as a hybrid system (see [Magill, 1965], [Blom, 1984], [Blom and Bar-Shalom, 1988],
[Bar-Shalom et al., 1989]).

A fourth domain is invoked: shape analysis, notably inaugurated by the work of D. G.
Kendall (see, for example, [Kendall, 1977]). In this framework, a trajectory is viewed as
a parametrized curve in the sense of differential geometry. The objective is to study its
geometric shape.

Finally, machine learning is also interested in trajectory analysis, primarily for pattern
mining and activity recognition. An introduction to these applications can be found in
the book edited by Yu Zheng and Xiaofang Zhou in 2011 ([Zheng and Zhou, 2011]).

The absence of a unified framework for the analysis of aircraft trajectory data translates
in practice to the lack of a documented set of procedures in statistical software. It is
sometimes difficult to identify the right tools for acquisition, visualization, and modeling.
One ambition of our thesis work is to provide the statistical and aeronautical communities
with an R package dedicated to aircraft trajectory analysis. This package will incorporate
the methods we have developed and facilitate the sharing of the dataset we have compiled
on drone trajectories.

Smoothing and interpolation of trajectory data

Functional data are not inherently functional from the outset. This is because raw data
is always obtained in a discretized form. A fine temporal resolution generally allows
reconstructing each element of the sample. By reconstruction, we mean the procedure
of interpolation or smoothing that evaluates the dataset on a common time grid for each
element. Methods based on spline functions for interpolation or smoothing are particularly
popular and are compared in this thesis.

We show that the real-valued components of a trajectory can be reconstructed using
standard smoothing and interpolation methods. Specifically, we use natural cubic spline
interpolation to reconstruct the position of a drone. Smoothing splines are used to smooth
the corresponding battery voltage profile.

Certain components, such as altitude, require adapted methods to satisfy a positivity
constraint. We present an interpolation procedure based on C1 cubic splines that ensures
the positivity of altitude values for a sample of commercial flights.

Angular components, such as longitude, latitude, and wind direction, also require specific
approaches. We propose an interpolation method based on piecewise geodesics to recon-
struct the position of an aircraft over the Pacific Ocean when discontinuities in longitude
values are observed. Additionally, we use a non-parametric regression model suited for the
reconstruction of directional data to smooth some observed wind direction values during
the flight.

Generally, several components of the trajectory are reconstructed. We show that the
interpolation of multivariate functional data consists of simple component-by-component
interpolation. This is essentially a problem of parameterized curve interpolation, which
is rarely addressed in classical monographs on splines but is common in computer-aided
geometric design. For smoothing multivariate functional data, a system of equations must
be considered rigorously. The assumptions made about the error structure may encourage
or discourage component-by-component smoothing of the trajectory.
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Comparison of registration methods

For a set of flights, the presence of phase variations is generally unavoidable due to op-
erational variabilities. These variations have been extensively studied in the statistical
literature. A classic pre-processing step involves separating them from amplitude vari-
ations. This separation problem is also known as the alignment problem. For many
applications, it is the amplitude variations that are most informative, and for which the
statistician seeks to establish an average.

For trajectory analysis, identifying phase variations and correcting them ensures that we
are comparing flights at comparable times, i.e., during the same phases of flight.

Several alignment methods are available in the statistical literature. Among these meth-
ods, one almost naturally stands out in the ideal case where the phases of flight are
indicated in the raw data: landmark registration developed by [Kneip and Gasser, 1992]
and [Gasser and Kneip, 1995]. This method is simple to implement, and phase variations
are better corrected when the landmarks (here, the start and end of each flight phase) are
well identified.

If flight phases are not annotated in the trajectory data (which is the most common
case), one approach is to use the flight segmentation obtained from hidden Markov models
(HMMs) (Chapter 3) to retrieve them.

By nature, the landmark registration procedure ignores what happens between two land-
marks. This limitation has motivated the development of continuous alignment cri-
teria. We compare the relevance of such criteria for trajectory data alignment, no-
tably the approach developed by Anuj Srivastava and co-authors called elastic alignment
([Srivastava et al., 2011b] and [Srivastava et al., 2011a]). Using a more advanced concep-
tual framework based on differential geometry, we show that elastic alignment is very ef-
fective for aligning flight phases (without needing to know or segment them beforehand).
We also identify other advantages of this framework. We show that defining a distance in
the quotient space of amplitudes allows for clustering trajectories in the presence of phase
variations, which we illustrate on drone trajectories

Our work on registration has been presented at the 55èmes Journées de Statistique de la
SFdS in Bordeaux in 2024 (see [Perrichon et al., 2024b]), at the Opensky Network sym-
posium in Delft in 2022 (see [Perrichon et al., 2022]), as well as in an oral presentation at
the Henri Poincaré Institute during the Mathematics and Business day on November 8,
2022, as part of the thematic semester Geometry and Statistics in Data Science (GESDA)
(see [Perrichon, 2022]).

Comparison of spatial interpolation methods

As mentioned earlier, one of the extensions we are developing involves considering me-
teorological conditions during flight as integral components of trajectories. In practice,
there are two scenarios: either these data are readily available (similarly to aircraft po-
sition or speed), or they are not. The former scenario is obviously more favorable. In
the latter case, external meteorological datasets can be used. The challenge then is to
interpolate these external datasets to associate meteorological conditions (temperature,
humidity, horizontal wind speed and direction) with each point of the trajectory. The
comparison of interpolation procedures and the implementation of a geostatistical model
to address this issue are the focus of the second chapter (Chapter 2).
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The chapter begins with a literature review of spatial interpolation methods used in avia-
tion. In particular, two main areas where spatial interpolation is employed are identified:
the study of noise around airports and the study of contrails. Therefore, the interpolation
of noise values (2D) and meteorological data (3D) are the two case studies that we address.

While the literature on condensation trails emphasizes the simplicity and effectiveness of
linear interpolation, the literature on noise pollution shows a preference for geostatistical
methods. These choices are largely explained by the nature of the interpolated data.
Condensation trails literature typically utilizes reanalyzed data with fine spatial resolution,
whereas noise data are often noisy (not reanalyzed). Regarding noise, measurement sites
are irregularly distributed in space. This raises the following questions: what can be
expected from geostatistical approaches for interpolating reanalyzed meteorological data?
When should the geostatistical framework be preferred? And when does it enable the
construction of valid confidence intervals?

To address these questions, we begin by listing the most popular deterministic inter-
polation methods in the Euclidean case. Subsequently, we introduce the framework of
geostatistics and its assumptions. Given that the trajectories under study sometimes in-
volve long-haul flights, a section is dedicated to the mathematical framework of spherical
interpolation. Generally, two strategies for spherical interpolation are discerned: firstly,
the use of map projections that allow mapping onto the Euclidean case, and secondly, the
use of great-circle distance. Appropriately chosen, map projections are often simpler to
use than (valid) models of covariance functions on the sphere. The two case studies are
approached using map projections.

For the interpolation of noise measurements around Chicago O’Hare Airport (our first
case study), it is evident that geostatistical methods produce more relevant noise maps
compared to even advanced deterministic methods. Crucially, incorporating covariates
such as distance to the airport or distance to the nearest runway axis helps in obtaining
a plausible noise map. A major limitation of this first case study is the lack of a physical
reference model that would allow for a quantitative comparison of spatial interpolation
methods. Such a model is used by the airport but unfortunately, its outputs are not
provided in an exploitable format. To clarify, we do not have access to the predicted
values from the model but rather a noise map provided in PDF format.

Given the lack of limitations in the second case study (interpolation of meteorological
data), we have remarkably precise trajectory data where flight meteorological conditions
are recorded with high accuracy. These data are freely available for non-commercial use,
allowing us to compare interpolation methods against measurements taken during flights.
A method of interpolation is deemed preferable over another if it can reconstruct flight
meteorological conditions more accurately from external meteorological data. Initially, our
focus is solely on the spatial dimension of interpolation, although the problem inherently
involves both space and time (as the aircraft’s position changes over time). Several ex-
amples of long-haul flights provide a clear understanding of what is expected from a good
cartographic projection for interpolating meteorological data (Section 2.5.1). It is crucial
to preserve distances as accurately as possible because they play a crucial role in esti-
mating and modeling spatial dependence. Several interpolation methods are compared.
We propose a universal kriging model with sliding neighborhood that accounts for the
vertical anisotropy present in the data. This model yields results as good as the trilinear
interpolation commonly used in the literature. We provide a point-by-point confidence
interval for the temperature profile of a flight. However, the confidence intervals for wind
components or relative humidity are not satisfactory. Several extensions are suggested.
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Our geostatistical model was presented in a conference paper at the 37th International
Workshop on Statistical Modelling in Dortmund in 2023 (see [Perrichon et al., 2023])
and as a poster at the XVIe Journées de Géostatistique in Fontainebleau (see
[Perrichon, 2023]).

Hidden Markov Models (HMMs) for flight phase identification

Flight phase identification is an essential prerequisite for many applications, particularly
for estimating performance parameters ([Sun et al., 2017b]). By flight phase identification,
we mean the segmentation of trajectories into distinct flight phases.

In reviewing the literature on segmentation methods, we observed that hidden Markov
models (HMMs) have not yet been extensively used for trajectory segmentation, despite
their widespread application in similar tasks in other disciplines such as environmental sci-
ences, biophysics, and ecology ([Zucchini et al., 2016]). Here, we develop a hidden Markov
model tailored for segmenting the main flight phases of commercial aviation: taxi, takeoff,
climb, cruise, approach, and rollout. We introduce several performance metrics for flight
phase segmentation. For a set of flights, we compare our results with the state-of-the-art
fuzzy logic approach developed by Junzi Sun and colleagues ([Sun et al., 2017a]). Our
results are particularly promising. This can be explained by the fact that unlike fuzzy
logic, hidden Markov models inherently consider the temporal aspect of trajectories by
estimating transition probabilities between states (in this case, between phases).

If we view the flight phase segmentation problem as a local decoding problem within hidden
Markov models (HMMs), it becomes possible to obtain, for each point of the flight, the
probability of belonging to each flight phase. However, current methods do not typically
provide a measure of uncertainty associated with the segmentation.

For commercial aviation trajectories, there is a direct analogy between the hidden states
of the model and flight phases because the sequence in which these phases occur is known
beforehand: taxiing, takeoff, climb, cruise, approach, and landing. However, segmenting
the flight of a helicopter or drone is significantly more complex. The number, nature, and
order of phases can be completely unknown in these cases. We propose an extension of
the model to address this context and apply it to segmenting a helicopter flight.

Our work on hidden Markov models is published in a peer-reviewed journal (see
[Perrichon et al., 2024a]).

0.3 Manuscript organization

The manuscript is structured into three chapters and includes several appendices. At the
beginning of each chapter, the main contributions are summarized in a red box.

The datasets used in this thesis are detailed in the first appendix (Appendix A). They are
utilized throughout the chapters.

Some elements of differential geometry of curves are summarized in the second appendix
(Appendix B). This includes definitions of curvature and torsion mentioned earlier.

The third appendix (Appendix C) provides definitions related to polynomial spline func-
tions. Reference works are indicated, and illustrations are provided.
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The fourth appendix (Appendix D) briefly introduces Bézier curves and B-splines used in
computer-aided geometric design. In this field, the terminology differs from that used in
statistics, as it includes terms such as control points.

The final appendix (Appendix E) is referenced in the second chapter of the thesis on
geostatistics. It provides a review of common map projections, with illustrations included.
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Introduction (French version)

L’apparition d’une nouvelle terminologie dans un domaine scientifique est souvent
l’occasion de figer dans le vocabulaire des idées parfois anciennes. En statistique,
l’émergence du paradigme dénommé “Object Oriented Data Analysis” (OODA), qu’on
pourrait traduire en français par “analyse de données orientée objet”, ne déroge pas à la
règle. La paternité de ce terme revient à l’article d’Haonan Wang et J. S. Marron publié
dans la revue The Annals of Statistics en 2007 ([Wang and Marron, 2007]). On entend par
analyse de données orientée objet l’analyse statistique de données complexes, c’est-à-dire
de données qui ne sauraient être vues comme des réalisations de variables ou de vecteurs
aléatoires à valeurs dans un espace euclidien. Le contexte d’émergence de cette appella-
tion et l’analogie volontaire avec la programmation orientée objet sont détaillés par J. S.
Marron et Ian J. Dryden ([Marron and Dryden, 2021], Chapitre 18, p. 361).

De fait, les statisticiens s’intéressent depuis longtemps aux données complexes. L’exemple
le plus célèbre est offert par l’article de Sir Ronald Aylmer Fisher publié en 1953, qui
inaugure l’analyse statistique des données sphériques ([Fisher, 1953]). On trouve de telles
données en géologie, en océanographie, mais aussi en météorologie et en astrophysique,
comme en témoignent les illustrations proposées dans l’ouvrage de référence de N. I. Fisher,
T. Lewis et B. J. J. Embleton de 1987 ([Fisher et al., 1987]). En statistique directionnelle,
les observations sont des vecteurs unitaires du plan ou de l’espace tridimensionnel. Sur
ce domaine en particulier, on peut consulter l’ouvrage de Peter E. Jupp et de Kanti V.
Mardia dont la première édition remonte à 1972 ([Jupp and Mardia, 1999]).

Les données complexes ne se limitent pas aux données directionnelles, loin s’en faut. Les
images, les sons, les fonctions, les formes géométriques, les densités de probabilité sont
autant d’exemples de données complexes que de sous-domaines de la statistique moderne.
Les espaces non-euclidiens à considérer sont donc de nature très diverse. On peut penser
aux groupes de Lie, aux variétés riemanniennes, ou à des espaces d’arbres au sens de la
théorie des graphes.

Sans mauvais jeu de mots (et sans surprise), l’analyse de données complexes est complexe.
Plusieurs facteurs peuvent l’expliquer ; on en liste quelques-uns ci-dessous.

• La définition de l’objet d’étude n’est pas unique lorsqu’on travaille avec
des données complexes. Pour une application médicale, des données de scanner
peuvent être étudiées comme des images, mais, après une procédure de segmentation
des organes, on peut tout aussi bien traiter ces données dans le cadre de l’analyse des
formes géométriques (shape analysis en anglais).

• Il faut trouver une bonne représentation numérique des données complexes.
L’analyse de données classiques repose généralement sur une représentation matricielle.
Dans les logiciels d’analyse statistique, il est d’usage de représenter les individus en
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lignes et les variables en colonnes. Or, ces conventions sont moins claires lorsqu’il s’agit
de traiter des sons ou des arbres car la représentation matricielle n’est pas toujours
adaptée. L’espace non-euclidien dans lequel vivent les données est alors doublé d’un
espace dit de caractéristiques (feature space), souvent plus simple.

• L’analyse exploratoire et la visualisation doivent être adaptées aux don-
nées complexes. Pour les données directionnelles, l’impression visuelle laissée par
un histogramme classique dépend de manière cruciale du point où le cercle est coupé.
On peut, à la place, opter pour un histogramme circulaire ([Jupp and Mardia, 1999],
Section 1.2, p. 1).

• Il faut correctement définir la moyenne et les modes de variation autour de
cette moyenne. Ici, l’analyse de données complexes s’appuie sur une longue tradition
statistique, notamment les travaux précurseurs de Maurice Fréchet qui sont mobilisés
dans la suite (par exemple, [Fréchet, 1948]).

L’objectif principal de ce travail de thèse est la mise en place d’un cadre statistique pour
l’analyse de trajectoires d’avions ou de drones, entendues, donc, comme des objets com-
plexes. Deux éléments principaux motivent la mise en place d’un tel cadre.

• La disponibilité croissante de données de trajectoires à la résolution temporelle souvent
très fine renforce le besoin de méthodes d’analyse adaptées.

• La littérature statistique existante sur les données de trajectoires peut être prolongée
à la lumière de développements méthodologiques récents.

Ces deux éléments de motivation font l’objet de la section suivante.

Motivation

Les données de trajectoires actuelles présentent des caractéristiques parti-
culières qui nécessitent d’adapter les méthodes d’analyse de la statistique
traditionnelle

Plusieurs institutions internationales communiquent régulièrement des données sur les
compagnies aériennes, les aéroports et le trafic aérien, parfois même de manière journal-
ière. Prenons deux institutions en particulier. La Federal Aviation Administration (FAA),
agence gouvernementale américaine chargée des réglementations et des contrôles concer-
nant l’aviation civile aux États-Unis, compile sur son site internet de nombreuses données
et rapports statistiques. De son côté, Eurocontrol, l’organisation européenne pour la sécu-
rité de la navigation aérienne, met à disposition des données sur les retards, les émissions
de gaz à effet de serre, et le trafic aérien.

La situation est un peu différente concernant les données de trajectoires qui ne font
généralement pas l’objet d’une communication systématique et volontariste des grandes
institutions internationales. Une exception notable est l’Aviation Data Repository for
Research mis en place par Eurocontrol (présenté dans la suite). A partir de 2005, le
silence prolongé des institutions contraste avec l’émergence d’entreprises commerciales
et d’associations à but non lucratif qui contribuent, en pratique, à une plus grande
disponibilité des données de trajectoires. Citons notamment les services commerciaux
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de FlightAware ou Flightradar24 ainsi que l’initiative OpenSky Network (cette fois non
commerciale), dont l’origine remonte à un projet de recherche partagé entre l’Office fédéral
de l’armement suisse (nommé Armasuisse), l’université de Kaiserslautern (Allemagne), et
l’université d’Oxford (Royaume-Uni) ([Schäfer et al., 2014] pour une description du pro-
jet de recherche initial). Ces initiatives sont rendues possibles grâce à la diffusion de
l’Automatic Dependent Surveillance-Broadcast (ADS-B), une technologie de surveillance
conçue pour permettre aux avions de diffuser périodiquement leur état de vol. Cette tech-
nologie est aujourd’hui obligatoire dans la majorité des espaces aériens (on consultera avec
intérêt l’ouvrage de Junzi Sun pour plus de détails, [Sun, 2021]). Les paramètres d’état
courants qui sont inclus dans l’ADS-B sont la position de l’avion, son altitude et sa vitesse
(mais ne s’y limitent pas).

Les résolutions temporelles des données de trajectoires d’Eurocontrol et des données de
trajectoires ADS-B sont très différentes. Pour fixer les idées, on peut se donner quelques
ordres de grandeur à partir d’un exemple.

• Sur la période allant du 1er mars 2022 au 31 mars 2022, 576,148 trajectoires sont
mises à disposition par Eurocontrol (d’après le fichier actual flight points de l’Aviation
Data Repository for Research, décrit plus loin). La durée médiane d’un vol est d’un
peu moins de deux heures. Toujours en médiane, un vol est constitué de 25 positions
indexées dans le temps.

• En comparaison, si on se réfère à [Sun, 2021] (Section 3.6, p. 38), en vol, les messages
ADS-B de position sont transmis à une fréquence de 2 Hz (soit deux fois par seconde).

La résolution temporelle des données ADS-B est donc bien supérieure. D’autres
données de trajectoire existent mais sont malheureusement difficilement accessibles.
Dans ce travail, il s’agit notamment des données issues du Flight Data Recorder
(FDR), c’est-à-dire de l’enregistreur de vol (souvent appelé boîte noire). Ces don-
nées sont particulièrement riches. On lit notamment sur le site du BEA (le Bu-
reau d’Enquêtes et d’Analyses pour la sécurité de l’aviation civile) que “le nombre
de paramètres et d’informations enregistrées par seconde varie de quelques dizaines à
plusieurs milliers, selon le type de l’avion et de la technologie des équipements embar-
qués” ([Bureau d’enquêtes et d’analyses pour la sécurité de l’aviation civile, 2024]).

Bien que les résolutions temporelles varient grandement d’une source de données à l’autre,
les difficultés associées à l’analyse de données de trajectoire sont de nature similaire.

• Les vols n’ont jamais la même durée ce qui complexifie l’analyse statistique.

• Pour un vol donné, il est très fréquent d’observer les positions ou les vitesses selon
un pas de temps irrégulier. Pour un ensemble de vols, les instants d’observation sont
généralement tous différents.

• Certaines trajectoires sont atypiques et/ou présentent des valeurs aberrantes.

Il existe un cadre statistique adapté à l’analyse de données de trajectoires

Pour prendre en compte ces difficultés, une série de travaux notamment menés à l’École
Nationale de l’Aviation Civile (ENAC) a posé certaines bases mathématiques importantes.
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Dès 2007, Stéphane Puechmorel et Daniel Delahaye ont proposé une perspective fonction-
nelle pour l’étude de trajectoires d’avion qui étaient jusqu’alors uniquement considérées
comme des objets de la gestion du trafic aérien (en anglais, ATM pour Air Traffic Man-
agement) ([Puechmorel and Delahaye, 2007]). Modéliser les trajectoires comme des objets
fonctionnels a plusieurs avantages, et permet notamment :

• de stocker des données de trajectoire de façon plus parcimonieuse ;

• de donner une assise mathématique à la notion de distance entre deux trajectoires.

Pour être exact, deux cadres mathématiques sont convoqués dans cette contribution. Il
s’agit, d’une part, de la géométrie différentielle des courbes, d’autre part, de l’analyse
statistique des données fonctionnelles. Pour E un espace d’états (par exemple R

3), la
géométrie différentielle permet d’associer à chaque trajectoire “ : [a, b] æ E une courbe
paramétrée “ : (a, b) æ E, en général supposée de classe C1, C2 ou C3. Si on considère une
courbe de classe C3, il est possible de définir des quantités géométriques d’intérêt comme
la courbure et la torsion. Ces quantités font intervenir les dérivées de la courbe paramétrée
qui sont inconnues en pratique. Des méthodes issues de l’analyse des données fonctionnelles
sont alors mobilisées. Plus spécifiquement, une étape de lissage ou d’interpolation des
données permet d’évaluer les dérivées.

Ce programme de recherche fécond sera repris et complété dans une série de
contributions ultérieures (par exemple [Delahaye et al., 2014], [Puechmorel, 2015],
[Andrieu et al., 2016]). Il est appliqué à partir de 2008 à des problèmes de
prédiction ([Delahaye et al., 2008], [Tastambekov et al., 2010]) et de clustering
([Suyundykov et al., 2010], [Puechmorel et al., 2018]). Une analyse en composantes prin-
cipales de trajectoires d’avion est proposée par [Nicol, 2013a] et [Nicol, 2013b]. Une mesure
de similarité pour les trajectoires est développée par [Nicol and Puechmorel, 2017a].

Une partie de ce travail de thèse consiste étendre le cadre statistique
existant

Plusieurs éléments de ce travail de thèse naissent du prolongement du cadre statistique
décrit ci-dessus.

• Considérer d’autres espaces d’états que R
3 ou R

6 et donc, intégrer de nou-
velles composantes de la trajectoire à l’analyse statistique. L’information con-
tenue dans la majorité des données de trajectoires va aujourd’hui au-delà des valeurs
de position et de vitesse du mobile (l’espace d’états est dans ce cas R

3 ou R
6). Don-

nons des exemples de ces nouvelles mesures. Pour plusieurs sources de données, des
valeurs de vitesse et de direction du vent sont souvent disponibles. Dans les données
FDR, la quantité de carburant consommée est accessible (même si cette information
reste particulièrement sensible pour les compagnies aériennes et qu’en conséquence, de
telles données sont rarement accessibles aux chercheurs). Pour un vol de drone, il est
fréquent de mesurer l’évolution du voltage de la batterie pendant le vol. Dans toutes
ces situations, il s’agit de considérer d’autres espaces d’états que R

3 ou R
6 car les

positions et les vitesses ne sont pas les seules composantes de la trajectoire qu’il est
pertinent d’examiner. D’ailleurs, même si on ne s’intéressait qu’à la position, l’étude
de vols long-courriers nécessiterait de considérer des espaces d’états du type S

2 ◊ R.
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L’analyse statistique de composantes additionnelles (météorologie, carburant, état de
la batterie) est au cœur de nombreuses applications de l’aviation dite “verte”. Un
modèle de prédiction de traînées de condensation tourné vers les données exploitera
très certainement des valeurs d’humidité relative.

De manière générale, on considère qu’une trajectoire est faite de plusieurs composantes
(de valeurs de position, de vitesse mais aussi des valeurs météorologiques par exemple).
A minima, une trajectoire sera toujours définie comme un ensemble de positions spa-
tiales indexées dans le temps. Les composantes déterminent la dimension et la nature
de l’espace d’états. Selon les besoins opérationnels, seule une partie de ces composantes
peut être retenue pour l’analyse statistique.

• Une comparaison des méthodes d’interpolation et de lissage pour la recon-
struction de données de trajectoires. Les composantes d’une trajectoire n’étant
jamais observées de manière continue dans le temps, la reconstruction des données de
trajectoires est une étape de pré-traitement souvent nécessaire à l’analyse d’un ensem-
ble de vols, ne serait-ce que pour évaluer des valeurs de position ou de vitesse sur une
grille de temps commune. Selon la présence ou non d’un bruit de mesure, plusieurs
méthodes de lissage et d’interpolation sont proposées dans la littérature aéronautique
([Delahaye et al., 2014]) et, plus généralement, dans la littérature statistique. Chaque
application nécessite, en général, un cadre qui lui est propre. On retrouve un usage
fréquent des fonctions splines (par exemple, [Puechmorel and Delahaye, 2007]) mais
aussi des ondelettes (par exemple, [Suyundykov et al., 2010]).

On s’intéresse dans ce travail à la comparaison de méthodes d’interpolation et de lissage.
Le choix du cadre dépend des spécificités des sources de données considérées (données
Eurocontrol, ADS-B, FDR, de trajectoires de drone, etc.). Les composantes étudiées
étant de nature différente, l’accent est mis sur les méthodes d’interpolation et de lissage
qui permettent l’intégration de contraintes, notamment de positivité. De fait, il n’est
pas souhaitable d’avoir des valeurs d’altitude et de vitesse du vent négatives. Un modèle
de régression est présenté pour le lissage de composantes angulaires et permettre de
reconstruire les profils de longitude, de latitude, et de direction du vent.

• Traiter des trajectoires qui ne sont pas uniquement celles de l’aviation com-
merciale. Jusqu’à présent, les trajectoires étudiées étaient principalement issues de
l’aviation commerciale. Pour cette thèse, on traite également des trajectoires de drone
ou d’hélicoptère. Cette généralisation ne nécessite pas le développement d’un cadre
mathématique complètement nouveau, que se soit pour les problèmes d’interpolation
ou de lissage. Cependant, il est clair que d’autres tâches comme l’alignement et la
segmentation de telles trajectoires posent de nouvelles difficultés. Nous les détaillons
dans la suite.

Les contributions principales de ce travail de thèse (qui intègrent les prolongements exposés
ci-dessus), sont résumées dans la prochaine section.

Contributions principales

Contextualisation de l’analyse statistique de trajectoires

L’analyse statistique de trajectoire n’est pas un sous-domaine établi de la statistique mais
se conçoit plutôt comme un ensemble de méthodes provenant de plusieurs champs de la
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statistique et de la géométrie. Ce travail de thèse s’ouvre sur une présentation générale
du paradigme OODA (Chapter 1) qui a le mérite d’englober de nombreuses approches
adaptées à l’analyse de trajectoires. Plusieurs branches jugées pertinentes sont présentées.

Dans la lignée des contributions citées plus haut, l’analyse statistique des données fonction-
nelles (Functional Data Analysis ou FDA en anglais) est mise au premier plan. Si les orig-
ines de ce sous-domaine de l’OODA sont parfois lointaines ([Müller, 2016]), l’appellation
FDA est introduite par [Ramsay, 1982] et [Ramsay and Dalzell, 1991]. Une présentation
de ce champ de la statistique, de son histoire et de ses méthodes est donnée en début de
chapitre (Section 1.1.1). Une brève revue de littérature montre que jusqu’à aujourd’hui,
l’étude du mouvement dans le cadre FDA trouve principalement des applications en biomé-
canique. Les applications en aéronautique sont nettement plus rares et les références citées
précédemment sont, à ce titre, des jalons importants. Une trajectoire y est vue comme
une donnée fonctionnelle multivariée.

Le cadre FDA n’est pas le seul à être mobilisable pour l’étude de trajectoires. Dans le
premier chapitre, il est également fait mention de l’analyse de données dynamiques (Dy-
namic Data Analysis - DDA en anglais), un domaine de recherche notamment introduit
par [Ramsay and Hooker, 2017]. La particularité de cette approche repose sur l’utilisation
d’équations différentielles dans l’analyse de données fonctionnelles. Nous faisons briève-
ment référence à ce cadre par souci d’exhaustivité, bien qu’il ne soit pas mobilisé dans la
suite.

En écho à l’approche DDA, nous rappelons que l’analyse des données de trajectoire revêt
une signification spécifique dans le cadre de la mécanique du vol. Selon cette perspec-
tive, elle s’apparente à l’étude des équations du mouvement, approche particulièrement
fructueuse pour prédire la position d’un aéronef à très court terme. Cette prédiction est
souvent réalisée en modélisant l’aéronef comme un système hybride (voir [Magill, 1965],
[Blom, 1984], [Blom and Bar-Shalom, 1988], [Bar-Shalom et al., 1989]).

Un quatrième domaine est convoqué : l’analyse des formes géométriques (shape analysis
en anglais), notamment inaugurée par les travaux de D. G. Kendall (voir par exemple
[Kendall, 1977]). Dans ce cadre, une trajectoire est une courbe paramétrée au sens de la
géométrie différentielle. L’objectif est d’en étudier la forme.

Enfin, le machine learning s’intéresse aussi à l’analyse de trajectoires, principalement pour
de l’extraction de motifs (pattern mining) ou de la reconnaissance d’activité (activity
recognition). On peut consulter l’ouvrage édité par Yu Zheng et Xiaofang Zhou en 2011
pour une introduction à ces applications ([Zheng and Zhou, 2011]).

L’absence d’un cadre unifié pour l’analyse de données de trajectoires d’aéronefs se traduit
en pratique par l’inexistance d’un ensemble documenté de procédures dans les logiciels
de statistique. Il est parfois difficile d’identifier les bons outils pour l’acquisition, la visu-
alisation et la modélisation. Une ambition de notre travail de thèse consiste à mettre à
disposition des communautés statistique et aéronautique un package R dédié à l’analyse
de trajectoires d’aéronefs. Ce package intégrera les méthodes que nous avons développées
et facilitera le partage du jeu de données que nous avons constitué sur les trajectoires de
drones.
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Lissage et interpolation pour les données de trajectoires

Les données fonctionnelles ne sont pas, d’emblée, fonctionnelles. Pour cause, les données
brutes sont toujours obtenues sous forme discrétisée. Une fine résolution temporelle au-
torise en général à reconstruire chaque élément de l’échantillon. Par reconstruction, on
entend la procédure d’interpolation ou de lissage qui permet d’évaluer le jeu de données sur
une grille de temps commune à chacun des éléments. Les méthodes d’interpolation ou de
lissage fondées sur les fonctions splines sont particulièrement populaires et sont comparées
dans le cadre de cette thèse.

Nous montrons que les composantes réelles d’une trajectoire peuvent être reconstruites
en utilisant des méthodes usuelles de lissage et d’interpolation. En particulier, nous util-
isons une interpolation par splines cubiques naturelles pour reconstruire la position d’un
drone. Des splines de lissage sont employées pour lisser le profil de tension de la batterie
correspondant.

Certaines composantes comme l’altitude nécessitent des méthodes adaptées qui permettent
de satisfaire une contrainte de positivité. Nous présentons une procédure d’interpolation
fondée sur des splines cubiques C1 qui assure la positivité des valeurs d’altitude pour un
échantillon de vols commerciaux.

Les composantes angulaires comme la longitude, la latitude et la direction du vent doivent
également faire l’objet d’approches spéficiques. Nous proposons une interpolation reposant
sur des géodésiques par morceaux pour reconstruire la position d’un avion au-dessus de
l’océan Pacifique lorsque des discontinuités dans les valeurs de longitude sont constatées.
De plus, nous utilisons un modèle de régression non paramétrique adapté à la recon-
struction de données directionnelles pour lisser les valeurs de direction du vent observées
pendant le vol.

En règle générale, plusieurs composantes de la trajectoire sont reconstruites. Nous mon-
trons que l’interpolation de données fonctionnelles multivariées consiste en une simple in-
terpolation composante par composante. Il s’agit en fait d’un problème d’interpolation de
courbe paramétrée peu traité dans les monographes classiques sur les splines mais fréquent
pour la conception géométrique assistée par ordinateur. Pour le lissage de données fonc-
tionnelles multivariées, on doit considérer, en toute rigueur, un système d’équations. Les
hypothèses faites sur la structure des erreurs encouragent, ou non, un lissage de la trajec-
toire composante par composante.

Comparaison de méthodes d’alignement

Pour un ensemble de vols, la présence de variations de phase est généralement inévitable du
fait de variabilités opérationnelles. Ces variations ont été très étudiées dans la littérature
statistique. Un pré-traitement classique consiste à les séparer des variations d’amplitude.
Ce problème de séparation est également nommé problème d’alignement. Pour une bonne
partie des applications, ce sont les variations d’amplitude qui sont les plus informatives et
pour lesquelles le statisticien cherche à établir une moyenne.

Pour l’analyse de trajectoires, identifier les variations de phase et les corriger revient
à s’assurer qu’on compare les vols à des instants comparables, c’est-à-dire, aux mêmes
phases de vol.

Plusieurs méthodes d’alignement sont disponibles dans la littérature statistique. Parmi ces
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méthodes, il en est une qui s’impose presque naturellement dans le cas idéal où les phases de
vol sont renseignées dans les données brutes : l’alignement par points de repère développé
par [Kneip and Gasser, 1992] et [Gasser and Kneip, 1995] (landmark registration). Cette
méthode est simple à implémenter et les variations de phase sont d’autant mieux corrigées
que les points de repère sont bien identifiés (ici, le début et la fin de chaque phase de vol).

Si les phases de vol ne sont pas renseignées dans les données de trajectoire (c’est le cas le
plus fréquent), on peut exploiter la segmentation du vol obtenue par modèles de Markov
cachés (Chapter 3), pour les retrouver.

Par nature, la procédure d’alignement par points de repère ignore ce qui se passe en-
tre deux points de repère. Cette limitation a motivé des critères d’alignement continus.
Nous comparons la pertinence de tels critères pour l’alignement de données de trajectoires
et notamment celle de l’approche développée par Anuj Srivastava et coauteurs nommée
alignement élastique ([Srivastava et al., 2011b] et [Srivastava et al., 2011a]). Moyennant
un cadre conceptuel plus avancé reposant sur la géométrie différentielle nous montrons que
l’alignement élastique est très efficace pour aligner les phases de vol (sans avoir besoin de
les connaître ou les segmenter au préalable). Nous identifions par ailleurs d’autres avan-
tages de ce cadre. Nous montrons que la définition d’une distance dans l’espace quotient
des amplitudes permet de faire un clustering de trajectoires en présence de variations de
phase, ce que nous illustrons sur des trajectoires de drone.

Nos travaux sur l’alignement font l’objet d’un article de conférence présenté aux 55èmes
Journées de Statistique de la SFdS à Bordeaux en 2024 (voir [Perrichon et al., 2024b]),
d’un article de conférence présenté au symposium Opensky Network à Delft en 2022
(voir [Perrichon et al., 2022]) ainsi que d’une présentation orale à l’Institut Henri Poincaré
au cours de la journée Mathématiques et Entreprises du 8 novembre 2022 dans le
cadre du semestre thématique Geometry and Statistics in Data Science (GESDA) (voir
[Perrichon, 2022]).

Comparaison de méthodes d’interpolation spatiale

Comme évoqué précédemment, l’une des extensions que nous développons consiste à con-
sidérer les conditions météorologiques du vol comme des composantes à part entière des
trajectoires. Deux cas se présentent en pratique : soit ces données sont immédiatement
disponibles (au même titre que la position ou la vitesse de l’avion), soit elles ne le sont pas.
Le premier cas est évidemment le plus favorable. Dans le second cas, on peut recourir
à des jeux de données météorologiques externes. Il s’agit alors d’interpoler ces jeux de
données externes pour associer des conditions météorologiques (température, humidité,
vitesse et direction du vent horizontal) à chaque point de la trajectoire. La comparaison
de procédures d’interpolation et la mise en place d’un modèle géostatistique pour répondre
à ce problème font l’objet du deuxième chapitre (Chapter 2).

Le chapitre s’ouvre sur une revue de littérature des méthodes d’interpolation spatiale
utilisées dans l’aviation. En particulier, nous identifions deux grands sujets pour lesquels
l’interpolation spatiale est employée : l’étude du bruit autour des aéroports et celle des
traînées de condensation. Ainsi, l’interpolation de valeurs de bruit (2D) et de données
météorologiques (3D) sont les deux études de cas que nous traitons.

Alors que la littérature sur les traînées de condensation met en avant la simplicité et
les bonnes performances de l’interpolation linéaire, la littérature sur la pollution sonore
montre une préférence pour les méthodes géostatistiques. Ces choix s’expliquent largement
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par la nature des données interpolées. La littérature sur les traînées de condensation utilise
en général des données réanalysées de fine résolution spatiale tandis que les données de
bruit sont en général bruitées (ce ne sont pas des données réanalysées). En ce qui concerne
le bruit, les sites de mesure sont, de plus, répartis de manière irrégulière dans l’espace.
On se pose alors les questions suivantes : que faut-il attendre de l’approche géostatistique
pour interpoler des données météorologiques réanalysées ? Quand faut-il privilégier le
cadre géostatistique ? Quand permet-il de construire des intervalles de confiance valides ?

Pour y répondre, nous commençons par énumérer les méthodes d’interpolation déter-
ministes les plus populaires dans le cas euclidien. Nous présentons ensuite le cadre
de la géostatistique et ses hypothèses. Les trajectoires étudiées étant parfois celles de
vols long-courriers, une section est consacrée au cadre mathématique de l’interpolation
sphérique. De manière générale, nous discernons deux stratégies d’interpolation dans le
cadre sphérique : d’une part, l’utilisation de projections cartographiques qui permettent
de se ramener au cas euclidien, et, d’autre part, l’utilisation de la distance géodésique.
Bien choisies, les projections cartographiques sont souvent plus simples à utiliser que les
modèles (valides) de fonctions de covariance sur la sphère. Les deux études de cas sont
abordées en utilisant des projections cartographiques.

Pour l’interpolation de mesures de bruit autour de l’aéroport de Chicago (notre première
étude de cas), notre modèle géostatistique produit des cartes de bruit plus pertinentes
que les méthodes déterministes, même avancées. De manière cruciale, la prise en compte
dans la tendance de covariables comme la distance à l’aéroport ou la distance à l’axe
de piste le plus proche permet d’obtenir une carte de bruit plausible. Une limitation
majeure de cette première étude de cas est l’absence d’un modèle physique de référence
qui permettrait de comparer quantitativement les méthodes d’interpolation spatiales. Un
tel modèle est utilisé par l’aéroport qui ne communique malheureusement pas ses sorties
de manière exploitable. Pour être précis, nous n’avons pas accès aux valeurs prédites par
le modèle mais à une carte de bruit donnée en format PDF.

La seconde étude de cas (l’interpolation de données météorologiques) ne souffre pas de
cette limitation. De manière tout à fait remarquable, nous disposons de données de tra-
jectoires pour lesquelles les conditions météorologiques du vol sont enregistrées à bord
avec une très grande précision. Ces données sont en accès libre pour des usages non com-
merciaux. Il est donc possible de comparer les méthodes d’interpolation en prenant pour
référence les mesures effectuées durant le vol. On dira qu’une méthode d’interpolation est
préférable à une autre si elle permet, à partir de données météorologiques externes, de re-
constituer avec une plus grande exactitude les conditions météorologiques mesurées à bord
de l’avion. En première approche, nous nous concentrons uniquement sur la dimension
spatiale de l’interpolation bien que le problème soit, par nature, spatio-temporel (la posi-
tion de l’avion évolue dans le temps). Quelques exemples de vols long-courriers permettent
de se faire une idée précise de ce qui est attendu d’une bonne projection cartographique
pour l’interpolation de données météorologiques (Section 2.5.1). Il est particulièrement
important de conserver au mieux les distances, car celles-ci jouent un rôle de premier plan
dans l’estimation et la modélisation de la dépendance spatiale. Nous proposons un modèle
de krigeage universel par voisinage qui prend en compte l’anisotropie verticale présente
dans les données. Ce dernier obtient d’aussi bons résultats que l’interpolation trilinéaire
utilisée dans la littérature. Nous proposons un intervalle de confiance point à point pour le
profil de température d’un vol. Les intervalles de confiance pour les composantes du vent
ou l’humidité relative ne sont pas satisfaisants. Plusieurs prolongements sont proposés.

Nos travaux de géostatistique font l’objet d’un article de conférence présenté au
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37ème International Workshop on Statistical Modelling à Dortmund en 2023 (voir
[Perrichon et al., 2023]) et d’un poster présenté aux XVIe Journées de Géostatistique à
Fontainebleau (voir [Perrichon, 2023]).

Modèles de Markov cachés pour l’identification des phases de vol

L’identification des phases de vol est un pré-requis indispensable à de nombreuses applica-
tions, et, notamment, à l’estimation de paramètres de performance ([Sun et al., 2017b]).
Par identification des phases de vol, on entend ici la segmentation de trajectoires en phases
de vol.

En faisant une revue de littérature des méthodes de segmentation utilisées, nous avons
remarqué que les modèles de Markov cachés n’avaient pas encore été utilisés pour la
segmentation de trajectoires, bien qu’ils soient très largement employés pour des tâches
similaires dans d’autres champs disciplinaires comme les sciences de l’environnement, la
biophysique ou l’écologie ([Zucchini et al., 2016]). Nous développons ici un modèle de
Markov caché adapté à la segmentation des principales phases de vol de l’aviation com-
merciale à savoir la phase de roulage (taxi), de décollage (takeoff ), de montée (climb),
de croisière (cruise), d’approche (approach) et d’atterrissage (rollout). Nous introduisons
plusieurs métriques de performance pour la segmentation de phases de vol. Pour un en-
semble de vol, nous comparons nos résultats avec l’état de l’art, à savoir, avec la logique
floue développée par Junzi Sun et coauteurs ([Sun et al., 2017a]). Nos résultats sont parti-
culièrement satisfaisants. Contrairement à la logique floue, les modèles de Markov cachés
tiennent fondamentalement compte de l’aspect temporel de la trajectoire car ils resposent
sur l’estimation de probabilités de transition d’un état à l’autre (et donc ici, d’une phase
à l’autre).

Quitte à voir le problème de segmentation des phases de vol comme un problème de
décodage local, il est possible, dans le cadre des modèles de Markov cachés, d’obtenir pour
chaque point du vol la probabilité d’appartenance à chaque phase de vol. Or, les méthodes
actuelles ne fournissent pas de mesure d’incertitude associée à la segmentation.

Pour les trajectoires de l’aviation commerciale, il existe une analogie directe entre les états
cachés du modèle et les phases de vol car l’ordre dans lequel les phases s’enchaînent est
connu à l’avance : roulage puis décollage, montée, croisière, approche et atterrissage. La
segmentation d’un vol d’hélicoptère ou de drone est, en revanche, nettement plus complexe
: le nombre, la nature et l’ordre des phases peuvent être complètement inconnus. Nous
proposons une extension du modèle dans ce contexte et l’appliquons à la segmentation
d’un vol d’hélicoptère.

Nos travaux sur les modèles de Markov cachés font l’objet d’un article de recherche publié
dans un journal à comité de lecture (voir [Perrichon et al., 2024a]).

Organisation du manuscrit

Le manuscrit est structuré en trois chapitres et comprend plusieurs annexes. Au début de
chaque chapitre, les contributions principales sont rappelées dans un encadré rouge.

Les jeux de données utilisés dans ce travail de thèse font l’objet d’une première annexe
(Appendix A). Ils sont mobilisés dans l’ensemble des chapitres.
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Quelques éléments de géométrie différentielle des courbes sont rappelés dans la seconde
annexe (Appendix B). Nous donnons notamment les définitions de la courbure et de la
torsion mentionnées plus haut.

La troisième annexe (Appendix C) reprend un ensemble de définitions sur les fonctions
spline polynomiales. Les ouvrages de référence y sont indiqués et des illustrations sont
proposées.

La quatrième annexe (Appendix D) présente brièvement les courbes de Bézier et les
courbes B-splines utilisées pour la conception géométrique assistée par ordinateur. Dans
ce domaine, le vocabulaire est différent de celui de la statistique, car on parle notamment
de points de contrôle.

Une dernière annexe (Appendix E) est mobilisée dans le deuxième chapitre de la thèse
portant sur la géostatistique. Il s’agit d’un rappel sur les projections cartographiques
usuelles. Ici encore, des illustrations sont données.
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“Le Calcul des probabilités a été implicitement ou explicitement, jusqu’à une
époque récente, l’étude des nombres aléatoires et des points aléatoires dans un
espace à une, deux ou trois dimensions (probabilités géométriques).
Depuis peu, on a souvent cherché à étendre les résultats obtenus aux séries
aléatoires, aux vecteurs aléatoires et aux fonctions numériques aléatoires de
variables numériques certaines.
Mais la nature, la science et la technique offrent de nombreux exemples d’éléments
aléatoires qui ne sont, ni des nombres, ni des séries, ni des vecteurs, ni des fonctions.
Telles sont par exemple, la forme d’un fil jeté au hasard sur une table, la forme d’un
oeuf pris au hasard dans un panier d’oeufs.”

Maurice Fréchet, “Les éléments aléatoires de nature quelconque dans un espace
distancié”, Annales de l’institut Henri Poincaré, Tome 10 (1948) no. 4, pp. 215-310.

Main contributions of the chapter

Trajectory data analysis is not a distinct domain within statistics but rather is
constructed by combining various existing statistical frameworks. Accordingly, the
first section of this chapter focuses on providing a literature review of the statis-
tical approaches that can be used for trajectory data analysis (Section 1.1). We
particularly highlight two promising frameworks: FDA and shape analysis. Two
common issues in FDA are indeed central to trajectory analysis: the reconstruction
of trajectory data through smoothing and interpolation, as well as the registration
of trajectory data.
Since raw trajectory data are always observed at a finite number of points, the prob-
lem of reconstructing a continuous trajectory is a fundamental issue that precedes
any attempt at statistical analysis, even simply to evaluate the positions of aircraft
from a set of flights on a common time grid. We present the most suitable interpo-
lation and smoothing methods for reconstructing trajectory data in Section 1.2.
Phase variations are inevitable when examining a sample of flights. This is primarily
because flights inherently experience significant operational variations. These phase
variations are undesirable from a statistical standpoint and must be corrected for
most applications involving trajectory data. Several registration methods suitable
for aligning aircraft trajectories are presented in Section 1.3.
Implementing the most suitable methods for trajectory data analysis is sometimes
complicated by the absence of precoded procedures in standard statistical software.
To tackle this issue, the majority of the contributions in this chapter lay the ground-
work for the ongoing development of an R package designed specifically for analyzing
aircraft trajectories. Details are to be found in Section 1.1.6.
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1.1 A literature review on trajectory data analysis

1.1 A literature review on trajectory data analysis

Main contributions of the section

Modeling aircraft trajectories requires identifying relevant areas of statistics to ad-
dress their specificities. In this section, we propose a literature review of four
statistical frameworks that may be used for the analysis of trajectory data. We
first show that within the framework of FDA, a set of trajectories can be mod-
eled as a sample of multivariate functional data. When the flights under study
cover only short distances, typical FDA methods enable a comprehensive modeling
of trajectories, including the definition of an average flight and the application of
Principal Component Analysis (PCA) to a sample of flights. In contrast, long-haul
flights present greater modeling complexity as they require consideration as sphere-
valued functional data. To our knowledge, there are currently very few practical
applications of trajectory analysis within the framework of functional data valued
on Riemannian manifolds. We then mention DDA as an interesting extension of
the FDA framework that we do not delve into within the scope of this work. In
this framework, a trajectory is treated as functional data augmented by a set of
differential equations. If the objective of trajectory analysis is rather to study their
shape (for clustering purposes, for example), shape analysis is particularly relevant.
A trajectory is modeled as a parametric curve. Finally, some references from the
machine learning literature are indicated for the sake of completeness.

Numerous scientific disciplines are interested in trajectories, and the term trajectory itself
is subject to various meanings. In its broadest sense, a trajectory is the path a moving
object follows through space. For the statistician, it is a series of points ordered in time,
with each point being associated, at least, with spatial coordinates. The idea that tra-
jectories may be seen as data objects fits within the framework of Object Oriented Data
Analysis (OODA). The phrase OODA, was defined by [Wang and Marron, 2007] to be
“the statistical analysis of populations of complex objects”. An important characteristic of
so-called complex objects it that they naturally lie in non-Euclidean spaces. An overview
of data analysis on nonstandard spaces is proposed by [Huckemann and Eltzner, 2021].

The recent use of the OODA terminology should not overshadow the fact that statisticians
have been interested in complex objects for a very long time. A famous example is to be
found in directional statistics where the statistical atoms are unit vectors in R

2 or R3 (see
[Mardia and Jupp, 1999] for an introduction to this topic). This long-term interest in the
statistical analysis of complex data is best exemplified by [Fisher, 1953]. As explained by
[Fisher et al., 1987], this seminal paper, motivated by an application in paleomagnetism,
has paved the way for spherical data analysis.

Several statistical frameworks that are valuable for studying trajectories are special cases
of OODA. The most well-known is probably FDA for which the atoms of the statistical
analysis are functions, as detailed in Section 1.1.1. From the perspective of dynamical
systems, the DDA framework, briefly introduced in Section 1.1.2, may also be of interest,
although it is not extensively discussed further in this work. Elements for the shape
analysis of trajectories are provided in Section 1.1.3. Finally, the data mining approach is
described in Section 1.1.5.
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1.1.1 Trajectories within the framework of Functional Data Analysis
(FDA)

The main objective of FDA is to study functions from a statistical point of view. The
term FDA was coined by [Ramsay, 1982] and [Ramsay and Dalzell, 1991], even though the
origin of FDA can be traced back much earlier as explained by [Müller, 2016]. A classic en-
try point into the FDA literature is monograph written by [Ramsay and Silverman, 2005]
which addresses the major challenges of statistical analysis of functional data. A more
recent introduction to the topic is provided by [Kokoszka and Reimherr, 2021], which
has the particularity of presenting the most fundamental results of Hilbert space the-
ory as well as theoretical problems. An interesting review of FDA techniques is given
by [Wang et al., 2016]. These techniques mostly refer to the PCA of functional data,
statistical tests, regression problems, clustering, and classification. Most of them are il-
lustrated by [Ramsay and Silverman, 2002] using a wide range of data types: economic
series, growth curves, weather records, and more. As most statistical methods applied in
the analysis of functional data draw inspiration from techniques in multivariate statistics,
the concept of a random sample is naturally found in FDA. The assumptions made about
this random sample can be more or less restrictive, leading to what are commonly referred
to as first-generation functional data (Section 1.1.1) and second-generation functional data
(Section 1.1.1).

First-generation functional data

So-called first-generation functional data typically consist of a random sample of inde-
pendent real-valued functions, X1(t), ..., Xn(t), defined on a common compact interval
I = [0, T ] (without loss of generality, I = [0, 1]). An introduction to the theoretical foun-
dations of first-generation FDA is proposed by [Kokoszka and Reimherr, 2021] (Chapters
3, 10 and 11) and by [Horváth and Kokoszka, 2012] (Chapter 2). A rigorous yet more tech-
nical approach to the conceptual framework is offered by [Hsing and Eubank, 2015] who
distinguish between two different theoretical perspectives of functional data: the random
element perspective and the stochastic process perspective.

In the so-called random element perspective, functional observations are treated as real-
izations of random elements in a Hilbert space. These random elements are called random
functions by [Kokoszka and Reimherr, 2021]. For most applications in FDA, the separa-
ble Hilbert space of interest is the space of square integrable functions, endowed with the
usual scalar product. The random element perspective is fairly abstract but mathemati-
cally convenient for inference.

From the stochastic process perspective, which may be more intuitive, functional data are
sample path data observed from some continuous time stochastic processes (details are
given by [Hsing and Eubank, 2015] in Section 7.3, p.184). This is the most convenient
approach for most applications and thus, for this work.

As an additional point, in its broader interpretation, FDA also encompasses the
analysis of images and surfaces as exemplified by [Goldsmith et al., 2014] and
[Happ and Greven, 2018].
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Second-generation functional data

Second-generation functional data has been defined by [Koner and Staicu, 2023] as
“functional data acquired in a multivariate, longitudinal, time series, or spatial de-
sign”. If this terminology is very recent, it emphasizes that modern approaches to
FDA are gradually relaxing the independence assumption similar to what is done for
time series or spatial statistics. For example, functional time series analysis was
popularized by [Bosq, 1991] and [Bosq, 2000]. An introduction to the topic is pro-
posed by [Hörmann and Kokoszka, 2012]. An overview of spatial functional statis-
tics may be found in the works of [Delicado et al., 2010], [Ruiz-Medina, 2012], and
[Mateu and Romano, 2017]. A modern approach to geostatistical functional data anal-
ysis is proposed by [Mateu and Giraldo, 2021].

Multivariate FDA deals with vector-valued processes. A popular example of bivari-
ate functional data, as described by [Ramsay and Silverman, 2005], is the gait dataset,
which includes the simultaneous variation of the hip and knee angles for 39 children
at 20 equally spaced time points. Bivariate functional data have also been studied
by [Zhou et al., 2008]. Examples of multivariate functional data from medical studies
are given by [Sangalli et al., 2009] and [Pigoli and Sangalli, 2012]. On a methodological
level, a principal component method for multivariate functional data was proposed by
[Berrendero et al., 2011] whereas a normalized multivariate functional principal compo-
nent method was introduced by [Chiou et al., 2014]. A depth for multivariate functional
data was defined by [Claeskens et al., 2014] and multivariate functional linear regression
was studied by [Chiou et al., 2016].

As noted by [Chiou et al., 2014], various types of multivariate functional data emerge by
calculating extra curves from an initial set of observed univariate functional data. One
commonly explored scenario involves adding the first-order derivatives, which offer further
insights into the shapes of the curves.

As developed in the sequel, the framework of multivariate FDA plays a prominent role in
the statistical analysis of trajectories, which naturally involve multiple components.

1.1.1.1 The analysis of motion within the FDA framework

Trajectory analysis is closely intertwined with the analysis of motion in general. Early ap-
plications of motion analysis within the FDA framework primarily relate to biomechanics
as evidenced by [Ramsay and Silverman, 2002]. According to [Hatze, 1974], biomechanics
may be defined as “the study of the structure and function of biological systems by means
of the methods of mechanics”. As explained by [Crane et al., 2011], the utilization of a
set of functions to represent motion data is a well-established practice in biomechanics
and the adoption of the FDA framework has occurred gradually. The framework has
been used to study mastication [Crane et al., 2010], back pain [Page et al., 2006], walking
[Røislien et al., 2009] or lip motion [Ramsay et al., 1996]. Systematic reviews are pro-
vided by [Ullah and Finch, 2013] and [Dannenmaier et al., 2020]. Exploratory methods
in FDA enable an accurate description of the kinematics and movement patterns. Infer-
ential procedures allow studying the impact of certain variables on movement such as the
effect of age on walking, for example. The study of the handwriting process has become
a canonical application of FDA, as highlighted by the contributions of [Ramsay, 2000]
and [Ramsay and Silverman, 2002] (Chapters 7 and 11). The writing of words “fda” (in
English, Figure 1.1) and “statistical science” (in Chinese), are classical examples. Corre-
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Figure 1.1: According to the documentation of the fda package, these data are “the X-Y
coordinates of 20 replications of writing the script ‘fda’ by Jim Ramsay. Each replication
is represented by 1401 coordinate values. The scripts have been extensively pre-processed.
They have been adjusted to a common length that corresponds to 2.3 seconds or 2300
milliseconds, and they have already been registered so that important features in each
script are aligned.”

sponding data for the word “fda” is available in the fda package. An interesting applica-
tion in the context of this work concerns juggling, as, for this specific application, 3 coordi-
nates in space are involved. A detailed data description is given by [Ramsay et al., 2014].

There are fewer applications of the FDA framework for motion analysis in non-biological
systems, particularly within transportation literature. The promotion of FDA to study
aircraft trajectories was early made by [Puechmorel and Delahaye, 2007]. The FDA frame-
work has been used by [Suyundykov et al., 2010] to classify aircraft trajectories and by
[Tastambekov et al., 2014] for mid-term aircraft trajectory prediction. Functional Princi-
pal Component Analysis (FPCA) was carried out by [Nicol, 2013a] and by [Nicol, 2017]
and applied to the detection of atypical energy behaviours by [Jarry et al., 2020].

When the flights under study cover only short distances, typical FDA methods enable a
comprehensive modeling of trajectories.

Analyzing trajectories across vast distances on Earth entails exploring the framework of
functional data valued on the sphere and, more broadly, on Riemannian manifolds. This
approach is crucial for studying migratory phenomena or long-haul flights. Details are
provided in Section 1.1.1.2.

1.1.1.2 Functional data valued on Riemannian manifolds

As pinpointed by [Dai and Müller, 2018], while the literature on functional data analysis
in a linear function space is extensive, there is much less knowledge about functional data
valued on manifolds. Yet, in many applications, such data are quite common. For ex-
ample, [Telschow et al., 2021] studied functional data lying on SO(3). Another example
is sphere-valued functional data that naturally arise when data on a sphere have a time
component, such as in recordings of airplane flight paths or animal migration trajectories.
Bird migration and hurricane tracking are studied by [Su et al., 2014]. A review of so-
called Riemannian functional data is provided by [Lin and Yao, 2019]. As explained by
[Lin and Yao, 2019], the analysis of Riemannian functional data is challenging since man-
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ifolds are generally not vector spaces. For instance, if the sample mean curve is computed
for bird migration trajectories as if they were sampled from the ambient space R

3, this
naive sample mean in general does not fall on the sphere of earth.

Vocabulary 1.1.1: Intrinsic perspective, ambient perspective

Two different perspectives to deal with Riemannian manifolds are distinguished
by [Lin and Yao, 2019]. Regarding the ambient perspective, one assumes that the
manifold under consideration is isometrically embedded in a Euclidean ambient
space. As a consequence, tangent vectors can be processed within the ambient
space. From the intrinsic perspective, an isometric embedding into a Euclidean
space is not assumed.

The Riemannian Functional Principal Component Analysis (RFPCA) of [Dai and Müller, 2018]
is developed from an ambient perspective. A framework to study functional data that
take values in more general metric spaces that do not have a tractable and relatively
simple Riemannian geometry is discussed by [Dubey and Müller, 2020].

1.1.2 Trajectories within the framework of Dynamic Data Analysis
(DDA)

As explained by [Ramsay and Hooker, 2017], “functional data analysis leads inevitably to
dynamic systems”.

Definition 1.1.1: Dynamical system

According to [Brown, 2018] (Definition 1.1), a dynamical system is a mathematical
formalization for any fixed rule that describes the dependence of the position of a
point in some ambient space on a parameter. The parameter usually referred to as
time that can be discrete or continuous. The ambient space is actually set of all
possible states a dynamical system can be in at any moment of time. The fixed rule
is usually a recipe for going from one state to the next in the ordering specified by
time. For discrete dynamical systems, it is often given as a function. The future
states of a point are found by applying the same function to the state space over
and over again.

More precisely, FDA is closely associated with continuous systems, where the continuous
movement of a point in space may be defined by an Ordinary Differential Equation (ODE).
The founding idea of DDA is to integrate the knowledge of differential equations into
statistical analysis when the data comes from observing a dynamic system. One possible
origin of this approach is provided by the work of [Heckman and Ramsay, 2000] on the
non-parametric regression model and smoothing splines estimators.

From the perspective of DDA, an aircraft trajectory can be considered as functional data
associated with a set of differential equations. This approach is appealing because the
dynamics of an aircraft or a drone is inherently described by a set of differential equations
(see Section 1.1.4). We consider that this framework may be suitable for extending our
work.

49



1.1 A literature review on trajectory data analysis

1.1.3 Shape analysis of trajectories

As clearly delineated by [Dryden and Mardia, 2016] (Preface to the first edition, p.xxi),
the field of shape analysis involves methods for the study of the shape of objects
where location, rotation and scale information are known to be uninformative. Prac-
tical applications of shape analysis range from biology to geography as illustrated by
[Dryden and Mardia, 2016] (Section 1.4, p.8) and [Srivastava and Klassen, 2016] (Section
1.2, p.5).

Definition 1.1.2: Shape

Following the definition of [Kendall, 1977] and [Dryden and Mardia, 2016] (Defini-
tion 1.1, p.1), shape is all the geometrical information that remains when location,
scale and rotational effects are removed from an object.

A historical perspective on shape analysis is provided by [Dryden and Mardia, 2016]
(Section 2.1, p.31) and [Srivastava and Klassen, 2016] (Chapter 2, p.21). One of
the earliest works in statistical analysis and modeling of shapes of objects arguably
came from Kendall and colleagues [Kendall, 1984]. Many references are provided by
[Dryden and Mardia, 2016] (Preface, p.xx) and by [Srivastava and Klassen, 2016] (Section
2.5, p.37).

Shape analysis usually relies on multitudes of available techniques. One way to present
them is to consider how they model shape. Some methods rely on a point cloud, a
deformable grid, a binary image etc. (see [Srivastava and Klassen, 2016], Chapter 2, p.21
for details).

Shape analysis of trajectories naturally stems from the shape analysis of curves - in one,
two, and higher dimensions, closed or open. Two main approaches are possible: a point-
based shape analysis of trajectories (Section 1.1.3.1) and a perspective based on differential
geometry (Section 1.1.3.2).

1.1.3.1 Point-based shape analysis of trajectories

Whatever the nature of objects under study (images, sounds, curves, or surfaces), shape
was originally described by locating a finite number of points on each object. These so-
called landmarks are points of correspondence and can be assigned by an expert (scientific
landmarks) or suggested by a property of the object, such as points of high curvature
(mathematical landmarks). Positions of these landmarks are usually points in R

n. It is
often assumed that the number of landmarks k is greater than or equal to the dimension of
the space. A configuration is the set of landmarks on a particular object. More specifically,
a configuration matrix X is a n ◊ k matrix of the Cartesian coordinates of k landmarks
in n dimensions. The configuration space is the space of all landmark coordinates, usually
the space of real n ◊ k matrices.

Landmark shape analysis has led to many practical applications. In biology, it has
been used to quantify the effects of selection for body weight on the shape of mouse
vertebrae as shown by [Mardia and Dryden, 1989]. In chemistry, [Dryden et al., 2007,
Czogiel et al., 2011] analyzed a dataset of steroids to evidence how the shape (‘steric’)
properties of the molecules are related to an activity class.
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Despite these successful applications, the use of landmarks is not straightforward for the
study of aircraft trajectories for at least two reasons:

1. The choice of landmarks may be very subjective. How many landmarks are relevant
to summarize the shape of an aircraft trajectory? Should this number depend on the
flight route we consider? Would landmarks based on flight phases be enough to capture
the shape of a trajectory?

2. Scientific landmarks are usually not available in raw data as most data sources do not
include expert knowledge.

These limitations are not new. They were exemplified in medical imaging problems for
which landmarks are not obvious to find (think of soft tissues where boundaries have
no sharp edges). These problems were taken into account by [Srivastava et al., 2011a] in
the same spirit as Kendall’s formulation. This new approach is based on the differential
geometry of curves, briefly introduced in Appendix B.

1.1.3.2 Trajectories as parameterized curves

Trajectories may be viewed as continuous curves that is to say as the elements
of some infinite-dimensional Riemannian manifolds. This approach is not new in
the transportation literature as testified by [Delahaye et al., 2014] [Puechmorel, 2015],
[Andrieu et al., 2016] and [Nicol and Puechmorel, 2017a]. Detection of bad runway condi-
tions has been performed by [Nicol and Puechmorel, 2017b] and [Puechmorel et al., 2018].
Major flows identification has been proposed by [Delahaye et al., 2019].

A convenient representation to study the shape of curves has been introduced by
[Srivastava et al., 2011a]. It is named the Square-Root Velocity Function (SRVF).

1.1.4 Aircraft data trajectory analysis

When analyzing aircraft trajectories specifically, it is natural to point out that flight
mechanics provides a precise definition for trajectory data analysis. Based on [Hull, 2007],
trajectory data analysis may be defined as the investigation of the equations of motion to
solve numerous problems related to the dynamics and performance of flight.

As explained by [Hull, 2007] (p.8), most trajectory analysis problems involve small aircraft
rotation rates and are studied through the use of the three degree of freedom (3DOF)
equations of motion, that is, the translational equations. In this framework, the airplane
is a controllable dynamical system. The 3DOF model considers the aircraft to be a point
mass, where the center of mass is the rotational center where all forces apply. The physical
models used can vary in complexity depending on the specific application.

Example 1.1.1: 3DOF equations of motion (basic model)

Based on the physical (basic) model defined by [Hull, 2007] (p.17), it is possible to
derive the equations of motion for the nonsteady flight of an airplane in a vertical

51



1.1 A literature review on trajectory data analysis

plane over a flat earth

ẋ = V cos(“)

ḣ = V sin(“)

V̇ =
g

W
[T cos(– + Á0) ≠ D ≠ W sin(“)]

“̇ =
g

WV
[T sin(– + Á0) + L ≠ W cos(“)]

Ẇ = ≠CT

where x is the direction of motion, h is the altitude above mean sea level, V is the
velocity of the airplane relative to the air, “ is the flight path angle, – is angle of
attack, T is the thrust, W is the weight, D is the drag, L is the lift, Á0 is the value
of the thrust angle of attack when – = 0, C is the specific fuel consumption, and g
the acceleration due to gravity. Note that Á0 and g are constants in this model.

More elaborate 3DOF models involve the modeling of three-dimensional flights, taking
into account flights over a spherical Earth and flight dynamics in a moving atmosphere.

Trajectory data analysis, in the context of flight mechanics, addresses various common
problems such as determining optimal flight paths to minimize fuel consumption (fuel
efficiency optimization), predicting the aircraft’s future trajectory (trajectory prediction),
and evaluating potential conflicts with other aircraft or obstacles (collision avoidance),
among others.

Let us focus on trajectory prediction. Based on the definition of a trajectory provided by of-
ficial organizations (see Vocabulary 1.1.2, for example), trajectory prediction is the process
of estimating the future states of the aircraft. This estimation relies on the current state of
the aircraft, the intentions of the pilot and controller, expected environmental conditions,
and computer models of aircraft performance and procedures (see [Zeng et al., 2022] for
a review).

Vocabulary 1.1.2: Trajectory (ICAO)

According to the International Civil Aviation Organization (ICAO) [ICAO, 2005],
a trajectory is “a description of the movement of an aircraft, both in the air and
on the ground, including position, time and, at least via calculation, speed and
acceleration.”

Trajectory prediction can be classified into short-term (a few minutes or less) and medium-
to long-term forecasts. Each category necessitates distinct modeling techniques and data
considerations. Various methods can be employed for trajectory prediction.

State estimation methods are particularly effective for short-term predictions, as early
demonstrated by [Chatterji, 1999] and more recently by [Maeder et al., 2011].

Vocabulary 1.1.3: Aircraft state estimation

Aircraft state estimation is the accurate estimation of aircraft motions from noisy
or incomplete measurements that may come from surveillance data (refer to
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[Bar-Shalom et al., 2002]). State estimation relies on the equations of motion that
produce estimates for force and motion variables that are compared with mea-
surements. A historical perspective on the state estimation problem is given by
[Afshari et al., 2017].

Advanced state estimation methods assume that the aircraft obeys of a finite set of modes.
The system may switch from one mode to another with a given transition probability. In
this case, the Interacting Multiple Model (IMM) filter (an extension of other filter meth-
ods) may be used (refer to [Magill, 1965], [Blom, 1984], [Blom and Bar-Shalom, 1988],
[Bar-Shalom et al., 1989]). The IMM approach has recently been used to estimate flight
modes from ADS-B data by [Khaledian et al., 2023] and a smoothing-enhanced IMM has
been developed by [Jilkov et al., 2002] to reconstruct trajectories. Theoretically, these
methods are more broadly part of the nonlinear estimation of stochastic hybrid systems.
The continuous-time foundations of IMM have been explained by [Blom, 2012].

As explained in Section 1.1.2, we consider that incorporating flight mechanics could be an
interesting extension of this thesis work in the future.

1.1.5 Trajectory data mining

A panorama of trajectory data mining has been proposed by [Zheng and Zhou, 2011],
[Zheng, 2015], [Feng and Zhu, 2016], and [Mazimpaka and Timpf, 2016].

Vocabulary 1.1.4: Trajectory data mining

According to [Aggarwal, 2015] (p.1), data mining is “the study of collecting, clean-
ing, processing, analyzing, and gaining useful insights from data”. Building upon
this broad definition, trajectory data mining can be understood as the process of
extracting valuable knowledge from trajectory data.

Sources generating trajectory data may be classified into four groups, as suggested by
[Zheng, 2015]. Groups are based on the type of object that is moving in space

• Mobility of people. Recording may be active (bicyclers and joggers record their trails
for sports analysis) or passive (carrying a mobile phone unintentionally generates many
spatial trajectories).

• Mobility of vehicles. Trajectories are the ones of GPS-equipped vehicles (taxis,
buses, vessels, and aircraft). The analysis of such trajectories may be useful for resource
allocation, traffic analysis or the improvement of transportation networks.

• Mobility of animals. Studying these trajectories could provide valuable insights
into both animals’ migratory patterns and their behavioral tendencies. An excellent
reference is the recent monograph on animal movement written by [Hooten et al., 2017].

• Mobility of natural phenomena. Trajectories are coming from hurricanes, torna-
does, and ocean currents.

Before any mining task, the pre-processing of trajectory data is almost always needed.
Usual pre-processing steps include noise filtering, the detection of stay points, compression,
segmentation and map matching.
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1.1.6 Software aspects

The selection of an appropriate statistical framework for aircraft trajectory analysis is
influenced by the availability of statistical procedures coded in statistical software such as
R (refer to [R Core Team, 2023]). Since trajectory data analysis is not a distinct domain
within statistics, it is unsurprising that multiple packages and the recoding of several
functions are necessary to study aircraft trajectory data.

Reviewing the available CRAN task views provides insight into which packages are
relevant for trajectory data analysis, with two of them standing out in particular.
The CRAN task view titled ‘Handling and Analyzing Spatio-Temporal Data’ (see
[Pebesma and Bivand, 2022]) is the most general, providing an overview of numerous pack-
ages that can be used to analyze gridded/raster data, lattice data, point patterns, and
trajectory data. In particular, it offers a non-exhaustive list of the main packages related
to trajectory data analysis.

A dedicated task view for moving objects and trajectories is named ‘CRAN Task View:
Processing and Analysis of Tracking Data’ (see [Joo and Basille, 2023]). It is organized
according to the workflow for data processing and analysis in movement ecology presented
by [Joo et al., 2020]. This workflow consists of three steps.

• Pre-processing step. It deals with the conversion of raw biologging data into a
tracking data format.

• Post-processing step. It comprises data cleaning (e.g. identification of outliers or er-
rors), compressing (i.e. reducing data resolution which is sometimes called resampling)
and computation of metrics based on tracking data, which are useful for posterior
analyses.

• Analysis step. It encompasses visualization, track description, path reconstruction,
behavioral pattern identification, space use, trajectory simulations and others.

This workflow is largely similar to that used in the analysis of aircraft trajectories, although
several differences should be noted. The data acquisition technologies differ significantly
between ecology and air transportation. Aviation data does not require the pre-processing
steps needed for data from radio-tagging or Global Location Sensors (GLS). In line with
the vocabulary used in FDA, it is often said that the pre-processing steps for aviation data
involve reconstruction and registration. In the context of animal movement, it seems that
reconstruction is considered part of the post-processing step. Additionally, some analyses,
such as habitat use, are not relevant for aircraft tracking data.

It is possible to give an overview of the available and missing procedures for processing
aircraft trajectory data.

• Acquisition of aircraft trajectory data. Several sources of aircraft trajectory data
are described in Appendix A. For the majority of them, downloading data is generally
done manually. Regarding OpenSky Network ADS-B data acquisition, several R wrap-
pers are available from different developers, providing access to either the live API or
the Impala shell (refer to [Ayala et al., 2021]). To our knowledge, there are no motion
analysis packages that offer datasets of aircraft trajectories.

• Acquisition of aviation weather data. Meteorological data acquisition for aviation
can be done via the relevant API (see Appendix A.6). Retrieving such meteorologi-
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cal data in R can be challenging due to the difficult handling of the package ncdf4

([Pierce, 2023]), which is commonly used to open weather files in NetCDF format.

• Visualization of aircraft trajectory data. Various techniques for visualizing track-
ing data are detailed in [Joo and Basille, 2023]. The packages mainly developed anima-
tion of tracks, are anipaths and moveVis (archived). At present, current packages
do not support animating tracks in more than two dimensions.

• Interpolation, smoothing. Achieving finer data resolutions or regular time steps
is referred to as a path reconstruction problem in movement analysis. Many packages
for movement analysis focus on animal movement and offer linear interpolation as their
primary method for reconstruction. More advanced methods fall within the FDA frame-
work in which the reconstruction problem is naturally framed as an interpolation or
smoothing issue. Most packages relevant to FDA are detailed by [Scheipl et al., 2024],
and the fda package ([Ramsay, 2024]) offers numerous options as described by
[Ramsay et al., 2009]. Interpolation of trajectory data can also be performed using
standard R functions and the splines2 package (see [Wang and Yan, 2021]). To our
knowledge, specific interpolation procedures like those of [Schmidt and Heß, 1988] and
[Su et al., 2012] (refer to Section 1.2.3.1 and Section 1.2.4.1) are not implemented in R,
and we had to recode them.

• Registration. Most registration procedures (see Section 1.3) are available in the pack-
ages fda, dtw ([Giorgino, 2009]), and fdasrvf ([Tucker, 2024]). Note that limited
documentation of the fdasrvf package may currently lead to uncertainty in the use
of some functions. Animal movement analysis packages generally do not include align-
ment procedures.

• Shape analysis of aircraft trajectory data. Routines for the statistical anal-
ysis of landmark shapes may be found in the shapes package (see [Dryden, 2023]
and [Dryden and Mardia, 2016]). The R package fdasrvf and the Python package
geomstats are also of great interest (see [Miolane et al., 2020]).

In this thesis work, our aim is to gather and share with the statistical community the pro-
cedures we have recoded, along with the drone trajectory data we have collected (refer to
Appendix A.3). Our ultimate goal is to make the identification of trajectory datasets easier
and to consolidate all procedures – from data acquisition to modeling and visualization –
into a single package. In particular, we aim to include the geostatistical model we propose
(Chapter 2), as well as our flight segmentation model based on HMMs (Chapter 3), in the
package.
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1.2 Interpolation and smoothing of trajectory data

In broad terms, curve fitting refers to the process of constructing a curve or mathematical
function that most accurately corresponds to a set of data points. Since raw trajectory
data are always observed at a finite number of points, the problem of reconstructing
a continuous trajectory is a fundamental issue that precedes any attempt at statistical
analysis. This is the focus of this section.

Main contributions of the section

In the framework of FDA presented in Section 1.1.1, we address the problem of
reconstructing trajectory data. For aircraft trajectories, the choice between inter-
polation and smoothing is typically determined by the presence of measurement
noise. Crucially, we show that the choice of a reconstruction method is dictated by
the nature of the components being studied.
The usual smoothing and interpolation methods allow for the reconstruction of real-
valued components of the flight. In this regard, we reconstruct the position of a
drone using natural cubic spline interpolation. The drone’s battery voltage profile
is reconstructed using smoothing splines.
Specialized methods are often required for altitude, which must satisfy a nonnega-
tivity constraint. We emphasize the usefulness of nonnegative interpolation using
C1 cubic splines to meet this constraint for a sample of Eurocontrol flights.
Importantly, the angular nature of longitude, latitude, and wind direction must also
be considered and requires specific methods. We emphasize that interpolation with
piecewise geodesics can be used to interpolate an aircraft’s position over the Pacific
Ocean, particularly when discontinuities in longitude values need to be addressed.
Finally, we use a non-parametric regression model tailored for circular responses to
smooth wind directions.

We start by examining a basic scenario, where each trajectory has only one component
(or, more realistically, where only one component is of interest). The interpolation and
smoothing of a single trajectory component are discussed in Section 1.2.1. Remarkably,
Section 1.2.2 then demonstrates that incorporating multiple components does not intro-
duce additional challenges for spline interpolation: it can be performed component by
component. This is not the case for smoothing models, where the possible consideration
of correlation between components must be taken into account. Next, the integration of
interpolation and smoothing constraints is discussed in Section 1.2.3. Finally, procedures
to interpolate and smooth angular trajectory components are outlined in 1.2.4.

1.2.1 Interpolation and smoothing of a single trajectory component

In this section, we first consider the univariate FDA framework for which only one compo-
nent of the trajectories is studied in Section 1.2.1.1. Then, we briefly review the common
interpolation methods based on polynomial spline functions in Section 1.2.1.2. A natu-
ral cubic spline interpolation of a drone’s position is proposed in Section 1.2.1.3. Some
smoothing techniques are presented in Section 1.2.1.4 and applied to smoothing a drone’s
battery voltage profile in Section 1.2.1.5.
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1.2 Interpolation and smoothing of trajectory data

1.2.1.1 The FDA framework associated with the study of a single trajectory
component

Within the framework of FDA, raw observed data are not, strictly speaking, functions,
which is also the case for raw trajectory data. Rather, a typical (univariate) sample is of
the form

(tij , yij), tij œ [T1i, T2i], yij œ R, i = 1, ..., n, j = 1, ..., Ji, T1i < T2i. (1.1)

That is, we consider n statistical units (trajectories), observed on possibly different time
intervals. Some values yij are observed at specific time points tij . In practice, time points
are different for each trajectory. The vast majority of analyses in FDA are conducted (ei-
ther implicitly or explicitly) under a common time interval assumption. This assumption
goes

’i œ {1, ..., n} , T1i = T1 and T2i = T2, such that T1 < T2. (1.2)

Without lost of generality, it is often further assumed that [T1, T2] = [0, 1]. The common
time interval assumption is trivially ensured when data acquisition takes place in a lab-
oratory. In this situation, the statistician has total control over the timing and duration
of the data acquisition process. As for trajectory data, one typically observes trajectories
of different durations that are not contemporaneous with each other. Time intervals are
always different. An intuitive, initial transformation of the data is then, for each trajec-
tory, to pinpoint the first observation point at time t = 0 and the last observation point
at t = 1. Flights are assumed to be observed from takeoff to landing, in their entirety.
In the following, this transformation is referred to as a rescaling to the unit interval. We
illustrate this transformation using the drone trajectories presented in Appendix A.3.

Example 1.2.1: Rescaling drone trajectories the unit interval

Drone trajectories may be rescaled to the unit interval as shown on Figure 1.2.
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1.2 Interpolation and smoothing of trajectory data

Figure 1.2: Altitude profile of 8 drone trajectories considering the raw acquisition
time [top] and scaled time [bottom]

A fundamental idea of FDA is that the actual objects we wish to study are functions.
Specifically, the record of function xi denoted {(tij , yij)}Ji

j=1 has no interest in itself.
Rather, one is interested in studying the set

{xi(t), t œ [0, 1], i = 1, ..., n} . (1.3)

Note that )
xÕ

i(t), t œ [0, 1], i = 1, ..., n
*

(1.4)

is usually also studied as derivatives are often very informative. Working with functions
allows to evaluate them at every instant, which proves very convenient for studying tra-
jectories.

In the case where one has, for each trajectory, a large number of observations, it is possible
to focus on the reconstruction of each function xi, and, depending on the applications,
its derivatives. This is not possible however, when only few points are available for each
trajectory. These two situations refer to two very different frameworks in FDA: the dense
and sparse frameworks.

Vocabulary 1.2.1: Dense and sparse functional data

According to [Zhang and Wang, 2016], the magnitude of the number of time points
available for each individual should be carefully handled since it leads to distinct
asymptotic properties and has an impact on the choice of estimation procedures.
Even if there is no formal definition of dense functional data, [Wang et al., 2016]
note that there are conventions that the majority of statisticians agree upon. Gen-
erally, if, for all individuals, the number of time points is larger than some order of
n (sample size), functional data are referred to as dense data. If, for all individuals,
the number of time points is bounded, the data are commonly considered as sparse.
In this context, sparsity refers to sparsity of the time grid at which measurements
are taken. A clear, rigorous convention, has been proposed by [Wang et al., 2016],
exploring the large sample properties (asymptotic normality, L2 convergence, uni-
form convergence) of the mean and covariance estimators. Functional data are
considered as dense if root-n rate can be attained. Note that [Wang et al., 2016]
also define ultra-dense functional data based on the asymptotic bias.

The sampling rate of trajectory data we consider in this work is very high, placing us in
the framework of dense functional data.

If measurement errors are negligible, the reconstruction of functional data may be
done through interpolation. Yet, in the continuity of the works of [Cardot, 2000],
[Ramsay and Silverman, 2005] and [Zhang and Chen, 2007], observations are often as-
sumed to be noisy and data smoothing is often carried out.

Both for interpolation and smoothing methods, polynomial spline functions are at the
core of reconstructing functional data due to their good theoretical properties, elegance,
and computational advantages. All the essential elements for defining polynomial spline
functions are summarized in Appendix C.
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1.2 Interpolation and smoothing of trajectory data

1.2.1.2 A brief overview of spline interpolation

Numerous references are available to become familiar with interpolation methods. In par-
ticular, many numerical analysis books delve into linear and polynomial interpolation. For
the theoretical aspects of interpolation, one may refer to [Tsynkov, 2007] (Chapter 2). For
a more practical approach, one can read [Stoer and Bulirsch, 2002] (Chapter 2). Some
R routines for interpolation may be found in [Bloomfield, 2014] (Chapter 11, Section 5,
p.311-315). In the sequel, we only elaborate on spline interpolation. Most spline interpo-
lation problems are addressed by [Schumaker, 2007] in a clear and concise style.

The most basic form of spline interpolation is called a Lagrange interpolation problem (refer
to [Schumaker, 2007], Problem 2.6, p.20). If the assumptions of the Schoenberg-Whitney
theorem are verified (see [Schumaker, 2007], Theorem 1.8, p.9), a Lagrange interpolation
problem has a unique solution. A popular example is linear interpolation, resulting in
a piecewise linear interpolant that often preserves the shape of the data. The obvious
disadvantage of linear interpolation is its lack of smoothness. The Hermite interpolation
problem generalizes Lagrange interpolation and usually results in a smoother interpolant as
derivative information is involved. If the hypotheses of the extended Schoenberg-Whitney
theorem are satisfied ([Schumaker, 2015], Theorem 1.12, p.14), it can be proved that the
Hermite interpolation problem has a unique solution. Clamped cubic spline interpolation
and natural cubic spline interpolation are commonly used, with only the derivative condi-
tions differing. Based on a theorem proved by [Holladay, 1957], it can be shown that the
natural cubic spline interpolant has the smallest linearised curvature. In this sense, it is
the smoothest interpolant. We illustrate these methods on a simulated example.

Example 1.2.2: Illustration of some spline interpolation methods

Let us consider example 1.9 developed by [Schumaker, 2015] (p.11). The test func-
tion is defined on [≠1, 1] by

f(x) = exsin(2fix). (1.5)

Given 5 points that are equally spaced between ≠1 and 1, the clamped cubic spline
interpolant and the natural cubic spline interpolant are shown on Figure 1.3.

Figure 1.3: A clamped cubic spline interpolant and a natural cubic spline interpolant
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1.2 Interpolation and smoothing of trajectory data

It is noteworthy that here, natural cubic interpolation coincides with linear inter-
polation.
Now, suppose that 9 points are given, but they are not equally spaced. the lin-
ear interpolant, the clamped cubic spline interpolant and the natural cubic spline
interpolant are shown on Figure 1.4.

Figure 1.4: Some interpolants when observation points are not equally spaced

1.2.1.3 Application n°1: interpolation of a drone’s position

Let us consider the first drone trajectory from the drone dataset (see Appendix A.3). The
trajectory is made out of several components, as described in Table A.4. Three components
are needed for defining the position of the drone. We study each component separately
and aim to interpolate the raw position data to evaluate the drone’s position at any
moment during the flight. As the indoor positioning system is highly accurate, we employ
an interpolation procedure. The natural cubic spline interpolation of the drone position
ensures the smallest linearised curvature and is shown in Figure 1.5. A three-dimensional
view of the interpolated position is provided in Figure 1.6.

1.2.1.4 A brief overview of smoothing techniques

The majority of reconstruction methods in FDA are non-parametric regression methods.
Not surprisingly, spline functions play a role in several of these approaches: the emer-
gence of FDA is intimately linked to the use of spline functions in statistics (refer to
[Ramsay, 1982]). Throughout this section, our focus is on smoothing a single trajectory.
To simplify the notations, the subscript i is dropped in the following.

For a single trajectory, we observe J pairs (t1, y1), ..., (tJ , yJ) such that t1, ..., tJ are or-
dered non-random numbers (the design points). Given the individual rescaling to the unit
interval, we assume that 0 = t1 < t2 < ... < tJ = 1. For j = 1, ..., J , tj and Yj are assumed
to be related by the regression model

Yj = x(tj) + Áj , (1.6)
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1.2 Interpolation and smoothing of trajectory data

Figure 1.5: For the first drone trajectory, natural cubic spline interpolation of the position.
Interpolated positions are sampled on a regular grid of 1,000 points.

Figure 1.6: For the first drone trajectory, natural cubic spline interpolation of the position.
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1.2 Interpolation and smoothing of trajectory data

where Á1, ..., ÁJ are independent random variables for which, ’j œ {1, ..., J},

E(Áj) = 0 (1.7)

V(Áj) = ‡2. (1.8)

The function x is the regression function. An excellent review on smoothing techniques in
this framework is proposed by [Eubank, 1999]. Because design points are fixed determin-
istic points, the model is called a fixed design regression.

A basis expansion approach to reconstruct trajectories

A popular approach to the non-parametric regression problem is to consider so-called
series estimators of x ([Eubank, 1999], Chapter 3, p.71). Given a set of known functions
{„u}Œ

u=1, a series estimator is an approximation of x by
qU

u=1 —u„u for some integer U

and unknown coefficients {—u}U
u=1. For a given value of U , estimation is usually done with

a least square criterion

argmin
—1,...,—U

Jÿ

j=1

C
yj ≠

Uÿ

u=1

—u„u(tj)

D2

. (1.9)

Chosen sequences of functions {„u}Œ

u=1 are typically complete orthonormal sequences for
L

2([0, 1],R). Some complete orthonormal sequences were very popular in the late 1990s.
For example, the Fourier basis has been extensively studied as well as Legendre polynomi-
als and wavelets ([Hart, 1997], [Ogden, 1997], [Efromovich, 1999]). In FDA, more general
basis functions are used. These functions may not constitute an orthonormal system for
L

2([0, 1],R). For example, least-squares spline estimators of x are extremely popular (re-
fer to [Eubank, 1999], Chapter 6, p.291). A key consideration with the basis expansion
approach is the choice of the number of basis functions.

Remark 1.2.1: Choosing the number of basis functions

When the order of the spline is chosen, the number of basis functions is completely
determined by the number of knots. Choosing the number of basis functions involves
a usual bias/variance trade-off. One may rely on stepwise variable selection or on
variable-pruning methods as explained in [Ramsay and Silverman, 2005] (Chapter
4, p.69).
More frequently, it is common to use a cross-validation procedure or a Generalized
Cross-Validation (GCV) measure. The latter is computationally less intensive. A
formulation of the GCV criterion is given by [Eubank, 1999] (Chapter 6, p.299).

A well-known limitation of the basis expansion approach is the discontinuous control over
the degree of smoothing, as the intensity of the smoothing is controlled by the number of
basis functions. As a consequence, smoothing splines are often preferred in FDA.
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1.2 Interpolation and smoothing of trajectory data

Smoothing splines

Smoothing spline estimators are often favored over least-squares spline estimators. Let us
consider that the regression function x belongs to the m-th order Sobolev space

W m
2 ([0, 1],R) =

I
f : [0, 1] æ R,

f (j) is absolutely continuous for j = 0, ..., m ≠ 1,

f (m) œ L
2([0, 1],R)

J
.

(1.10)
A natural measure of smoothness associated with x is

´ 1
0 x(m)(t)2dt. For ⁄ > 0 (fixed), an

estimator of the regression function is given by

argmin
xœW m

2 ([0,1],R)

Jÿ

j=1

[yj ≠ x(tj)]2 + ⁄

ˆ 1

0
x(m)(t)2dt. (1.11)

The so-called smoothing parameter ⁄ governs the tradeoff between smoothness and
goodness-of-fit. The minimization problem 1.11 actually reduces to a finite dimensional
problem of minimization over a J dimensional set of natural splines. As stated in
[Green and Silverman, 1993] (Chapter 2, p.18), in [de Boor, 2001] (Chapter XIV, p.207)
and in [Eubank, 1999] (Chapter 5, p.231), the solution x̂⁄ to the minimization problem 1.11
is a natural spline of order 2m (degree 2m ≠ 1) with knots at data points t1, ..., tJ . For ex-
ample, if m = 2, the solution x̂⁄ is a natural cubic spline with knots at data points t1, ..., tJ .
When m = 2, a linear time algorithm has been proposed by [Green and Silverman, 1993]
for finding the smoothing spline. It is the so-called Reinsch algorithm.

1.2.1.5 Application n°2: smoothing of a drone’s battery voltage profile

Voltage measurements are generally quite noisy, even more so on a flying drone where
sources of electrical disturbances are significant. Some noisy input battery voltage profiles
may be seen in Figure A.7. It seems that the use of smoothing techniques is suitable for
reconstructing battery voltage profiles.

We adopt a smoothing spline approach, which offers greater flexibility in controlling the
degree of smoothness compared to the basis expansion one. A B-spline basis is set up
with order 4 spline functions. Next, a relevant knot placement must be determined.
As explained by [Ramsay and Silverman, 2005] (Chapter 3, p.51) and by [Eubank, 1999]
(Chapter 6, p.294), there are usually several strategies to place the knots:

• placement through visual inspection,

• placement based on an equal spacing,

• placement at the quantiles of the argument (observation times).

In theory, more knots are required in regions known to contain high curvature. Without
prior information about the battery profile, we opt for 500 equally-spaced knots.

A range of smoothing parameter ⁄ values is considered. For each drone flight, a GCV
coefficient is computed for each value of ⁄. For all drone flights, it appears that a fairly
wide range of smoothing values give roughly the same GCV value. As explained by
[Ramsay et al., 2009] (Section 5.2.5, p.67), it may be a sign that the data are not especially
informative about the value of the smoothing parameter. The choice is made to select
⁄ = 10≠4 for all the drone flights as it gives satisfactory results, as can be noticed from
Figure 1.7.
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1.2 Interpolation and smoothing of trajectory data

Figure 1.7: Smoothed battery voltage profiled for the drone trajectories.

1.2.2 Interpolation and smoothing of multiple trajectory components

This section explains why interpolating multiple components of a trajectory can be done
simply on a component-by-component basis, which is generally not advisable for smoothing
approaches when components are correlated.

1.2.2.1 The FDA framework associated with the study of multiple trajectory
components

Making a common time interval assumption, a typical multivariate sample is of the form

(tij , yij), tij œ [0, 1], yij œ R
d, i = 1, ..., n, j = 1, ..., Ji (1.12)

where yij © (y
[1]
ij , ..., y

[d]
ij ) and d > 1. We are only interested in the case where, for each

observation time j of a trajectory i, the value of each component d is known. Just as
in the univariate FDA framework, what we aim to study is a sample of functions. Yet,
functions are now vector-valued. The sample is denoted

{xi(t), t œ [0, 1], i = 1, ..., n} (1.13)

where xi(t) © (x
[1]
i (t), ..., x

[d]
i (t)) is a vector-valued function.

1.2.2.2 Parametric splines and parametric spline interpolation

Curve fitting applied to geometric curves is often key for some applications and especially
in Computer-Aided Geometric Design (CAGD), as explained in Appendix D.

The approximation of (planar) curves is briefly discussed by [Boor, 2001] in Chapter XVI
(p.263). However, parametric splines are not the focus of [Schumaker, 2007] since the
monograph concentrates on univariate splines defined as functions over an interval.

A concise definition of a spline curve is suggested by [De Boor, 2002] and is given below.
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Definition 1.2.1: Parametric spline curve

A parametric spline curve in R
d (d > 1) is a spline function where each B-spline

coefficient is a point in R
d (a parametric spline curve is a vector of spline functions).

Theoretically, the degree and the knot vector in the d components need not be the
same.

Parametric spline curves are particularly useful for solving interpolation problems. Below
is a description of a generic parametric spline interpolation problem.

Definition 1.2.2: Parametric spline interpolation

Based on [Epstein, 1976], consider an ordered set of n points in R
d (d > 1) that are

denoted y1, ..., yn. We wish to find a spline function s such that, for i = 1, ...n,

s(ui) = yi (1.14)

for some parameter values u1, ..., un with u1 < u2 < ... < un≠1 < un. The points
are parametrized, that is, for i = 1, ..., n, a value ui is assigned to point yi (it
may be given of not). Except for the choice of parametrization, parametric spline
interpolation consists merely of ordinary interpolation done d times. Indeed, for
each dimension ¸ = 1, ..., d, we have n pairs

Ó
(ui, y

[¸]
i )

Ôn

i=1
.

In many applications, no prior parametrization is provided for the interpolation problem.
As a consequence, common choices of parametrizations are discussed in the literature,
for instance by [Lee, 1989]. The most simple is uniform parametrization which amount to
choose ui = i for i = 1, ..., n. It is generally unsatisfactory since the distribution of the data
points is not taken into account. Another popular choice is cord length parametrization for
which u1 = 0 and for i = 2, ..., n, ui = ui≠1 +

..yi ≠ yi≠1

... Centripetal parametrization is

given by u1 = 0 and for i = 2, ..., n, ui = ui≠1 +
..yi ≠ yi≠1

.. 1
2 . As explained and illustrated

by [de Boor, 2001] (p.277), the choice of parametrization is important. It greatly affects
the final appearance of the spline interpolation, as demonstrated in the following simulated
example.

Example 1.2.3: Parametric cubic spline interpolation

We observe an ordered set of 13 points in R
2. Performing natural cubic spline

interpolation in both dimensions, we compare the 3 main types of parametrizations
on Figure 1.8.
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1.2 Interpolation and smoothing of trajectory data

Figure 1.8: Parametric spline interpolation with varying parametrization choices.

As for trajectory data, a parametrization is always provided: it is suggested by the obser-
vation times at which the data are acquired.

Remark 1.2.2: Parametric spline interpolation of multivariate functional data

Working with multivariate functional data, there often exists a natural parameter-
ization since we observe y1, ..., yn and associated time values t1, ..., tn.

1.2.2.3 Smoothing parametric curves

For a single trajectory (subscript i is dropped), we observe J pairs (t1, y1), ..., (tJ , yJ) such
that t1, ..., tJ are ordered non-random numbers (the design points). Given the individual
rescaling to the unit interval, we assume that 0 = t1 < t2 < ... < tJ = 1. For j = 1, ..., J ,
tj and Y j © (Y

[1]
j , ..., Y

[d]
j ) are assumed to be related by the regression model

Y j = x(tj) + εj (1.15)
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where x © (x[1], ..., x[d]) and εj © (Á
[1]
j , ..., Á

[d]
j ). That is, we consider a system of d non-

parametric regression equations

Y
__]
__[

Y
[1]

j = x[1](tj) + Á
[1]
j

...
Y

[d]
j = x[d](tj) + Á

[d]
j .

(1.16)

A commonly used method to address this system involves making suitable assumptions
about error terms, thereby relating equations based on potential correlations among the
unobserved disturbances. Specifically, it is often assumed that disturbances are uncorre-
lated across observation times but exhibit correlation across equations for a given obser-
vation time tj . This model has been introduced by [Zellner, 1962] as a model of Seemingly
Unrelated Regressions (SUR).

We highlight this model as an intriguing approach for smoothing multiple correlated com-
ponents of a trajectory.

1.2.3 Interpolation and smoothing of a single trajectory component un-
der positivity constraint

The methods presented in Section 1.2.1 are well-suited for reconstructing a real-valued
component. Yet, altitude and wind speed values are typically non-negative. Smoothing
and interpolation procedures should, as much as possible, adhere to these natural con-
straints. In the literature, positivity, monotonicity, and convexity are often referred to as
the shape properties that should be preserved.

1.2.3.1 Interpolation under positivity constraint

Naive nonnegative cubic Hermite splines

If interpolation is specified as an Hermite interpolation problem, it is remarkable that
slopes may be seen as free parameters that can be adjusted to make the interpolating
spline function s have desirable properties. It can be easily seen that if we impose a
zero derivative at observation points t1, ..., tn, then, for every 1 Æ i < n, s is monotone on
[ti, ti+1] and it is nonnegative on [ti, ti+1] if yi Ø 0 and yi+1 Ø 0 (refer to [Schumaker, 2015],
proof of Theorem 1.15, p.17).

The use of zero derivatives results in flat spots at all of the sample points, which may be
not very satisfactory as illustrated in the following simulated example.

Example 1.2.4: Nonnegative cubic Hermite spline interpolation

Let us consider a test function defined on [≠1, 1] by

f(x) = sin(3t)4. (1.17)

Notice that ’t œ [≠1, 1], f(t) Ø 0. Several interpolation strategies are compared on
Figure 1.9.
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Figure 1.9: Several interpolants [top], and a zoom on the interval [≠0.1, 0.15] [bot-
tom]
The shape-preserving cubic Hermite spline interpolant (referred to as the naive pos-
itive interpolant) is indeed nonnegative but, as expected, the use of zero derivatives
results in flat spots at all of the sample points. Interpolation techniques presented
in Section 1.2.1 violate the nonnegativity of the test function.

Other shape-preserving interpolant are usually considered.

Nonnegative interpolation by C1 cubic splines

A general formulation of the nonnegative interpolation problem has been proposed by
[Schmidt and Heß, 1988]. It is a specific Hermite interpolation problem.

Definition 1.2.3: A specific nonnegative spline interpolation problem

Consider time observations 0 = t1 < t2 < ... < tn = 1 and associated values
{yi, yÕ

i}
n
i=1. Assume that ’i œ {1, ..., n} yi Ø 0. We seek a C1 cubic spline function

s with knots t1 = 0, t2, ..., tn≠1, tn = 1 such that ’i œ {1, ..., n},

s(ti) = yi, (1.18)

and, ’t œ [0, 1], s(t) Ø 0. Quantities yÕ
1, ..., yÕ

n should be determined in order to
satisfy the nonnegativity condition while y1, ..., yn are given.
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Theorem 1.2.1: Necessary and sufficient condition for nonnegativity

From [Schmidt and Heß, 1988] (Theorem 4), the cubic C1 spline s defined above is
nonnegative on [0, 1] if and only if ’i œ {2, ..., n}

(yÕ
i≠1, yÕ

i) œ Wi (1.19)

where
Wi © {(t, y) : hit Ø ≠3yi≠1 and hiy Æ 3yi} fi Ai (1.20)

where
Ai © {(t, y) : 36yi≠1yi(t

2 + ty + y2 ≠ 3·i(t + y) + 3·2
i )+

3(yit ≠ yi≠1y)(2hity ≠ 3yit + 3yi≠1y)+

4hi(yit
3 ≠ yi≠1y3) ≠ h2

i t2y2 Ø 0}

(1.21)

where
hi © ti ≠ ti ≠ 1

·i © yi ≠ yi≠1

hi

.
(1.22)

As yÕ
1 = 0 = ... = yÕ

n satisfies 1.19, the nonnegative spline interpolation problem is
always solvable. Yet, the solution is not unique.

Theorem 1.2.2: Sufficient condition for nonnegativity

From [Schmidt and Heß, 1988], a sufficient (and simpler) condition for nonnegativ-
ity is, ’i œ {2, ..., n}

(yÕ
i≠1, yÕ

i) œ Si (1.23)

where
Si © {(t, y) : t Ø si and y Æ 2·i ≠ si} (1.24)

where

si © ≠2(yi≠1 +
Ô

yi≠1yi)

hi

(1.25)

Note that Si µ Wi holds.

Attention is directed towards determining the spline function for minimal curvature inter-
polation. Subsequently, the objective is to minimize

nÿ

i=2

ˆ xi

xi≠1

#
sÕÕ(x)

$2
dx =

ˆ 1

0

#
sÕÕ(x)

$2
dx. (1.26)

The optimization problem goes

min
yÕ

0,...,yÕ

n

nÿ

i=2

Fi(y
Õ
i≠1, yÕ

i)

s.t. ’i œ {2, ..., n} , (yÕ
i≠1, yÕ

i) œ Wi

(1.27)

where
Fi(t, y) =

4

hi

Ó
(t ≠ ·i)

2 + (t ≠ ·i)(y ≠ ·i) + (y ≠ ·i)
2
Ô

. (1.28)
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The following (unconstrained) dual program is considered

max
p2,...,pn≠1

≠
nÿ

i=2

Hú
i (pi≠1, ≠pi) (1.29)

with p1 = pn = 1, where Hú
i denotes the Fenchel conjugate to Fi and Wi, also known as the

convex conjugate, the Legendre-Fenchel transformation or the Fenchel transformation. If a
solution

!
0, Êp2, ..., ]pn≠1, 0

"
is found, [Schmidt and Heß, 1988] have shown that the solution1ÊyÕ

1, ÊyÕ
2, ..., ÁyÕ

n≠1, ÊyÕ
n

2
to the optimization problem 1.27 is explicitly given by means of the

partial derivatives of Hú
i , ’i œ {2, ..., n},

I ÁyÕ
i≠1 = ˆ1Hú

i ( Ápi≠1, ≠ Âpi)
ÂyÕ
i = ˆ2Hú

i ( Ápi≠1, ≠ Âpi).
(1.30)

When Wi is replaced by Si in problem 1.27, the resulting spline is approximately optimal
and the Fenchel conjugate Húi may be expressed for i = 2, ..., n as
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where
‡i © 12·i

hi

Íi © (·i ≠ si)‡i

·i

.

(1.32)

The proof is detailed by [Schmidt and Heß, 1988]. Newton’s method may be used to
determine

!
0, Êp2, ..., ]pn≠1, 0

"
. In the rest of this work, we refer to the solution spline

function as the Schmidt and Hess’s interpolating spline.

The results of [Schmidt and Heß, 1988] have been extended by [Butt and Brodlie, 1993]
to the case where the slopes at data points are prescribed and nonnegativity is required.
Other approaches to nonnegative spline interpolation are given by [Greiner, 1991] and
more recently by [Sarfraz et al., 2010].

Example 1.2.5: Nonnegative cubic Hermite spline interpolation (revisited)

Several interpolation strategies are compared on Figure 1.10.

70



1.2 Interpolation and smoothing of trajectory data

Figure 1.10: Several interpolants [top], and a zoom on the interval [≠0.1, 0.15]
[bottom]
Schmidt and Hess’s interpolating spline is the most appropriate here.

1.2.3.2 Application n°3: interpolating flight level values with a nonnegativity
constraint

Let us consider a sample of Eurocontrol flights (see Appendix A.2). Three interpolation
procedures mentioned earlier are being compared: linear interpolation, natural cubic spline
interpolation and nonnegative interpolation by C1 cubic splines. Results are shown on
Figure 1.11.

It is clear that the natural cubic spline interpolation is not satisfactory at all. Depending
on the required degree of smoothness, one may prefer either linear interpolation or an
interpolation procedure that guarantees the nonnegativity of altitude values.

1.2.3.3 Nonnegative smoothing

For completeness, we now present some references on smoothing under positivity con-
straint, although it may not be directly useful for the datasets we consider.

Constraints on shape are frequently encountered in statistics and econometrics, as dis-
cussed by [Schimek, 2013] (Chapter 5). Monotony and convexity are the two restrictions
that have been the most studied. Focusing on smoothing splines (see Section 1.2.1.4), a
discretized version of the nonnegativity condition may be considered. Choosing a finite
number argument values for which the polynomial spline function must be nonnegative,
a finite number of linear constraints may be included in the minimization problem Equa-
tion (1.11). Yet, it is then impossible to ensure that the constraint is globally satisfied.
Reversely, the drawback of most global methods is the lack of a computing algorithm.
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1.2 Interpolation and smoothing of trajectory data

Figure 1.11: Altitude profiles obtained through linear interpolation are represented in
purple, those obtained through natural cubic spline interpolation in green, and those
obtained under the nonnegativity constraint in blue. For each approach, the entire flight
is represented on the left, and a zoom on the beginning of the flight is shown on the right.
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1.2 Interpolation and smoothing of trajectory data

In the FDA literature, the non-negativity constraint may handled following the idea of
[Ramsay and Silverman, 2005] (Subsection 6.2.1, p.113). The positive function is writ-
ten as the exponential of an unconstrained polynomial spline function. As usual, the
coefficients of the expansion in the B-spline basis must be estimated. Because of the expo-
nential, the criterion is now not linear in terms of the coefficients, and numerical methods
are used.

When several constraints must be met simultaneously, [Turlach, 2005] adopted another
point of view. He focused on splines of order 4, with knots located at observation points.
Instead of choosing a suitable B-spline basis and identifying the necessary constraints on
the coefficients of the basis functions, an unconstrained smoothing spline is first fitted. If
there are any violations, constraints are added. The process of verifying-and-adding-new-
constraints is iterated until there are no violations anymore.

1.2.4 Interpolation and smoothing of angular trajectory components

Certain components of trajectories, like longitude, latitude, or wind direction, are an-
gular measurements. Analyzing such circular data from a statistical point of view is
typically conducted within the framework of directional statistics. A key reference in this
field is the monograph by [Jupp and Mardia, 1999]. Some case studies are developed by
[Ley and Verdebout, 2018].

Since observed values vary over time, we are specifically interested in circular time
series. This field has been studied extensively, as indicated by early work such as
[Fisher and Lee, 1994]. Modeling wind directions is an early application of this frame-
work, as highlighted by [Breckling et al., 1989]. A recent literature review is presented
by [Ugwuowo and Udokang, 2022], along with an application involving hourly measure-
ments of wind direction taken over a period of time at the Energy research Centre of the
University of Nigeria, Nsukka.

The phrase circular functional data is less frequently encountered in the literature. It is
a framework deemed relevant for analyzing trajectory data that are angular-valued, often
acquired over an irregular time grid.

In the following, we present two approaches to reconstruct the angular components of
trajectories.

1.2.4.1 Piecewise geodesics

Recent methods to fit smoothing splines to time-indexed, noisy points on nonlinear man-
ifolds have been reviewed by [Su et al., 2012]. Unit spheres case are particularly studied.
The most basic approach to this problem is probably to construct geodesics between suc-
cessive points, and concatenate them to form a fitted curve.

Example 1.2.6: Interpolation with piecewise geodesics

Suppose that some time-indexed observations on S
1 are given

Ó
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(1.33)
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1.2 Interpolation and smoothing of trajectory data

If the standard Euclidean inner product on the tangent space of S1 is chosen as a Rie-
mannian metric, S1 is a Riemannian manifold (see [Srivastava and Klassen, 2016],
Example 3.2.4, p.43). Using Cartesian coordinates, if p and q are points on the unit
sphere (with p ”= ±q), then, for t œ [0, 1], the path

–(t) =
1

sin (◊)
(sin(◊(1 ≠ t))p + sin(◊t)q) (1.34)

gives a constant-speed parameterization of the unique shortest geodesic from p to
q, where ◊ is determined by

cos(◊) = Èp, qÍ . (1.35)

The proof is provided by [Srivastava and Klassen, 2016] (Example 3.4.4, p.45).
A simple interpolation procedure is to connect the given points with shortest
(geodesic) paths on the manifold. Geodesics between successive points are com-
puted, and concatenate to form a fitted curve, as illustrated in Figure 1.12.

Figure 1.12: A piecewise geodesic path [blue] obtained by connecting the data points
[red] via geodesics at the given time indices.

1.2.4.2 Application n°4: interpolation of an aircraft’s position over the Pacific
Ocean

Consider a specific flight from the IAGOS dataset (see Appendix A.4) that has occurred
over the Pacific Ocean. The discontinuity of longitude values must be addressed. A
straightforward approach to reconstructing the aircraft’s position is to use geodesics be-
tween successive points, concatenating them to form a fitted curve. An example of the
resulting curve is shown on Figure 1.13.

This approach is valid for the majority of flights we consider because positions are generally
measured without error. In the presence of measurement noise, another approach should
be used. The literature review conducted by [Su et al., 2012] demonstrates the broad
range of approaches available in manifold curve fitting and can serve as a starting point.
Implementing these methods can prove to be challenging.
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1.2 Interpolation and smoothing of trajectory data

Figure 1.13: Interpolation of positions over the Pacific Ocean. Original positions are
indicated by the red dots. The equator is represented by the pink line, while the longitude
cutoff line is in orange.
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1.2 Interpolation and smoothing of trajectory data

1.2.4.3 Non-parametric regression for circular responses and application to
smoothing wind directions

A non-parametric regression model for circular responses has been developed by
[Di Marzio et al., 2013] both for circular and real-line predictors. We focus on the model
involving a real-line predictor that allows smoothing angular components in the presence
of measurement noise.

Contrary to the regression model presented in Section 1.2.1.4, a random design regression is
considered, that is, design points are now viewed as independent and identically distributed
realizations of a random variable. Let us consider a [0, 1]◊T-valued random vector (∆, Φ),
where T denotes the unit circle, Φ the response and ∆ the predictor. We consider J pairs
denoted (∆1, Φ1), ..., (∆J , ΦJ) and the model

Φj = [x(∆j) + Áj ] (mod 2fi), j = 1, ..., J (1.36)

where random error angles Á1, ..., ÁJ have zero mean direction (the mean direction of the
resultant vector is null), finite concentration (the mean resultant length is finite) and are
independent of the design points. The function x : [0, 1] æ T is the regression function
and may interpreted as the mean of Φ conditional on ∆ = ”, that is,

x(”) = E(Φ | ∆ = ”). (1.37)

For ” œ [0, 1], let x1(”) © E(sin(Φ) | ∆ = ”) and x2(”) © E(cos(Φ) | ∆ = ”). The estimator
for the regression function x at ” œ [0, 1] is:

x̂(”) = atan2(ĝ1(”), ĝ2(”)) (1.38)

where ĝ1 and ĝ2 are respectively given by

ĝ1(”) =
1

J

Jÿ

j=1

sin(Φj)W (∆j ≠ ”) (1.39)

and

ĝ2(”) =
1

J

Jÿ

j=1

cos(Φj)W (∆j ≠ ”) (1.40)

with W being a local weight. The local linear weights are given by

W (∆j≠”) =
1

J
Kh(∆j≠”)

I
Jÿ

k=1

Kh(∆k ≠ ”)(∆k ≠ ”)2 ≠ (∆j ≠ ”)
Jÿ

k=1

Kh(∆k ≠ ”)(∆k ≠ ”)

J

(1.41)
where Kh denotes a linear kernel and h is the smoothing parameter. The properties of the
estimator are given by [Di Marzio et al., 2013]. Under some assumptions, the estimator is
asymptotically normal.

Code 1.2.1: Non-parametric regression for circular responses in NPCirc

Non-parametric regression for circular responses may be performed thanks to the
NPCirc package that has been developed by [Oliveira et al., 2014]. Regarding the
choice of Kh, function kern.reg.lin.circ(.) uses a Gaussian kernel N (0, h2).
The smoothing parameter h is chosen to minimize the following cross-validation
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1.2 Interpolation and smoothing of trajectory data

Figure 1.14: Smoothed wind direction values for a given flight.

function

CV(h) © ≠
Jÿ

j=1

cos {Φj ≠ x̂≠j(∆j)} . (1.42)

Let us consider a specific IAGOS flight (see Appendix A.4). A wind direction profile can
be reconstructed based on the non-parametric regression model described above. It is
shown in Figure 1.14.

77



1.3 Registration of trajectory data

Figure 1.15: Two simulated altitude profiles. The two flights (dashed red and solid green)
have different durations despite similar climb and descent phases [left]. A rescaling to the
unit time interval highlights clear phase variations [right].

1.3 Registration of trajectory data

In the FDA framework, two types of variability are commonly observed when analyzing
functions: phase and amplitude variations. The statistical literature offers several math-
ematical definitions for these variations. In [Marron et al., 2015], the concept of phase
variation arises from the differentiation between clock time (typically denoted as s, rep-
resenting the time we measure) and system time (typically denoted as t, representing a
theoretical time). By assumption, system time relates to clock time according to the
following functional relationship

s = “(t) (1.43)

where “ is a so-called time warping function (formally defined in the sequel). Phase
variations arise from the fact that, in the general case, clock time and system time do not
coincide.

In the study of phase and amplitude variations, much attention is given to the alignment
problem, also known as the separation of phase and amplitude, data registration, or the
correspondence problem. Loosely defined, curve registration is about transforming time
(more generally the argument of the function) to remove phase variations. The goal of a
registration process is to warp time (or parameter) axis in such a way that peaks and valleys
are better aligned. The need for alignment arises because phase variations are frequently
deemed undesirable from a statistical perspective, given that many statistical techniques,
when adapted to the functional domain, are tailored to capture solely amplitude variations.

The problems that come with ignoring phase variations are well-documented. For example,
[Marron et al., 2015] have highlighted that a statistical analysis as basic as averaging may
not offer an effective data summary when phase variations are present. The shifted betas
example developed by [Marron and Dryden, 2021] (Section 9.1, p.176) illustrates the lim-
itations of FPCA in the presence of phase variations, that is, the main mode of variations
are very poorly captured. These same limitations have been identified for observational
data, notably by [Nicol, 2013a], who demonstrated the importance of registration dealing
with the FPCA of aircraft trajectories.

Phase variations are inevitable when examining a sample of flights. This is primarily
because flights inherently experience significant operational variations. Even for the same
route, two flights can operate very differently due to factors such as air traffic control or
weather conditions. A schematic illustration of phase variations for two simulated altitude
profiles is provided in Figure 1.15. Accounting for phase variations in trajectory data is a
crucial step that must precede any statistical analysis.
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1.3 Registration of trajectory data

Main contributions of the section

We start by presenting two formulations of the registration problem, depending on
whether we are studying two trajectories or a set of trajectories. A review of several
popular registration methods is provided in Section 1.3.1.
Second, we propose to evaluate how well these methods correct phase variations in
the pairwise alignment of altitude profiles for two drone trajectories in Section 1.3.2.
Without constraints on the smoothness of the time warping function, DTW and
elastic registration show similar performance. In contrast, a continuous registration
approach requires selecting a degree of smoothing and a number of spline functions
through trial and error and has a lower performance. The same observation can be
made regarding the groupwise registration of multiple drone trajectories detailed in
Section 1.3.3.
Third, we compare the effectiveness of landmark registration and elastic registration
in correcting phase variations for some commercial aircraft flights over the United
States in Section 1.3.4. We emphasize that elastic registration yields a more in-
formative average altitude profile compared to landmark registration, as it enables
clear differentiation of plateaus during the approach phase. This application was
the subject of a conference paper presented at the 55èmes Journées de Statistique
de la SFdS in Bordeaux (refer to [Perrichon et al., 2024b]). In Section 1.3.5, we
illustrate that for the same dataset, elastic registration enables the construction of
an informative average fuel consumption profile in the presence of phase variations.
Finally, we highlight the use of the amplitude distance (defined within the context
of elastic registration) for clustering drone trajectory data in the presence of phase
variations in Section 1.3.6. This amplitude distance serves as the initial step in
constructing a geodesic distance for comparing the shapes of aircraft trajectories.
This distance may be used to compare how the shape of a given trajectory varies
from one dataset to another. This idea was the subject of a conference paper (refer
to [Perrichon et al., 2022]).

1.3.1 Introduction to two registration problems and review of popular
methods

1.3.1.1 Two registration problems

Two distinct yet similar registration problems arise depending on whether we are analyzing
two trajectories or a set of trajectories. Both can be presented using the concise and
modern approach proposed by [Srivastava and Klassen, 2016].

Definition 1.3.1: The pairwise alignment problem (generic formulation)

Following [Srivastava and Klassen, 2016] (Section 4.4, p.85), given two functions
f1 and f2 in F µ L

2([0, 1],R), their pairwise alignment is defined as the problem
of finding a warping function “ such that a certain energy term E[f1, f2 ¶ “] is
minimized. The composition f2 ¶ “ denotes the re-parameterization or a domain
warping of f2 using “. That is, one should solve for

“ú = argmin
“œΓ[0,1]

E [f1, f2 ¶ “] (1.44)
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1.3 Registration of trajectory data

where Γ[0,1] is a set of warping functions. For any t œ [0, 1], the value f1(t) is said
to be registered to f2(“ú(t)). Similarly, f2(t) is said to be registered to f1(“ú≠1(t)).

Example 1.3.1: A simulated registration

Following [Ramsay and Silverman, 2005] (Section 7.5, p.128), we consider two func-
tions, f1 and f2 respectively defined on [0, 1] as

f1(t) = sin(4fit0.8) (1.45)

and
f2(t) = sin(4fit). (1.46)

The warping function “theo, defined as

“theo(t) = t0.8 (1.47)

may be used to register the two functions as illustrated on Figure 1.16

Figure 1.16: Two functions with phase variations but no differences in amplitude
[top], the registration of f1 to f2 ¶ “theo [middle], the registration of f2 to f1 ¶ “≠1

theo

where ’t œ [0, 1], “≠1
theo

(t) = t1.25.
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1.3 Registration of trajectory data

Definition 1.3.2: The groupwise alignment problem (generic formulation)

Given a set of functions f1, ..., fn in F µ L
2([0, 1],R), the groupwise alignment

problem is to find a set of warping functions “1, ..., “n in Γ[0,1] such that, for any
t œ [0, 1], f1(“1(t)), ..., fn(“n(t)) are said to be registered with each other.
In the so-called template-based registration, a template function is constructed and
each given function is aligned to this template using the pairwise solution.

For both problems, several groups of warping functions are discussed by
[Marron et al., 2015]. One of the most general classes of warping functions is the set
of boundary-preserving diffeomorphisms of [0, 1] (refer to [Srivastava and Klassen, 2016],
Section 4.3.3, p.83, for a definition).

The following sections outline the primary methods frequently employed in the literature
for addressing the two registration problems.

1.3.1.2 Dynamic Time Warping (DTW)

An early registration approach, initially used for discrete sequences of phonemes, is
DTW, first introduced by [Velichko and Zagoruyko, 1970] and [Sakoe and Chiba, 1978].
DTW has been used for clustering and classification in many fields ranging from electro-
cardiogram analysis to biometrics (refer to [Giorgino, 2009]) and is well-documented in
the engineering literature, for instance by [Rabiner and Juang, 1993] (Chapter 4).

In the original discrete setting, the computed warping function typically forms a param-
eterized curve that is piecewise-linear and often non-invertible. The lack of smoothness
in the warping function may pose a challenge for certain applications, as highlighted by
[Marron et al., 2015], and generally justifies the adoption of alternative alignment meth-
ods.

In the statistical literature, DTW has been employed for aligning functions. Notably,
[Wang and Gasser, 1997] proposed a variational problem in continuous time to achieve a
smooth warping function (“ œ C1).

Regarding the groupwise alignment problem, [Wang and Gasser, 1997] highlighted that
the choice of the reference curve involves a trade-off between accuracy and computational
effort. For samples of curves, a global variational problem has also been proposed by
[Gasser and Wang, 1999].

1.3.1.3 Landmark registration

Landmark registration is sometimes called marker registration or feature registration in
the FDA literature. It is based on the structural characteristics of functions, say, ex-
trema or inflexion points. More precisely, the timings of these structural characteristics
must be determined, a procedure described in details by [Kneip and Gasser, 1992] and
[Gasser and Kneip, 1995]. An automatic estimation of landmarks may benefit from the
scale-space approach proposed by [Bigot, 2005] and [Bigot, 2006].

For each curve i, landmark locations are denoted ti,f (f = 0, ..., F + 1). Besides the
landmarks specific to each trajectory, F + 2 reference landmark timings are required,
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1.3 Registration of trajectory data

denoted t0,f (f = 0, ..., F +1). Typically, the mean timings are selected for these reference
landmarks. The time warping function “i that is associated to each curve i must verify

• “i(t0,f ) = ti,f , for f = 0, ..., F + 1

• “i is strictly increasing

To compute it, a suitable interpolation procedure may be chosen. Depending on the
required level of smoothness, a mere linear interpolation for time values between the
points (t0,f , ti,f ) may suffice or not.

Landmark registration has been applied to determine average growth curves by
[Gasser et al., 1990] and [Gasser et al., 1991] but also to understand of aging in the
brain (refer to [Maldonado et al., 2002]).

The challenge with landmarks is that they are not always visible. Furthermore, the
selection of a particular landmark can itself be a topic of debate. More critically,
[Marron et al., 2015] emphasized that landmark registration provides only discrete evi-
dence for an inherently continuous warping function. Therefore, continuous registration
is often preferred over landmark registration.

1.3.1.4 Continuous registration

Continuous registration has been introduced by [Ramsay and Li, 1998] based on the
smooth monotone transformation introduced by [Ramsay, 1998].

Definition 1.3.3: A continuous formulation of the pairwise alignment problem

The continuous formulation of the pairwise alignment problem proposed by
[Ramsay and Li, 1998] is given by

“ú = argmin
“œF

ˆ 1

0
[f1(t) ≠ f2(“(t))]2 dt + ⁄

ˆ 1

0
w2(t)dt. (1.48)

where F represents the set of warping functions with an integrable second deriva-
tive, strict monotonicity, and boundary preservation. Larger values of smoothing
parameter ⁄ shrink the relative curvature w = D2“

D“
to 0, and therefore shrink “ to

the identity. Since the relative curvature measure w is scale free, appropriate values
of ⁄ tend not to vary much from one application to another.

Such a registration based on the L
2 norm has well-identified shortcomings and

proves disappointing if a flexible class of warping functions is considered (refer to
[Marron et al., 2015]). A famous limitation of L2 norm is the pinching effect: in matching
two functions, the L

2 norm may squeeze or pinch a large part of a function to make the
cost function arbitrarily close to zero.

Another limitation is that L2 norm does not verify the invariance property and the inverse
symmetry (refer to [Srivastava and Klassen, 2016], Section 4.5, p.88 for definitions). As
explained by [Marron et al., 2015], the invariance property guarantees that it is not possi-
ble to obtain a fictitious increment of the similarity between two functional data by simply
warping them simultaneously with the same warping function. Its role has been clarified in
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the context of different types of warpings in different papers such as [Sangalli et al., 2009],
[Sangalli et al., 2010], [Vantini, 2012], and [Srivastava et al., 2011b].

The limitations of the L
2 norm are overcome with the elastic registration, discussed in the

following section.

1.3.1.5 Elastic registration

The approach of [Srivastava et al., 2011b] is based on differential geometry and provides
a natural energy term for the alignment problem. It relies on the Square-Root Velocity
Function (SRVF) that has good properties departing from absolutely continuous functions.

Definition 1.3.4: Square-Root Velocity Function (SRVF)

Based on [Srivastava et al., 2011b], let f be absolutely continuous on [0, 1]. A first
(continuous) mapping Q : R æ R is defined according to

Q(x) ©
I xÔ

|x|
if |x| ”= 0

0 if |x| = 0
(1.49)

The Square-Root Velocity Function (SRVF) is defined as q : [0, 1] æ R according
to

q(t) © Q(ḟ(t)) (1.50)

and includes functions whose parameterization can become singular in the analysis.

[Srivastava et al., 2011b] have shown that if a function f is absolutely continuous, then its
resulting SRVF is square integrable. For every q œ L

2 there exists a function f (unique up
to a constant) such that the given q is the SRVF of that f . The representation f … (f(0), q)
is invertible.

The main motivation for introducing the SRVF is that under its representation, the Fisher-
Rao Riemannian metric, which has many fundamental advantages for the registration
problem, becomes the standard L

2 metric. It is highly beneficial since, by definition, the
Fisher-Rao metric is a smoothly varying inner product defined on the tangent space that
has a very complex expression.

Definition 1.3.5: Elastic pairwise alignment problem

The elastic formulation of the pairwise alignment problem is given by

“ú = argmin
“œΓ[0,1]

...q1 ≠ (q2 ¶ “)


“̇
... . (1.51)

It can be shown that this choice satisfies the invariance property and inverse symmetry.
Regarding the elastic pairwise alignment problem, although the precise optimal solution
may not always exist, we can typically approximate it using the dynamic programming
algorithm (see [Srivastava and Klassen, 2016], Algorithm 3, p.100).

The pairwise alignment problem and the groupwise alignment problem for curves in R
n are

essentially extensions of the functional versions. The SRVF approach for parameterized
curves has been developed by [Srivastava et al., 2011a].
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Figure 1.17: Two altitude profiles corresponding to two drone trajectories.

1.3.2 Application n°1: comparison of three alignment methods for a
pairwise registration of drone trajectories

Let us consider the drone trajectory dataset (Appendix A.3). The goal of this application
is to compare some registration methods to align two altitude profiles corresponding to
trajectories 4 and 5. Both altitude profiles are represented on Figure 1.17 (the presence
of phase variations is noticeable). For this application, raw data have been interpolated
using linear interpolation and resampled on a regular grid of 500 points over the interval
[0, 1].

The goal is to ascertain which of the three registration procedures listed below better
corrects phase variations:

• DTW based on the Euclidean distance with a step pattern shown on Figure 1.18 (the
step pattern ensures that “ is invertible).

Figure 1.18: Chosen step pattern. According to the terminology of
[Rabiner and Juang, 1993] (Chapter 4) the step pattern has a local continuity con-
straint of type III and slope weighting of type ‘a’ (no smoothing).

• Continuous registration with ⁄ = 8≠4 (chosen through trial and error). The function
w is expressed as a linear combination of 200 cubic B-splines basis functions (knots are
equally spaced).
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Figure 1.19: Several estimated warping functions. Note that “ú
DTW

refers to the optimal
DTW function, “ú

L
2,⁄

refers to the optimal continuous warping with ⁄ = 8≠4 and “ú
SRVF

to
the optimal elastic warping.

• Elastic registration.

The estimated warping functions are depicted in Figure 1.19, and the registered altitude
profiles are shown in Figure 1.20.

Visually, it is difficult to determine which warping function is most suitable for correcting
phase variations. The aligned altitude profiles provide a clearer idea of the performance of
each method. Without imposing constraints on the smoothness of the warping function,
it appears that DTW and elastic alignment exhibit similar performances to correct phase
variations. Continuous alignment, on the other hand, shows less favorable performance
and requires determining the degree of smoothing and the number of spline functions to
use. These choices are made through trial and error and appear difficult to justify.

1.3.3 Application n°2: groupwise registration of drone trajectories

Let us consider the drone trajectory dataset (Appendix A.3). The goal of this application is
to compare some registration methods for five altitude profiles corresponding to trajectories
1, 4, 5, 7. Raw data is interpolated using linear interpolation and resampled on a regular
grid of 500 points over the interval [0, 1].

As expected, the cross-sectional mean depicted in Figure 1.21 is not informative due to the
presence of phase variations. It typically fails to capture the characteristic drop in altitude
values associated with the delivery of the package on the building’s roof. We compare the
ability of the three alignment methods from Section 1.3.2 to correct phase variations.
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Figure 1.20: Registered altitude profiles

Figure 1.21: Five altitude profiles for drone trajectories. The cross-sectional mean is
indicated by the dashed line.

The altitude profiles registered using DTW are displayed in Figure 1.22 and can be com-
pared with those registered using elastic registration, shown in Figure 1.23.

The results obtained are again very comparable.

1.3.4 Application n°3: landmark and elastic registration of aircraft tra-
jectories

This application was the subject of a conference paper presented at the 55èmes Journées de
Statistique de la SFdS 2024 in Bordeaux (refer to [Perrichon et al., 2024b]). We consider
a sample of n = 5 flights over the United States made available by the NASA (refer to
Appendix A.1 for a data description). Time is scaled such that the first point of each
trajectory is associated with t = 0 and the last point with t = 1. It is assumed that flights
are observed in their entirety, from takeoff to landing. The high sampling rate enables
individual smoothing of each trajectory (a mere linear interpolation of the component is
performed when needed).
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1.3 Registration of trajectory data

Figure 1.22: Registered altitude profiles based on DTW. The structural mean refers to
the mean amplitude profile.

Figure 1.23: Registered altitude profiles based on the SRVF representation. The structural
mean refers to the mean amplitude profile.
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1.3 Registration of trajectory data

Figure 1.24: Altitude profiles and empirical average for raw data [top left], identification
of landmarks, their timings, and a template based on the average [top right], calcula-
tion of time warping functions using linear interpolation [middle left], registered altitude
profiles and the obtained registered empirical average when warping functions have been
constructed with linear interpolation [middle right], time warping functions using mono-
tone cubic Hermite spline interpolation [bottom left], registered altitude profiles and the
obtained registered empirical average when warping functions have been constructed with
monotone cubic Hermite spline interpolation [bottom right].

Landmark registration of aircraft trajectories

In the case of commercial aviation, the most natural landmarks are obviously associated
with flight phases. Two cases arise in aviation depending on whether the flight phases are
already labeled in the raw data or not.

When flight phases are already identified in the raw data, the structural features natu-
rally correspond to the beginning (or end) of each flight phase. Their timings are explicitly
available, making this situation an ideal scenario. In practice, it is often the case for Flight
Data Recorder (FDR) data because flight phases are automatically determined onboard
based on the monitoring and recording of many flight parameters. These are the data we
use. The chosen landmarks are the takeoff, the last point of the climb phase, the first and
last point of the approach. Figure 1.24 illustrates the impact of landmark registration on
the determination of an average altitude profile. Note that the use of monotone cubic Her-
mite spline interpolation instead of linear interpolation for constructing the time warping
functions seems that have a little effect on the obtained average altitude profile. In either
case, the pronounced plateaus of the approach phase observed in trajectories n°1 and n°4
are not reflected in the average altitude profile.
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1.3 Registration of trajectory data

Figure 1.25: Altitude profile for a given trajectory. It is evident that the longitude values
do not exhibit any inflection points associated with a transition from one flight phase to
another.

In the vast majority of cases, flight phases are not labeled in raw data. Several approaches
are thus possible. First, we can select features based on peaks, points of inflection, and
threshold crossings of one or more components of the trajectory and/or their derivatives.
We then hope to implicitly retrieve the different flight phases and apply the registration
steps as usual. A second approach consists of explicitly identifying flight phases using algo-
rithms present in the literature of aviation transportation. Note that the HMM approach
proposed in Chapter 3 may be highly suitable.

In all cases, landmark registration is only discrete evidence concerning intrinsically contin-
uous warping functions. It ignores what happens in between landmarks, which is why it
is customary to adopt a continuous fitting criterion for registration. In our case, it would
be desirable to identify certain prominent plateaus.

Elastic registration of aircraft trajectories

To execute elastic alignment, it entails selecting a component of the trajectory character-
ized by distinct inflections signifying the transition between flight phases. As the SRVF
framework may be used with curves, several component may also be selected. Unlike the
longitude profile, the altitude profile happens to exhibit the appropriate characteristics as
the succession of flight phases is delineated by distinct breaks, as illustrated on Figure 1.25.

Time warping functions are obtained using the Dynamic Programming (DP) algorithm
presented by [Srivastava and Klassen, 2016] (Appendix B, p.435) and implemented by
[Tucker, 2024]. The results are shown in Figure 1.26. The average altitude profile now
reveals the plateaus of the approach phase. Interestingly, once elastic registration is per-
formed, landmarks almost perfectly coincide with the template chosen in the landmark
registration procedure as can be seen on Figure 1.27.

For this dataset, elastic registration provides a more detailed average altitude profile com-
pared to the landmark-based approach.

1.3.5 Application n°4: a mean fuel flow profile in the presence of phase
variations.

As explained by [Chati and Balakrishnan, 2016], the fuel flow rate of an aircraft engine
is a critical indicator of engine performance. Accurate modeling of this rate is crucial
for evaluating engine performance and estimating aircraft emissions, as emissions directly
result from fuel consumption. Understanding fuel burn is also key for estimating the direct
operating costs for an airline.
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1.3 Registration of trajectory data

Figure 1.26: Time warping functions [left] and aligned trajectories [right] when using
elastic registration.

Figure 1.27: Once elastic alignment is performed, the landmarks almost perfectly coincide
with the template chosen in the landmark alignment procedure.
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1.3 Registration of trajectory data

Figure 1.28: Cross-sectional mean for the fuel flow based on raw data [left], structural
mean for the fuel flow after a SRVF registration procedure based on the altitude [middle],
structural mean for the fuel flow after a SRVF registration procedure based on the altitude
and the altitude rate [right].

Modeling fuel consumption can be based on flight manuals, software, or ground tests.
One widely used performance model is BADA (Base of Aircraft Data). Developed and
maintained by Eurocontrol since the early 1990s, BADA is a collaboration with aircraft
manufacturers and operators.

Data-driven models for engine fuel flow rate are also found in the literature.
[Khadilkar and Balakrishnan, 2012] proposed an estimation of fuel consumption
for taxiing aircraft based on FDR data. For a comprehensive review, refer to
[Huang and Cheng, 2022].

Taking into account phase variations is crucial for determining an average fuel consumption
profile and for conducting more advanced statistical modeling. Figure 1.28 shows the cross-
sectional mean of the fuel flow for the sample of NASA flights (Appendix A.1). Operational
variabilities make this average indistinct and uninformative. In contrast, the structural
mean for the fuel flow after an SRVF registration procedure based on the altitude profile
is more informative and allows distinguishing the characteristic peak during takeoff and
the consumption plateau associated with the en-route phase.

It seems that choosing the altitude rate rather than altitude has no impact on the fuel
flow profile obtained.

1.3.6 The amplitude distance and its use for the clustering of drone
trajectories in the presence of phase variations

The framework of elastic alignment is theoretically more intricate than other alignment
methods. However, it offers an opportunity to introduce new concepts that have signif-
icant operational implications. This is exemplified by the amplitude distance defined by
[Srivastava et al., 2011b], which facilitates trajectory clustering in the presence of phase
variations, as detailed in the following application.

The amplitude distance

In the geometric approach of [Srivastava et al., 2011b], amplitudes of functions are
defined as equivalence classes that are based on membership of orbits (refer to
[Srivastava and Klassen, 2016], Definition 3.13, p.54). Based on the notations of
[Srivastava and Klassen, 2016] (Definition 4.9, p.107) a proper distance on the space of
amplitudes may be defined as follows.
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1.3 Registration of trajectory data

Definition 1.3.6: Amplitude distance

For f1, f2 œ F and their corresponding SRVF q1 and q2, the amplitude distance da

is defined as

da([q1], [q2]) = inf
“1,“2œÂΓ[0,1]

1...(q1 ¶ “1)


“̇1 ≠ (q2 ¶ “2)


“̇2

...
2

. (1.52)

where [q1] represents the orbit of q1 and ÂΓ[0,1] denotes a convenient set of warping
functions. Equivalently,

da([q1], [q2]) = inf
“œÂΓ[0,1]

1...q1 ≠ (q2 ¶ “)


“̇
...
2

. (1.53)

The distance does not depend on the representers f1 and f2.

This distance plays a crucial role in defining the Karcher mean and can also be used for
performing trajectory clustering in the presence of phase variations, as shown in the sequel.

Clustering of drone trajectories

Let us consider the drone trajectory dataset (Appendix A.3). Looking at the altitude
profiles of the drone trajectories (see Figure A.6), it is clear that some flights deviate from
the nominal trajectory from the perspective of amplitude variations. For example, the
third flight is quite unique: the recording of parameters is delayed for some reason, so the
drone is already at a high altitude by the time parameter recording starts. In another
manner, the trajectory 2 seems highly abnormal.

For this application, our focus is on implementing a clustering procedure to automate the
detection of similar trajectories and to identify abnormal ones.

Let us consider the quotient space A © L
2/ÂΓ[0,1] and the amplitude distance. Ideally, it

may exist dense areas in A separated from each other by sparser areas. Dense areas may
have any shape. If a cluster is conceived as a dense area of orbits in A surrounded by low
density areas, density-based clustering algorithms may be used. A modern presentation
of density-based clustering is proposed by [Aggarwal and Reddy, 2018] (Chapter 5, p.111)
or by [Everitt et al., 2011] (Section 8.2, p.216). A famous algorithm that can be used is
DBSCAN (Density-Based Spatial Clustering of Applications with Noise), introduced by
[Ester et al., 1996].

The DBSCAN algorithm counts with many variations such as GDBSCAN (that extends
the neighborhood definition and the allows for considering nonspatial attributes) pro-
posed by [Sander et al., 1998] or PDBSCAN (a parallel version of DBSCAN) developed
by [Xu et al., 1999]. Many more density-based clustering algorithms are presented by
[Aggarwal and Reddy, 2018] (Chapter 5, p.111).

The success of DBSCAN depends on the selection of two parameters, named Á and MinPts.
A simple but effective heuristic to determine them is proposed by [Ester et al., 1996].

Based on this heuristic, we select MinPts = 4 and Á = 0.91 resulting in one cluster of
trajectories as depicted in Figure 1.29. The outcomes are satisfactory: as anticipated,
trajectories 2, 3, and 6 are classified as noise. Within the identified cluster, all trajectories
exhibit the same amplitude.
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1.3 Registration of trajectory data

Figure 1.29: Result of the DBSCAN to identify similar drone trajectory patterns in the
presence of phase variation and noise.

1.3.7 The geodesic distance and its application in measuring shape vari-
ations between aircraft trajectories

In [Perrichon et al., 2022], we used the geodesic distance introduced by [Srivastava et al., 2011a]
to quantify how the shape of a given trajectory changes from its Eurocontrol version (re-
fer to Appendix A.2) to its ADS-B version. A sample of flights that departed from
Toulouse–Blagnac (LFBO) and landed at Paris–Orly (LFPO) in 2019 is considered.

The geodesic distance

In the same spirit as Kendall’s formulation (see Section 1.1.3), [Srivastava et al., 2011a]
proposed a convenient shape representation of curves in R

n that is based on the SRVF.

In this framework, the study of a curve’s shape involves the removal of translation, scale,
rotation, and parametrization effects. Translation effects are naturally removes with the
SRVF which is based on the curve derivative. To account for scale effects, all curves may
be rescaled to be of unit length. The so-called pre-shape space is denoted

C ©
I

q : [0, 1] æ R
n,

ˆ 1

0
|q(t)|2 dt = 1

J
. (1.54)

Rotation and parametrization effects should also be considered. Individual shapes are
defined the orbits

[q] © closure
Ó

O


“̇(q ¶ “), “ œ Γ[0,1], O œ SO(n)
Ô

. (1.55)

The set of all such orbits is defined as the shape space S. The distance between two orbits
[q1] and [q2] is given by:

dS ([q1], [q2]) = inf
(“◊O)œΓ[0,1]◊SO(n)

dC (q1,


“̇O(q2 ¶ “))

with dC (a1, a2) = cos≠1
1
´ 1

0 Èa1(t), a2(t)Í dt
2
, where È., .Í is the usual inner product be-

tween vectors in R
n.
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1.3 Registration of trajectory data

Figure 1.30: Histogram of the geodesic distances between Eurocontrol and ADS-B ver-
sions of 1,746 flights departing from Toulouse–Blagnac (LFBO) and landing at Paris–Orly
(LFPO) in 2019.

Results

The histogram in Figure 1.30 clearly shows two groups of flights. When the geodesic
distance is null, no bending/stretching is needed to match trajectories once location, scale,
rotational and re-parameterization effects are taken into account. In this case, Eurocontrol
and OpenSky versions are carrying the same shape information. Yet this is not the case
when the geodesic distance is not null.

This type of comparison could allow operators to assess whether two trajectory datasets
provide the same information in a geometric sense. For these two datasets, it is clear that
the geometric information provided is not the same.

Moving forward, there are several promising avenues for future research. One of these
is to expand this type of analysis to incomplete flights, which refers to flights that
are only partially observed. The elastic partial matching approach, as introduced by
[Bryner and Srivastava, 2022], could serve as an initial step in exploring this direction.
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Chapter 2

A geostatistical framework to
interpolate aviation data
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“Un grand nombre de phénomènes naturels se présentent à l’homme sous forme
régionalisée : ils se déploient, ou se distribuent dans l’espace. De tels phénomènes
peuvent se caractériser, localement, par certaines grandeurs qui varient dans
l’espace, et constituent, par conséquent, des fonctions numériques (ordinaires). Ce
sont de telles fonctions numériques que nous appelons des variables régionalisées : il
s’agit là d’un terme neutre, purement descriptif, antérieur, en particulier à toute
interprétation probabiliste [...].
Le plus souvent, les variables régionalisées présentent un haut degré d’irrégularité.
Elles ne sont généralement pas dérivables, ni même continues [...]. Il y a dans le
comportement des variables régionalisées un aspect aléatoire, qui suggère presque
irrésistiblement le recours à une interprétation probabiliste.
Cet aspect aléatoire permet de comprendre l’insuffisance des méthodes
traditionnelles d’estimation des gisements miniers [...]. De même encore les
méthodes d’interpolation fonctionnelle surestiment, en général, de façon
inadmissible le degré de continuité du phénomène représenté. Par quatorze points
expérimentaux, on peut toujours faire passer un polynôme du treizième degré.
Mais, en général, ce polynôme ne reflète pas le moins du monde l’évolution réelle du
phénomène entre les points expérimentaux.
Et cependant, sous la complication et l’irrégularité extrême que présente une
régionalisation dans sa variation spatiale se dissimule, en général, la structure d’un
phénomène naturel. C’est de cette structure spatiale qu’à leur tour ne peuvent pas
rendre compte les méthodes purement statistiques. Quand on classe les échantillons
sous forme d’histogramme, on fait, par là même, abstraction de l’endroit où ils ont
été prélevés : on détruit les structures spatiales, qui constituent justement l’aspect
le plus important du phénomène [...]. Il fallait donc adopter un mode de
formulation capable de prendre en charge ces deux aspects contradictoires, aléatoire
et structuré, permettant également de poser et de résoudre des problèmes
essentiellement pratiques, comme celui de l’estimation d’une variable régionalisée à
partir d’un échantillonnage fragmentaire.
Ce langage adéquat, probabiliste et capable d’exprimer les structures spatiales, c’est
évidemment la théorie des fonctions aléatoires qui va le fournir.”

Georges Matheron, “Présentation des variables régionalisées”, Journal de la société
statistique de Paris, tome 107 (1966), p. 263-275.

In the literature on sustainable aviation, it is common to employ diverse datasets, in-
cluding those related to traffic, noise, and meteorology. Spatial interpolation is frequently
employed to accommodate changes in spatial resolution, with multiple methods available
for this purpose. This chapter offers a comprehensive comparison of spatial interpolation
techniques for aviation data through two case studies: interpolating noise measurements
around Chicago O’Hare International Airport (two-dimensional interpolation) and inter-
polating weather values across multiple pressure layers (three-dimensional interpolation).
The objective is to determine the most appropriate interpolation method for each case
study and assess the relevance of geostatistical models for these applications. The main
contributions of this chapter are summarized below.

Main contributions of the chapter

• The first case study involves interpolating noise values around Chicago O’Hare
International Airport to obtain a noise map. We show that the usual determin-
istic interpolation methods do not yield satisfactory results, partly due to the
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complexity of noise dispersion around the airport. Instead, we propose a krig-
ing model with a well-chosen external drift. The obtained noise map is much
more relevant. For the sake of completeness, we compare this result with the
noise map derived from a sophisticated deterministic approach developed by
[Sangalli, 2021] named SR-PDE. While this advanced deterministic approach is
interesting in theory, the lack of an acoustic model that accurately describes the
physics of noise dispersion around the airport prevents us from achieving good
interpolation results. The kriging model we develop hereafter provides a trade-
off between complexity and quality of results that is useful from the practical
point of view.

• The second case study presents significant challenges, requiring the interpolation
of weather data across multiple pressure layers over vast distances on Earth. To
address this interpolation problem, trilinear interpolation is widely preferred in
aviation literature. We propose a geostatistical model that achieves comparable
results and provides a confidence interval for interpolated temperature values.
Importantly, we identify at least two main difficulties in building a geostatistical
model for this case study. The first challenge arises from the diverse global dis-
tribution of meteorological data that needs to be interpolated, involving several
hundred datasets. To address this, we propose projecting each dataset using an
oblique azimuthal equidistant map projection, facilitating accurate distance cal-
culations for estimating the semivariogram. The second challenge lies in the intri-
cate spatial dependence of meteorological data. To navigate this complexity, we
utilize a moving neighborhood approach for kriging. Within each neighborhood,
a drift is taken into account and a second-order quasi-stationarity assumption is
made on the stochastic part. Vertical anisotropy is considered. This second case
study was presented at the 37th International Workshop on Statistical Mod-
elling in Dortmund (see [Perrichon et al., 2023]) and at the XVIe Journées de
Géostatistique in Fontainebleau (see [Perrichon, 2023]).

The chapter is structured as follows. First, contextual elements for the two case studies
are provided in Section 2.1. As explained in Section 2.1.3, these elements motivate a
comparison of existing interpolation methods.

The two case studies require introducing two theoretical frameworks: spatial interpolation
in the Euclidean case and spatial interpolation for data located on the sphere. That is
the focus of Section 2.2 and Section 2.3. Some references and notations for spatial inter-
polation in the Euclidean case are briefly outlined in Section 2.2.1 (deterministic spatial
interpolation on a grid), Section 2.2.2 (deterministic spatial interpolation for irregularly
spaced data points), and Section 2.2.3 (geostatistical framework). Two main approaches
to deal with spatial interpolation on the sphere are described in Section 2.3.

The implementation of our geostatistical model for the noise case study, along with the
comparison of the noise map obtained using other interpolation methods, is presented in
Section 2.4. Finally, the results for the weather case study are detailed in Section 2.5.
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2.1 Contextual background for the two case studies

2.1 Contextual background for the two case studies

The swift expansion of worldwide aviation activities has rendered their adverse ecological
effects a global apprehension. Notably, the first report from the Intergovernmental Panel
on Climate Change (IPCC) on a specific industrial subsector is the one on aviation and
its consequences on the atmosphere that was written by [Penner et al., 1999]. In addition
to CO2 emissions, [Lee et al., 2009] have shown that non-CO2 effects are substantial yet
generally challenging to estimate. More specifically, [Lee et al., 2021] have highlighted
that the largest positive (warming) climate forcings adding to that of CO2 are those
from contrail cirrus and from NOx-driven changes in the chemical composition of the
atmosphere. However, the environmental impact of aviation is not limited to the climate.
Namely, the noise produced by aircraft during their operation represents an ecological,
economic, and social problem which is increasingly documented in the literature as shown
by [Franssen, 2004], [Cohen and Coughlin, 2008], [Salvi, 2008], [Zheng et al., 2020].

In particular, many examples of spatial interpolation problems can be found in the sci-
entific literature on contrails and noise pollution, two topics for which it is necessary to
provide some contextual background.

2.1.1 Contrails

As put by [Kärcher, 2018], condensation trails (contrails) are “line-shaped ice clouds gen-
erated by jet aircraft cruising in the upper troposphere at 8-13 km altitude. Depending
on surrounding atmospheric conditions, contrails can be short- or long-lived”. The theory
of contrail formation is now well documented. According to [Paoli and Shariff, 2016], the
formation stage of contrails lasts for about 10 minutes. The thermodynamic mixing model
of [Schumann, 1996] has shown that temperatures typically below 233 K (¥ ≠40 ¶C) pro-
vides a threshold below which either short-lived or long-lived contrails appear behind jet
aircraft. Contrail occurrence is predicted with confidence if “ambient pressure, relative
humidity, water vapour, heat emissions, and propulsive characteristics of aircraft engines
are known”. Aircraft typically form persistent contrails when flying through pockets of air
that are cold and have relative humidity greater than 100% with respect to ice, so-called
ice supersaturated regions. A presentation of such regions is to be found in the work of
[Gierens et al., 2012].

To assess the actual environmental impact of contrail, contrail detection and contrail track-
ing are key. A method proposed by [Vazquez-Navarro et al., 2010] follows the evolution of
contrails from their linear stage until they are indistinguishable from natural cirrus clouds.
In a recent work, [Chevallier et al., 2023] have introduced a procedure to detect contrails
and identify the aircraft that generated them. To account for contrail lifetimes that are un-
derestimated due to the limitation of satellite data, [Gierens and Vazquez-Navarro, 2018]
have complemented some previous works with a Weibull distribution model that describes
the survival rate of contrails.

In many analyses related to contrails, there is often a necessity to interpolate weather val-
ues. For example, [Duda et al., 2004] have used linear interpolation to obtain weather data
over the Great Lakes at a finer spatial and temporal resolution whereas [Schumann, 2012]
has relied on linear interpolation to input ambient meteorological conditions in its Con-
trail Cirrus Prediction Tool (CoCiP). More recently, linear interpolation has been used by
[Gierens et al., 2020] to compare ERA-5 and MOZAIC data. An analogous approach is
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2.1 Contextual background for the two case studies

employed by [Wilhelm et al., 2021, Wilhelm et al., 2022]. Aviation contrail climate effects
in the North Atlantic have been assessed by [Teoh et al., 2022]. Linear interpolation is
utilized to associate each waypoint of a flight to meteorological data.

In the majority of these studies, discussion on the relevance of linear interpolation is
often limited to the vertical dimension. Notably, [Gierens et al., 2020] have argued that
transforming pressure to perform the interpolation is not of key importance for the final
value of the Equitable Threat Score (ETS), a measure introduced to quantify the degree
of agreement between in situ and reanalysis data.

2.1.2 Noise

As put by [Sabatini and Gardi, 2023], the development and improvement of airport fa-
cilities, including their design and redesign, depend on the calculation and measurement
of aircraft noise. There is actually a multitude of aircraft noise prediction models, each
designed for specific purposes. Some authors such as [Filippone, 2014] have suggested dis-
tinguishing between theoretical methods that rely on a physical model of noise production
and propagation and best practice methods that rely almost exclusively on measurement
databases (fly-over or other measurements), which are augmented with other sub-models.
Recently, the use of ADS-B data for the computation of noise around airports has been
a research topic of great interest as shown by [Pretto et al., 2022]. As airports recognize
the importance of sharing noise-related data, [Gasco et al., 2017] have argued that aircraft
noise predictions are becoming more accessible. The main media for this communication
are noise maps, periodic reports, and systems for visualizing data from Noise Measurement
Terminals (NMTs). As explained by [Genescà et al., 2013], “the placement of these NMTs
is chosen so that the measured noise levels are representative of the acoustic influence of
the airport on the population”. Measured and predicted aircraft noise are regularly com-
pared, for instance by [Simons et al., 2022], [Bendarkar et al., 2022], [Huynh et al., 2022],
[Jäger et al., 2021], [Arnone et al., 2023]. For each NMT, the difference between mod-
eled and measured values are usually computed (local agreement). Yet, a spatial (global)
agreement is more complicated to get since, obviously, noise measurements are taken at
a limited number of specific locations. In this regard, having noise maps based solely on
data collected by the NMTs would be valuable in order to visualize the empirical spa-
tial distribution of noise measurements. These interpolated values can then be compared
with the output of a more comprehensive acoustic model. Moreover, acoustic research
frequently employs geostatistical methods for noise mapping in urban areas. Typical ex-
amples are the works of [Aumond et al., 2018] focusing on the XIIIth district of Paris and
[Tsai et al., 2009] focusing on Taiwan. Several interpolation methods have been compared
by [Harman et al., 2016] and [Can et al., 2014].

2.1.3 The need to compare interpolation methods

While the contrail literature emphasizes the simplicity and good performance of linear
interpolation, the scientific literature on noise pollution shows a preference for statisti-
cal methods. Linear interpolation is indeed simple to implement and easily generalizes
to multiple dimensions. The quality of predictions is particularly good if the grid be-
ing interpolated is already of high resolution, which is often the case with reanalysis
data used in the literature on contrails. Yet, as early pinpointed by [Myers, 1994], de-
terministic interpolation and more specifically linear interpolation, is only one option
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among many others. In environmental sciences, a great number of other methods have
recently been reviewed by [Li and Heap, 2014]. Most of them are stochastic, as explained
by [Webster and Oliver, 2007]. One reason is the ability of the statistical framework to
provide accurate predictions, to quantify uncertainties and most of all to enable the use
of covariates. Hence, several questions arise.

What should be expected from the geostatistical approach for interpolating meteorological
data in contrail studies? Why is the geostatistical approach particularly interesting to
interpolate noise values in the vicinity of airports? What similarities exist between these
two applications and when should the geostatistical framework be chosen?

We address these questions through two specific case studies: the interpolation of noise
measurements around Chicago O’Hare International Airport and the interpolation of me-
teorological data typically used in contrail studies.

2.2 Mathematical framework for spatial interpolation (Eu-
clidean case)

As stated by [Webster and Oliver, 2007], nearly all interpolation methods can be seen
as weighted averages of data. The following definition introduces some notations for
deterministic interpolation.

Definition 2.2.1: Spatial interpolation (deterministic approach)

Raw data come as a collection of n values denoted {z(si), i = 1, ..., n} over a region
of interest hereinafter referred to as D µ R

d (in this work, d = 2 or d = 3). Note
that si is a location on D and z(si) is its associated value. To get the predicted
value zú(s0) of an unknown location s0, the following formula is commonly used

zú(s0) =
nÿ

i=1

⁄iz(si). (2.1)

Choosing an interpolation method boils down to choosing a procedure to compute
the weights ⁄1, ..., ⁄n.

In this section, some methods to perform spatial interpolation on a grid and for irregularly
spaced data points are respectively presented in Section 2.2.1 and in Section 2.2.2. The
geostatistical framework is introduced in Section 2.2.3.

2.2.1 Spatial interpolation on a grid

When known points are sampled on a grid, many interpolation problems can be formulated
as a Lagrange interpolation problem. A modern and concise formulation of this generic
problem is given, for example, by [Schumaker, 2015] (Problem 2.5, p.57). Under certain
conditions, particularly if the assumptions of the Schoenberg-Whitney theorem are verified
([Schumaker, 2007], Theorem 1.8, p.9), the Lagrange interpolation problem on a grid can
be uniquely solved using a bivariate (tensor product) polynomial spline function. The well-
known bilinear interpolation falls within this framework. A numerical implementation of
bilinear interpolation is illustrated in the following example.
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2.2 Spatial interpolation (Euclidean case)

Example 2.2.1: Bilinear interpolation of the rotated Franke’s function

A rotated version of Franke’s function is used as the test function. It is defined on
[0, 1]2 by

f(x, y) = 0.75 exp

A
≠(9x ≠ 7)2

4
≠ (9y ≠ 7)2

4

B

+ 0.75 exp

A
≠(9x ≠ 10)2

49
+

(9y ≠ 10)

10

B

+ 0.5 exp

A
≠(9x ≠ 2)2

4
≠ (9y ≠ 6)2

4

B

≠ 0.2 exp
1
≠(9x ≠ 5)2 ≠ (9y ≠ 2)2

2
.

(2.2)

The bilinear spline interpolant for 9 ◊ 9 = 81 points observed on a grid is shown on
Figure 2.1.

Figure 2.1: The rotated Franke’s function [left] and the bilinear interpolation of the
function based on 9 ◊ 9 points on a grid [right]. Observed points are in red.

The Lagrange interpolation problem is actually a specific case of a more general interpo-
lation problem: Hermite interpolation. It is typical to introduce this broader category of
interpolation problems to achieve smoother interpolations, minimize the overall curvature
of the interpolating function, or perform interpolation while adhering to constraints. A
concise formulation is, for example, provided by [Schumaker, 2015] (Problem 2.8, p.61).
A famous example is tensor-product natural cubic spline interpolation that allows smooth
and continuous interpolation across two or more dimensions while ensuring natural bound-
ary conditions (zero second derivatives at the boundaries). A numerical implementation
of this approach is illustrated in the following example.

Example 2.2.2: Tensor-product natural cubic spline interpolation of the rotated
Franke’s function

The tensor-product natural cubic spline interpolant for 9 ◊ 9 = 81 points observed
on a grid is shown on Figure 2.2.
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2.2 Spatial interpolation (Euclidean case)

Figure 2.2: The rotated Franke’s function [left] and the tensor-product natural cubic
spline interpolation of the function based on 9◊9 points on a grid [right]. Observed
points are in red.

The Lagrange and Hermite interpolation problems generalize effortlessly to higher dimen-
sions. Trilinear interpolation is illustrated in the following example.

Example 2.2.3: Trilinear interpolation

Let us consider the following test function, defined on [≠1, 1]3 by

f(x, y, z) = sin(fix)cos(fiz)sin(fiy). (2.3)

The trilinear spline interpolant for 5 ◊ 5 ◊ 5 = 125 points observed on a three-
dimensional grid is shown on Figure 2.3.

Figure 2.3: The original test function. Several partially transparent isosurfaces are
used for volume rendering [top left], test function values if z = 1 [top right], trilinear
interpolation of the function based on 5 ◊ 5 ◊ 5 points [bottom left] with a focus on
z = 1 [bottom right].
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2.2 Spatial interpolation (Euclidean case)

2.2.2 Spatial interpolation for irregularly spaced data points

When dealing with irregularly spaced data points, there are various interpolation methods
available. One method involves interpolating based on a triangulation of the domain
(many approaches are discussed in [Lai and Schumaker, 2007]). Another approach relies
on inverse functions of distance, IDW. In this setting, weights in Definition 2.2.1 are
defined by

⁄i =
1

dist(si, s0)—
, — > 0, (2.4)

and are scaled so that they sum to 1. Data points near to s0 carry larger weight than
those further away. When — is large, the relative weights decrease rapidly, resulting in
interpolation that is noticeably localized and sensitive to nearby points. Interpolation is
exact and there are no discontinuities.

Deterministic methods are rightly appreciated for their simplicity and their good practical
results. Yet, for each method, spatial dependence is considered in a rigid manner. It is also
impossible to associate a degree of certainty with each interpolated value. No covariate
is taken into account. These reasons sometimes lead to preferring statistical methods to
deterministic ones.

2.2.3 The geostatistical framework

Numerous reference books that can be consulted for an introduction to geostatis-
tics in the Euclidean case, including [Cressie et al., 1990], [Wackernagel, 2003],
[Chilès and Delfiner, 2012] and [Montero et al., 2015]. The geostatistical community
generally agrees to emphasize Georges Matheron’s pioneering role in the emergence of the
discipline (see [Cressie, 1990] and [Chilès and Desassis, 2018] for a historical perspective).

Unlike the deterministic approach, geostatistics views {z(si), i = 1, ..., n} as a collection of
regionalized values. Each location s on D is associated to the realisation z(s) of a random
variable Z(s). In the sequel, {Z(s), s œ D} denotes the spatial random field of interest. It
is assumed that the first moment as well as the usual second-order moments of the random
field are well-defined.

The probabilistic counterpart of spatial interpolation is known as kriging, a term coined
by Georges Matheron in 1963 in honor of Danie Krige (see [Chilès and Delfiner, 2012],
Chapter 3, p.147). One may compare the following definition of kriging with that of the
deterministic spatial interpolation problem (Definition 2.2.1).

Definition 2.2.2: Kriging

Based on the notations and formulation of [Montero et al., 2015] (p.81), kriging
refers to predicting the value of a non-observed point s0 of a random field Z with
a linear predictor. The general idea is to produce a weighted average

Zú(s0) =
nÿ

i=1

⁄iZ(si). (2.5)

The weighting is found ensuring that the expected prediction error is zero (unbi-
asedness of the kriging predictor) and its variance minimum.
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2.3 Spherical case

The theoretical benefits of kriging are discussed in the reference books on the subject cited
earlier. Kriging takes into account the geometric characteristics, the number and organi-
zation of locations. It determines weights based on the function representing the spatial
correlation structure and allows for the quantification of prediction accuracy through pre-
diction error variance. Additionally, it enables exact interpolation while accommodating
the use of covariates.

2.3 Mathematical framework for spatial interpolation
(spherical case)

Many interpolation methods are usually presented in the Euclidean case. When spatial
data are located on the surface of the Earth, interpolating on the surface of a sphere (or
an ellipsoid or geoid) is a more geometrically consistent and accurate approach as outlined
by [Robeson, 1997].

Remark 2.3.1: A reasonable approximation

Even if the Earth is not strictly a sphere, it is often beneficial to model global
data on the two-sphere, denoted S

2 ©
)
s œ R

3, ÎsÎ = 1
*

where Î.Î is the Euclidean
distance. This is a reasonable approximation for the Earth’s geometry.
The extension to the sphere with arbitrary radius is straightforward. A radius
R = 6, 371 km is a good approximation for planet Earth.
Several different conventions exist for representing spherical coordinates and pre-
scribing the naming order of their symbols. For [Porcu et al., 2017], every point s

on the sphere S
2 has spherical coordinates s = (Ï, ◊) with Ï œ [0, fi] (polar angle)

and ◊ œ [0, 2fi) (the azimuthal angle).
The geographic coordinate system uses the latitude ◊ œ [≠90¶, 90¶] and the longi-
tude ⁄ œ [≠180¶, 180¶] (details are provided by [Banerjee, 2005]).

Historically, some authors have used the Euclidean distance in the spherical case, treating
the geographical coordinates as planar. It is a valid, simple approach, when the spatial
domain is ‘small enough’. Degree units may be converted to kilometer units very easily.
Of course, this approach is often not suitable. As noted by [Banerjee, 2005], treating
spherical coordinates as planar can induce deceptive anisotropy in geostatistical models
because of the difference in differentials in longitude and latitude (a unit increment in
degree longitude is not the same length as a unit increment in degree latitude except at
the equator). Spurious nonstationarity may be induced as well.

An intuitive idea is to consider alternative distances. For instance, one may use the chordal
distance. More naturally, as stated by [Blake et al., 2022], for data on S

2, the appropriate
notion of distance is given in terms of geodesics. It corresponds to the great-circle distance,
that is, the distance along the shortest arc connecting two points on the sphere.

As a general note, it is important to be cautious with the use of alternative distances in
geostatistics. Authors such as [Curriero, 2006] have shown that non-Euclidean distance
measures must be used with caution in geostatistical applications. There are no guarantees
that existing covariance and variogram functions remain valid (i.e. positive definite or
conditionally negative definite) when used with a non-Euclidean distance measure.

As a consequence, in the spherical case, two approaches are generally favored: using a map
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2.3 Spherical case

projection to simplify the problem to the Euclidean case or using the great-circle distance
ensuring the validity of the chosen model. We briefly present these two approaches.

2.3.1 Choosing a map projection

As defined by [Lapaine and Usery, 2017], a map projection is what cartographers call the
system by which the rounded surface of the Earth is transformed in order to display it on
a flat surface. As map projections cannot preserve all properties of the original sphere,
there is no good projection in absolute terms.

Given that spatial interpolation methods crucially rely on distance calculations, it is im-
portant to focus particularly on equidistant world map projections (see Appendix E for
some examples). In geostatistics, the projection approach is employed, for instance, by
[Haas, 1990b].

2.3.2 The great-circle distance

When interpolating over large areas of the Earth, the great-circle distance may be used
both for deterministic and geostatistical methods. An example is given below.

Example 2.3.1: IDW based on the great-circle distance

Let us consider the following test function

f(x, y, z) = 1 + x8 + 10xyz + exp(2y3) + exp(2z2) (2.6)

where x © cos(⁄) cos(„), y © sin(⁄) cos(„) and z © sin(„) are Cartesian coordinates
(⁄ is the longitude and „ is the latitude). Suppose that 1, 000 points are randomly
sampled on the surface of the sphere (the sampling is not uniform since random
angles are drawn). IDW (— = 2) is performed based on the 10 nearest neighbors
(Figure 2.4).

Figure 2.4: The original test function [left], a sample of known points [middle]
and IDW (— = 2) interpolation based on the great-circle distance (the 10 nearest
neighbors are considered) [right].

In the geostatistical context, the great-circle distance has historically been used by
[Cressie et al., 1990] for the spatial analysis of acid deposition data. Crucially, one must
ensure that a valid variogram model is chosen. Some isotropic covariance functions on
spheres are proposed by [Huang et al., 2011] and [Gneiting, 2013]. Nonstationary covari-
ance models for global data are, for instance, developed by [Jun and Stein, 2008]. Luckily,
commonly used isotropic covariance functions in the Euclidean space can be directly sub-
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2.4 The noise case study

Figure 2.5: Location of noise monitors in the vicinity of Chicago O’Hare International
Airport. The data presented summarizes the DNLs in December 2022. Current community
area boundaries in Chicago are reported in black. Runway axes are in violet. The airport
location is indicated by the green square.

stituted with the great-circle distance. A recent literature review on such valid functions
is provided by [Blake et al., 2022].

2.4 The noise case study

The first case study involves interpolating noise values around Chicago O’Hare Interna-
tional Airport to obtain a noise map. A complete description of the data is provided in
Appendix A.5.

As shown in Figure 2.5, locations of noise monitoring stations are irregularly spaced.
Several deterministic methods can be used in this situation (refer to Section 2.2.2). We
wish to compare the performance of these methods with a kriging model adapted to the
problem. The results of the comparison are presented in Section 2.4.3.

Let us describe the steps involved in constructing a geostatistical model for this case study.

The first thing to notice is that the positions of the noise monitoring stations are provided
in longitude and latitude coordinates. Instead of treating the geographical coordinates
as planar, a map projection approach is chosen to perform the interpolation within the
Euclidean framework, as explained in Section 2.3.

Remark 2.4.1: Chosen map projection

For the noise case study, a good map projection should minimize distortions around
Chicago. Due to its simplicity and widespread use, the Universal Transverse Mer-
cator (UTM) system is a good candidate. The UTM system divides the Earth into
60 zones, each spanning 6 degrees of longitude, numbered sequentially from 1 to 60.
Chicago, located in Illinois, United States, falls within UTM Zone 16N.
The projection we use has EPSG code 26916.
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2.4 The noise case study

Once the data is projected, setting up a geostatistical model involves estimating the spatial
dependence of the noise values, which is the subject of the next section.

2.4.1 Characterizing spatial dependence in the presence of a drift

If the second-order stationarity assumption holds (refer to [Cressie et al., 1990], p.53 for
a definition), estimating spatial dependence is typically straightforward. In this ideal
scenario, the covariance and semivariogram are equivalent in defining the spatial depen-
dence structure, and Matheron’s method of moments is commonly used to estimate the
semivariogram.

Yet, in the noise case study, the second-order stationarity assumption does not hold be-
cause a noticeable drift is observed from Figure 2.5. In other words, the mean of the
random field varies with location. It is a problem since a drift is known to introduce bias
in the raw variogram ([Chilès and Delfiner, 2012], Section 2.7.1, p.122).

As the presence of a drift is suspected, the random field is broken down into the sum of
two components

Z(s) = µ(s) + Á(s) (2.7)

where µ(s) denotes the deterministic part of the random field (the drift, that is unknown)
and Á(s) the stochastic part that is treated as second-order stationary. This so-called
trend-fluctuation-noise decomposition is not unique.

The goal is to estimate the trend as accurately as possible, which can be done in several
ways. As stated by [Hristopulos, 2020], trend estimation methods can be empirical or
process-based. In the former approach, the trend function is determined from prior knowl-
edge of the process or the exploratory analysis of the data. In the latter, the functional
form of the trend and possibly the coefficients of the trend function are inferred from a
model. Since we lack a model of noise dispersion, we choose an empirical approach for
this case study.

In the context of UK proposed by Matheron in 1969, the deterministic component is
expressed as

µ(s) =
pÿ

j=1

ajfj(s) (2.8)

. Functions are generally polynomials in the spatial coordinates. As an example, a basic
trend for D µ R

2 would be written

µ(s) = a1 + a2x + a3y + a4x2 + a5y2 (2.9)

for s = (x, y)€ œ D.

When it comes to noise measurements, it is unlikely that polynomials in the spatial co-
ordinates alone would adequately capture the drift. In fact, the average noise intensity
is influenced by the distance from the airport, and possibly more significantly, by the
proximity to the runway axes. Indeed, it is expected that the intensity of aircraft arrivals
and departures is directly associated with high noise levels. These observations lead us to
consider a model that takes into account some covariates.

As the drift we consider includes external variables additional to functions of spatial coor-
dinates, our model is called a KED (refer to [Chilès and Delfiner, 2012], Table 3.1 on page
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2.4 The noise case study

148 for the terminology). The external variables we consider are treated as a deterministic
functions that are known everywhere in the domain of interest.

If incorporating covariates is not sufficient to accurately model the trend, other frameworks
can be employed. In the following section, we present a deterministic method that has
recently been introduced in the literature. It could theoretically compete with a KED
model.

2.4.2 A more advanced framework

As noted by [Sangalli, 2021], the spatial variations of the phenomenon of interest can be
very challenging to model. It may be typically due to

• The complex physics of the phenomenon under study (for instance, the velocity field
of blood flow in human arteries)

• An external source that generates strong anisotropies and non-stationarities in the
observed quantity of interest (for instance, prevailing winds play a huge role in envi-
ronmental and climate data)

• The complicated conformation of the planar domain where the data are observed (for
instance, a domain with holes or with a strong concavity)

• Non-planar domains (for instance, the cerebral cortex)

In the case study, the spatial distribution of noise values typically involves complex
physics. Additionally, it is likely that wind generates strong anisotropies and non-
stationarities. However, the domain’s conformation is simple. The approach introduced
by [Sangalli, 2021], known as SR-PDE regularization, is a framework developed to ad-
dress these difficulties. Unlike the classic geostatistical approach, the SR-PDE approach
assumes that spatial field is deterministic. The spatial structure of the phenomenon is
modelled via a PDE in a regularising term. In the following, the most fundamental for-
mulation of the approach is presented. In this basic formulation, the regularizing term
involves only the Laplace operator.

Let wi = (wi1, ..., wiq)€ œ R
q be q covariates observed at si. The model is

z(si) = w€
i β + f(si) + Á(si), i = 1, ..., n (2.10)

where β œ R
q is a vector of unknown regression coefficients, f : D æ R is an un-

known deterministic field that captures the spatial structure of the phenomenon under
study and Á(s1), ..., Á(sn) are uncorrelated errors with zero mean and finite variance.
[Sangalli et al., 2013] proposed to estimate the vector β and f by minimising the following
regularised sum-of-square-error functional

nÿ

i=1

Ë
z(si) ≠ w€

i β ≠ f(si)
È2

+ ⁄

ˆ

D

(∆f)2 ds (2.11)

where ⁄ is a positive smoothing parameter and ∆ the Laplace operator. The Laplace
operator provides a simple measure of the local curvature of the field f . The functional is
shown to be well defined for β œ R

q and f œ H2(D), where H2(D) is the Sobolev space
of functions g : D æ R such that g and its first and second derivatives are in L2(D). It is
assumed that the domain D has boundary ˆD œ C2.

108



2.4 The noise case study

Figure 2.6: Estimated semivariogram values for the noise case study. Because the noise
monitors are not located on a regular grid, the distances are grouped into intervals of
about 1,400 meters. The superimposed blue line indicates the weighted-least-squares fit
(the fit is up to about 8,600 meters).

When the domain is bounded, the use of appropriate boundary conditions guarantees the
uniqueness of the solution ([Sangalli et al., 2013], [Azzimonti et al., 2014]).

Numerical discretisation procedures are used in practice because there is no analytical
solution. The numerical discretisation reduces the estimation problem to the solution
of a linear system. The spatial domain D is represented by an appropriate mesh, and
the functions over D are approximated by a finite system of bases defined on this mesh.
Convenient meshes of the spatial domain are typically obtained by constrained Delaunay
triangulation when the planar domain is complex.

2.4.3 Results for the noise case study

We compare four approaches to interpolate noise measurements. The first two approaches
are the easiest to implement and represent basic deterministic interpolation methods,
particularly effective when points are irregularly distributed (see Section 2.2.2). The third
approach is the KED model that we propose. The last one is an SR-PDE approach with
the same covariates. The four approaches are listed and detailed below.

• Linear interpolation based on Delaunay triangulation

• IDW interpolation with the Euclidean distance and — = 2 (see Equation (2.4))

• KED with a drift given by

µ(s) = a1 + a2x + a3y + a4xy + a5

...s ≠ sair
...

2
+ a6 min

srunœR
Îs ≠ srunÎ2 (2.12)

where x is the projected longitude, y the projected latitude, sair the airport location,
and R the union runway axes. The model has been implemented following the usual
steps of the geostatistical framework.

First, spatial dependence has been characterized through the estimation of the semivar-
iogram of the residuals. The estimated semivariogram values are shown on Figure 2.6.
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Figure 2.7: Histogram of standardized errors.

Second, to ensure the conditional negative-definiteness of the semivariogram, a valid
model has been fitted to the empirical semivariogram using a weighted-least-squares
criterion. This criterion assigns more weight to well-estimated variogram lags and
shorter distances. An exponential model has been found satisfactory for this case
study.

Third, the variogram model has been cross-validated based on the procedure developed
by [Cressie and Johannesson, 2006] (Section 2.6.4, p.101). The standardized prediction
errors have sample mean and sample standard deviation approximately equal to 0 and
1, respectively. The histogram of the standardized prediction errors shown in Figure 2.7
indicates that no outliers are suspected.

One can feel confident that prediction based on the fitted variogram is approximately
unbiased and that the mean-squared prediction error is about right.

• SR-PDE (Section 2.4.2) with two covariates: the distance to the airport and the dis-
tance to the closest runway axis. Note that these are the same covariates used in the
geostatistical approach. Since we do not have access to a noise diffusion model that can
be formalized by a PDE, we proceed within the standard framework: regularization
is done using the Laplacian. The smoothing parameter ⁄ is selected using generalised
cross-validation introduced by [Craven and Wahba, 1978].

Resulting noise maps are depicted in Figure 2.8.

In light of the obtained noise map, both linear interpolation and interpolation using
SR-PDE are highly dependent on the underlying triangulation. The noise levels obtained
consist of broken lines that do not correspond to a credible diffusion of noise from the
acoustical perspective. The inclusion of covariates in the SR-PDE approach is not suf-
ficient to achieve satisfactory interpolation. The aspect of the noise map suffers from a
regularization term that is likely too simplistic. We believe that better results would be
obtained with a noise diffusion model formalized as a PDE used for regularization. The
interpolation obtained through IDW is not credible either. By design, it does not consider
the distance to the airport, which would allow for concentric noise levels centered around
the airport. Crucially, KED provides a very satisfactory noise map as it takes into account
the distance to the nearest runway axis and the distance to the airport. This approach
yields the best noise map among all the methods considered.
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Figure 2.8: Interpolation of noise measurements in the vicinity of Chicago O’Hare Inter-
national Airport (December 2022) using linear interpolation [upper left], IDW [lower left],
KED [lower right], and SR-PDE [upper right]. Blue triangles are the projected Delaunay
triangulation that has been used. The airport location is indicated by the green square.

In addition to providing the most credible noise map, the geostatistical model we propose
also addresses the following question: assuming for any reason that one noise monitoring
station needs to be removed, which one should it be?

2.4.4 Optimal deletion and addition of a noise monitor

Suppose that a site is to be deleted from the network of noise monitoring stations. Unlike
the deterministic framework, the geostatistical framework offers a natural criterion for
making this decision. Based on the work of [Cressie et al., 1990], a sensible statistical
criterion for the deletion of a site is to choose that site which can be predicted the best
from the remaining n ≠ 1 sites. That, for S © {s1, ..., sn} the current network of monitors
and S≠i the network without site i, the site which achieves

min
Ó

‡2(si; S≠i), i = 1, ..., n
Ô

(2.13)

should be deleted. This site minimizes the kriging variance for predicting the value at site
i using the network S≠i.

Reversely, suppose that one monitor may be build from a list of m potential sites denoted
SP © {sn+1, ..., sn+m}. Define S+j to be the augmented network, for j = n + 1, n +
2, ..., n + m. Let ‡2(s0; S+j) be the kriging variance for predicting the value at s0 using
the augmented network S+j . An objective function to minimize could be

Mn+1(sj) = max
s¸œSP ≠{sj}

Ó
1(µ(s¸) > K)‡2(s¸;S+j

)
Ô

(2.14)

This criterion selects the site in SP that minimizes the maximum prediction variance of
the remaining sites with a mean greater than K. An example is given on Figure 2.9.
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Figure 2.9: Current locations of noise measurement stations in the vicinity of Chicago
O’Hare International Airport (noise values for December 2022). The blue cross indicates
the station that could be removed. The black dots represent a set of m = 15 candidate
positions, and the green circle denotes the selected position for the new measurement
station. The airport’s location is represented by the green square, and the runway axes
are in purple.

2.4.5 Conclusion and perspectives for the noise case study

Interpolating noise measurements around Chicago O’Hare International Airport has sev-
eral unique aspects. Once the data are projected, it becomes a planar Euclidean inter-
polation problem with irregularly spaced measurement points. The difficulty in achieving
accurate interpolation stems from the complex physics of noise dispersion, which is chal-
lenging to capture.

It has been shown that the simplest deterministic methods to implement, namely linear
interpolation on a triangulation and IDW, fail to produce satisfactory noise maps. Linear
interpolation shows a noticeable dependence on triangulation, while IDW centers contours
around measurement stations, which are not the actual noise emission sources.

The inadequacy of basic deterministic methods has prompted the adoption of a geosta-
tistical framework, valued for its capacity to handle intricate spatial dependencies and its
great flexibility. However, specifying an appropriate geostatistical model is complicated
by the presence of a drift that must be accurately captured. We determined that incorpo-
rating two covariates — the distance to the airport and the distance to the nearest runway
axis — enabled us to specify a satisfactory model.

To compare our geostatistical model with an advanced deterministic interpolation method,
we introduced the SR-PDE method proposed by [Sangalli, 2021]. Since a physical model
of noise dispersion in the form of a PDE was unavailable, we implemented the SR-PDE
model with the same two covariates as in the KED model, using the Laplacian in the
regularization term. Incorporating covariates alone into the basic SR-PDE model did not
yield satisfactory interpolation results. Consequently, the KED model produced the most
accurate noise map among all methods considered.
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Moving forward, several avenues for future research and practical implications emerge
from the noise interpolation case study

• Providing a quantified measure of the quality of a noise map. The comparison
of interpolation methods we propose relies on qualitative criteria. This decision is
influenced by a practical constraint: Chicago O’Hare Airport currently does not provide
a noise map based on its theoretical noise model. The available information is limited
to a non-vectorized format of the modeled 65 DNL noise contour, which precludes its
statistical use. To quantitatively evaluate the accuracy of each noise map, one approach
would be to compare them against a noise map generated from a theoretical, physical
model of noise production and propagation. A collaboration with Chicago O’Hare
Airport could be considered in this regard.

• Adding new covariates. Covariates such as wind direction, wind speed, or runway
use could enrich the geostatistical model by being integrated into the drift equation.

• Adding problem-specific information to the SR-PDE approach. The strength
of the SR-PDE approach lies in the flexibility of the regularization term, which enables
a very rich modeling of spatial variation. A collaboration with an acoustician could
help integrate some of the physics of noise dispersion around an airport into the model.

2.5 The weather case study

The second case study was presented at the 37th International Workshop on Statistical
Modelling in Dortmund (see [Perrichon et al., 2023]) and at the XVIe Journées de Géo-
statistique in Fontainebleau (see [Perrichon, 2023]). The main objective is to determine
the most suitable interpolation method for aviation meteorological data and to propose
a geostatistical model capable of achieving results comparable to deterministic methods
used in the literature. A data description may be found in Appendix A.6.

Every hour, raw weather data are given on a three-dimensional regular grid. For each grid,
three spatial coordinates are available: the longitude, the latitude and the pressure level in
hectopascal (hPa). For each grid, we consider four main weather variables of interest: the
temperature, the U-component and the V-component of the wind, the relative humidity
(see Table A.8 for a description). For example, some raw relative humidity values are
shown in Figure 2.10. These variables are selected because they are crucial for many
contrail studies (refer to Section 2.1.1).

For each grid, as a preliminary step, altitude is converted to meters.

Remark 2.5.1: Converting altitude

To go from a pressure level p to an altitude alt in meters (m), the following formula
is provided by the National Oceanic and Atmospheric Administration (NOAA)

alt =
145366.45

Ë
1 ≠

! p
1013.25

"0.190284
È

3.281
. (2.15)

It is based on the International Standard Atmosphere (ISA).

For a fixed altitude, we are dealing with a spherical interpolation problem (see Section 2.3).
By opting for a map projection approach at each pressure level, the problem is simplified to
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Figure 2.10: Weather grid with relative humidity values on 2019-01-01 00:00:00 (UTC)

a three-dimensional Euclidean interpolation. Yet, choosing an appropriate map projection
is particularly complex due to the need to interpolate several meteorological grids located
in vastly different geographic locations. It is the first challenge of the case study.

2.5.1 Challenges associated with the choice of a good map projection

The meteorological grids that we want to interpolate correspond to the bounding boxes
of certain commercial flights operated in 2019 (refer to Appendix A.4). While the vast
majority of considered flights operate in the Northern Hemisphere, there are also routes
extending from north to south. As a consequence, the related meteorological grids cover
very different areas of the globe, as depicted in Figure 2.11.

For this case study, selecting an appropriate map projection is not straightforward. Not
only are there too many grids to individually select the most suitable projection for each
one, but even if that were possible, usual projections like UTM are not suitable. Indeed, the
weather grids always spans multiple UTM zones. Among a set of equidistant projections,
we are interested in the one that would be most suitable for very different areas of the
globe.

In the subsequent analysis, we evaluate the equidistant projections outlined in Appendix E.
To determine their suitability, we conduct the following procedure: we compute distance
matrices for selected meteorological grids using each map projection at a fixed altitude
level. A projection is deemed suitable if its distance matrix closely approximates the one
derived from geodesic distance calculations. In the following, three different examples are
highlighted to justify the choice of the oblique azimuthal equidistant map projection.

The first grid that we consider is rather small and square. Figure 2.12 shows a flight
from Japan to Taiwan and the spatial footprint of the associated weather grid. Several
equidistant projections are compared and Table 2.1 provides some descriptive statistics.
On average, the Web Mercator projection overestimates distances by approximately 160
kilometers. The two-point equidistant projection seems preferable to achieve a distance
matrix close to that obtained by considering the geodesic distance.
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Figure 2.11: Spatial coverage of weather data for a set of flights. Each purple rectangle
corresponds to the spatial bounding box of a flight. 250 flights are drawn at random.

Map projection Min Q1 Median Mean Q3 Max

Two-point equidistant -5.25 -1.05 -0.02 0.31 1.44 7.70
Oblique azimuthal equidistant -9.33 -2.30 -1.61 -1.76 -1.03 -0.03
Web Mercator -528.62 -219.63 -155.04 -163.04 -96.58 -2.32
Plate carrée -525.78 -158.54 -81.17 -102.10 -25.87 0.00
Sinusoidal -1587.7 -455.4 -134.2 -159.6 145.0 1081.6

Table 2.1: Several descriptive statistics on the difference between great circle distances
and distances calculated using each cartographic projection for a flight between Japan
and Taiwan. The values are in kilometers.

The second weather grid that we are considering is very extensive in longitude. Figure 2.13
shows a flight from Taiwan to India and the spatial footprint of the associated weather
grid. Table 2.2 provides some descriptive statistics. On average, the Web Mercator projec-
tion overestimates distances by approximately 190 kilometers. The two-point equidistant
projection seems preferable to achieve a distance matrix close to that obtained by consid-
ering spherical distance. The error is less significant with the sinusoidal projection than
for the flight between Japan and Taiwan (the mean error goes from -159.6 km to -31.77
km). This is not surprising because the sinusoidal projection preserves distances along all
parallels. The flight is approximately along parallel 25°N.
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Figure 2.12: Several map projection for the weather grid (red dots) associated to a flight
from Japan to Taiwan (blue dots). The two-point equidistant map projection (first point
of the flight in yellow, last point of the flight in green) [top left], the oblique azimuthal
equidistant map projection (mean longitude and latitude coordinates of the weather grid
in green) [top right], the Web Mercator map projection [middle left], the plate carrée map
projection [middle right], the sinusoidal map projection [bottom].
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Figure 2.13: Several map projection for the weather grid (red dots) associated to a flight
from Taiwan to India (blue dots). The two-point equidistant map projection (first point
of the flight in yellow, last point of the flight in green) [top left], the oblique azimuthal
equidistant map projection (mean longitude and latitude coordinates of the weather grid
in green) [top right], the Web Mercator map projection [middle left], the plate carrée map
projection [middle right], the sinusoidal map projection [bottom].
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Map projection Min Q1 Median Mean Q3 Max

Two-point equidistant -21.31 -3.09 -0.60 0.15 2.88 25.80
Oblique azimuthal equidistant -34.16 -4.68 -3.13 -3.69 -1.87 -0.03
Web Mercator -799.64 -261.28 -157.92 -186.95 -90.71 -1.51
Plate carrée -793.63 -245.40 -135.81 -162.91 -53.92 0.00
Sinusoidal -980.03 -248.73 -27.26 -31.77 183.95 927.61

Table 2.2: Several descriptive statistics on the difference between great circle distances
and distances calculated using each cartographic projection for a flight between Taiwan
and India. The values are in kilometers.

The last weather grid that we are considering is very extensive in latitude. Figure 2.14
shows a flight from South Africa to Germany and the spatial footprint of the associated
weather grid. Several projections are compared. Table 2.2 provides some descriptive
statistics.

Map projection Min Q1 Median Mean Q3 Max

Two-point equidistant -29.48 -3.82 2.72 11.34 19.28 168.45
Oblique azimuthal equidistant -149.50 -11.52 -7.28 -9.64 -4.22 -0.03
Web Mercator -1325.48 -410.38 -182.96 -276.43 -64.67 -0.03
Plate carrée -663.69 -14.99 -4.02 -17.71 -0.76 -0.02
Sinusoidal -179.18 -7.33 13.90 10.57 32.56 143.57

Table 2.3: Several descriptive statistics on the difference between great circle distances and
distances calculated using each cartographic projection for a flight between South Africa
and Germany. The values are in kilometers.

On average, the Web Mercator projection overestimates distances by approximately 190
kilometers. The two-point equidistant projection seems preferable to achieve a distance
matrix close to that obtained by considering spherical distance. The error is less signif-
icant with the plate carrée projection than for the flight between Taiwan and India (the
mean error goes from -162.91 km to -17.71 km). This is not surprising because the plate
carrée projection preserves distances along all meridians. The flight is approximately along
meridian 10°E.

These three very different examples suggest that the oblique azimuthal equidistant map
projection has good properties. It is the projection that is chosen for the rest of the
analysis.

2.5.2 A neighborhood approach

Setting up a geostatistical model for the weather case study first requires estimating spatial
dependence. However, by looking at the relative humidity values in Figure 2.10, it is clear
that the second-order stationarity assumption is not suitable for modeling meteorological
values. The covered area is so extensive that the phenomena at play exhibit too much
diversity.

As suggested by [Haas, 1990a], taking covariance non-stationarity into account may be
accomplished by performing the calculation of the semi-variance estimates, the modeling
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Figure 2.14: Several map projection for the weather grid (red dots) associated to a flight
from South Africa to Germany (blue dots). The two-point equidistant map projection
(first point of the flight in yellow, last point of the flight in green) [top left], the oblique
azimuthal equidistant map projection (mean longitude and latitude coordinates of the
weather grid in green) [top right], the Web Mercator map projection [middle left], the
plate carrée map projection [middle right], the sinusoidal map projection [bottom].
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Figure 2.15: The 500 closest neighbors associated to a given trajectory point, shown in
red, for which we want to predict weather values.

of the semi-variance function, and the calculation of a kriging estimate all inside a circular
window centered at the estimate location. Taking such a subset of the data, changing
with the estimated point, is called a moving neighborhood by [Chilès and Delfiner, 2012].
Figure 2.15 illustrates a possible neighborhood associated to an estimated point.

The underlying assumption for the local validity of a geostatistical model is the quasi-
stationarity assumption (refer to [Journel and Huijbregts, 2004], p.33). The window
should be just large enough to contain enough sampling locations to estimate the semi-
variogram with accuracy sufficient for the intended uses of the process estimates. As
a consequence, the window size parameter is a key parameter to choose. Some practi-
cal implementations of neighborhood selection are detailed by [Chilès and Delfiner, 2012]
(Section 3.6.2, p.209).

For this case study, we opt to construct neighborhoods using a simple k-nearest neighbors
rule. Even with this simple rule, it is important to be cautious: due to the data granularity,
the nearest neighbors are generally found on the lower and upper pressure levels. It is
usually necessary to consider a sufficient number of neighbors to correctly capture the
horizontal spatial dependence.

2.5.3 Drift and anisotropy

In a given neighborhood, drift and anisotropy still need to be taken into account. Con-
sidering drift in three dimensions is done in a similar manner to two dimensions. Yet,
handling anisotropy in three dimensions is more delicate than in two dimensions since
specifying a rotation in R

3 necessitates more parameters compared to R
2.

As in the two-dimensional case, the assumption of isotropy is violated when the empirical
semivariogram depends on the direction of h (the lag vector). Geometric anisotropy is
the only case for which isotropy can be restored with a simple coordinate transformation.
Speaking in terms of semivariogram, geometric anisotropy is characterized by

“(h) = “iso(ÎAhÎ2)
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where the matrix A defines the transformation from the initial space to the isotropic
space. In the three-dimensional case, the matrix A can be written following the notations
of [Chilès and Delfiner, 2012] (p.99)

A =

Q
ca

b1 0 0
0 b2 0
0 0 b3

R
db

Q
ca

cos(◊3) sin(◊3) 0
≠sin(◊3) cos(◊3) 0

0 0 1

R
db

Q
ca

1 0 0
0 cos(◊2) sin(◊2)
0 ≠sin(◊2) cos(◊2)

R
db

Q
ca

cos(◊1) sin(◊1) 0
≠sin(◊1) cos(◊1) 0

0 0 1

R
db .

Our main focus is on the case where the primary axis of anisotropy is vertical, as verti-
cal anisotropy reflects the variation in meteorological conditions across different pressure
levels.

2.5.4 Results for the weather case study

Multiple methods are being compared to interpolate temperature, relative humidity and
wind values. Unlike the first case study, where the comparison of interpolation methods is
qualitative only, for the weather case study, it is possible to compare different approaches
based on quantitative criteria. Indeed, the meteorological data we interpolate are asso-
ciated with special aircraft flights that are described in Appendix A.4. For these flights,
meteorological data are measured onboard with high accuracy. For a given meteorological
grid, we can quantify the quality of an interpolation by its ability to predict a value close
to the value measured by the aircraft. Doing so, we may assign temperature, relative
humidity, and wind values to each point along a trajectory.

We first consider several versions of IDW based on the oblique azimuthal equidistant map
projection where we vary both the number of nearest neighbors (4 or 8) and the value of —

(1 or 2). In the following, IDW with 4 nearest neighbors and — = 1 is abbreviated IDW41.
Second, we consider trilinear interpolation. As a more advanced deterministic method,
the three-dimensional SR-PDE approach of [Arnone et al., 2023] is evaluated. Finally, we
implement our UK approach based on the oblique azimuthal equidistant map projection,
with a drift given by

µ(s) = a1 + a2x + a3y + a4z + a5xy + a6xz + a7yz + a8xyz + a9x2 + a10y2 + a11z2 (2.16)

and a vertical anisotropy characterized by b1 = 1, b2 = 1, b3 = 20, ◊1 = 0, ◊2 = 0, ◊3 = 0.
The 500 closest neighbors are considered.

Figure 2.16 depicts the discrepancies between onboard measurements and predicted values
for each meteorological variable across the sample of flights. Across all methods, inter-
polation errors are substantial for relative humidity values. It is not surprising since the
weather data we interpolate have known limitations regarding the accuracy of humidity
values (see Section A.6 for details).

Regardless of the variable of interest, the several versions of IDW interpolation do not yield
good results. Four or eight nearest neighbors are likely insufficient to capture enough in-
formation. The best results are provided by trilinear interpolation, SR-PDE interpolation
and UK. The good performance of trilinear interpolation may be explained by the fine
spatial granularity of ERA5 reanalysis data and the absence of outliers. One can illustrate
the good results of UK on a specific flight (Figure 2.17). The interpolated values are highly
consistent with the values measured onboard the aircraft.
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Figure 2.16: For each variable of interest, boxplots depict the discrepancies from the
measured values for each interpolation method. A positive difference indicates that the
reference value is greater than the predicted value. The mean is indicated by the red cross.

Figure 2.17: For each variable of interest and for a specific flight, measured (in red) and
predicted values with UK (in blue).
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Figure 2.18: For a specific flight, and focusing on temperature, measured (in red) and
predicted (in blue) values obtained with UK. The grey area illustrates the 95% point-wise
confidence interval.

In the absence of a partial differential equation that accurately models atmospheric dy-
namics, the SR-PDE approach does not yield better results than trilinear interpolation in
the specific case of ERA5 reanalysis data.

Since the performance of the kriging model is good, we can focus on the validity of the
confidence intervals obtained.

2.5.5 Confidence intervals

If the kriging error has a Gaussian distribution, this distribution is completely specified
by its mean (zero) and its variance. As explained by [Chilès and Delfiner, 2012] (Section
3.4.5, p.175) assuming a known variogram, the kriging variance is determined without
error (i.e., is nonrandom), and it is possible to make a confidence interval for the predicted
values. Figure 2.18 presents the point-wise confidence interval derived from the UK model,
specifically focusing on temperature values.

The point-wise confidence intervals are less satisfactory for the horizontal component of
the wind (not shown). It may be due to a departure from the Gaussian assumption.
A point-wise confidence interval for relative humidity values has not been implemented
because it may have a negative lower bound. To tackle this problem one may perform
a preliminary transformation of the data. Kriging regionalized positive variables, is for
instance, discussed by [Tolosana-Delgado and Pawlowsky-Glahn, 2007].

2.5.6 Conclusion and perspectives for the weather case study

The second case study presents significant challenges, requiring the interpolation of
weather data across multiple pressure layers over vast distances on Earth. To address
this interpolation problem, trilinear interpolation is widely preferred in aviation litera-
ture. We propose a geostatistical model that achieves comparable results while providing
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a confidence interval for interpolated temperature values. Two important steps are iden-
tified to construct a relevant geostatistical model for this case study.

The first step involves selecting an appropriate method for projecting the data to simplify
the problem into a three-dimensional Euclidean interpolation problem. Several popular
projections are not suitable for this purpose. For example, weather grids always span
multiple UTM zones, making this default choice ineffective. In comparing several equidis-
tant projections for three examples, we illustrate that an oblique azimuthal equidistant
map projection is sufficiently flexible to accurately project meteorological grids located in
diverse locations around the globe.

The second step is about dealing with the complex spatial dependence of meteorological
data. To address this challenge, we suggest a moving neighborhood approach for kriging.
We consider the 500 nearest neighbors: this represents a compromise to accurately esti-
mate spatial dependence while maintaining reasonable computation time. Within each
neighborhood, we propose using universal kriging that incorporates significant vertical
anisotropy.

Looking ahead, the weather case study unveils various paths for future research and prac-
tical applications:

• Considering nested structures. Given the complexity of meteorological phenom-
ena to model, it would be quite interesting to consider more complex models. The
nested structures that are presented in [Chilès and Delfiner, 2012] (p.111) may be a
good start. With nested structures, several elementary components corresponding to
different ranges are combined to model the variogram at medium and large distances.
In practice, it is not necessarily clear whether a more complex variogram model is
necessary.

• Considering a valid distance instead of selecting a map projection. Instead
of selecting a map projection, one might opt to define a suitable distance metric for
this case study. Because the altitude must be taken into account, the models of in-
terest would be covariance functions defined on spheres across time. A recent re-
view of such valid models is provided by [Porcu et al., 2017], [Porcu et al., 2021] and
[Alegría et al., 2019].

• Evaluating the impact of neighborhood size and shape on the results of
geostatistical models. In comparing several choices of neighborhoods, we can gain
a clear understanding of their impact on kriging results. This extension poses no
theoretical problem but can prove to be costly in terms of computational time.

• Estimating the drift based on multiple time grids. As suggested by
[Chilès and Delfiner, 2012] (p.123), a common practice in meteorology is to deduce
the drift at a monitoring site by averaging the observations at this site based on a large
number of similar observed situations. Given that ERA5 data is hourly, this approach
could indeed be quite interesting. Then arises the question of the number of hours to
consider for estimating the trend and the chosen averaging procedure (mean, median,
etc.).

• Performing a lognormal kriging for humidity values. In geo-
statistics, working with positive values is quite frequent as outlined by
[Tolosana-Delgado and Pawlowsky-Glahn, 2007]. A common approach involves taking
the logarithm of the data, applying conventional geostatistics and back-transforming
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the kriging results. This procedure is known as lognormal kriging and is presented
by [Cressie et al., 1990] (p.135). A lognormal random process {Z(s), s œ D} is a
positive-valued process such that

Y (s) © log Z(s), s œ D (2.17)

is a Gaussian process with a known mean or an unknown constant mean. The goal of
lognormal kriging is to predict Z(s0) from the observations. In case of an unknown
mean, [Chilès and Delfiner, 2012] pinpoint that it is possible to construct optimal linear
estimators in the logarithmic scale and to devise a reverse transformation that ensures
unbiasedness. Yet, optimality properties of such procedures are unclear. Consider-
ing lognormal kriging and its extensions may be a preliminary step in constructing
pointwise confidence intervals for relative humidity values.

• Implementing a spatio-temporal model. Since hourly data are available, a spatio-
temporal model may be considered. Some theoretical covariance models are presented
by [Montero et al., 2015] (Chapter 7, p.179). This extension comes at the expense of
increased theoretical complexity and some computational cost. It is not clear whether
spatio-temporal interpolation of temperature values, which are very stable over time,
would be significantly better than a simple spatial approach.
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Chapter 3

Hidden Markov Models and flight
phase identification

Contents

3.1 Flight phase identification in the literature . . . . . . . . . . . . 129

3.1.1 The two main approaches . . . . . . . . . . . . . . . . . . . . . . 129

3.1.2 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . 131

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.2.2 Flight phase identification as a decoding task . . . . . . . . . . . 132

3.3 Application n°1: Identification of three main flight phases for
a single commercial flight . . . . . . . . . . . . . . . . . . . . . . 134

3.3.1 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.3.2 Pre-processing data . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.4 Application n°2: A multivariate model for flight phase iden-
tification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.4.1 Pre-processing data . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.4.2 Uncertainty quantification . . . . . . . . . . . . . . . . . . . . . . 142

3.5 Application n°3: The segmentation of a helicopter flight with
an unknown number of flight phases . . . . . . . . . . . . . . . . 142

3.6 Conclusion and perspectives . . . . . . . . . . . . . . . . . . . . . 143

From a conceptual point of view, there is no trouble in defining flight phases,
that is to say different periods within a flight. Common taxonomies are,
for instance, provided by the International Civil Aviation Organization (ICAO)
[CAST/ICAO Common Taxonomy Team (CICTT), 2013] or by the International Air
Transport Association (IATA) in Annex 1 of [International Air Transport Association, 2015].
Given some trajectory data, flight phase identification aims at segmenting a flight into
different phases. More precisely, a segmentation is a partition of data points.

This task has been popularized with the increasing availability of large Automatic Depen-
dent Surveillance–Broadcast (ADS-B) datasets, for which flight phases are not labeled. It
would be tedious to annotate them manually. A famous example of this rising accessibil-
ity of ADS-B data is the development of the non-profit OpenSky Network that has grown
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to 5,000 registered receivers all around the world, providing a large historical database
[Sun et al., 2022].

The segmentation of flights has several uses. As stated in [Sun et al., 2017b], flight phase
segmentation is utilized to build aircraft performance models. In [Alligier et al., 2015], the
mass estimation method for ground-based aircraft climb prediction involves a filtering of
climb segments. In [Kuzmenko et al., 2022], flight phase identification is related to delay
analysis and safety. As explained by [Zhang et al., 2022], estimating the duration of each
flight phase is also believed to enhance the development of reliable noise or emissions
models around airports.

To be entirely precise, flight phase identification has several meanings. For the majority
of applications, the identification of flight phases is a vertical segmentation problem (say,
the identification of the takeoff, climb, cruise, approach and so on). We naturally visualize
the different phases by representing them on the altitude profile. However, there are
applications for which horizontal flight phases can also be defined. As recently reviewed in
[Kovarik et al., 2020], this is the case for conflict detection for which we are also interested
in detecting turns. In this work, we will focus solely on providing a vertical segmentation.
Our primary emphasis is on commercial aviation.

A key aspect of flight trajectories is the undefined number of segments to uncover due
to different flight frequencies and operations. Even within the same phase, aircraft may
climb at different rates or fly at different cruise altitudes. Another specificity is the strong
correlation in time and space between two consecutive points of a trajectory. Additionally,
trajectory data may be noisy and/or have missing values.

These characteristics, along with the variety of air operations, account for the wide di-
versity of approaches presented in the literature on the subject, whether it be on the side
of thresholding methods or probabilistic ones. The segmentation methods used in the
literature only occasionally take into account the strong temporal correlation that exists
between the data points that make up the flight. For example, the widely popular fuzzy
logic method developed in [Sun et al., 2017a] would produce an identical segmentation if
the observations were permuted in time meaning that each point would have the same
label.

Up to our knowledge and despite a well-known plasticity, HMMs have not often been used
to segment flight phases even though they exhibit very interesting characteristics for this
problem. Remarkably, they have been used for a long time in aircraft state estimation.
Indeed, segmentation of trajectory data using HMMs follows the same underlying idea as
the dynamic Multiple Model (MM) approach in aircraft state estimation. Both techniques
assume that an aircraft operates in a finite number of modes. Transitions between these
modes are governed by a Markov chain. In the first case, the main objective is to label
trajectory data without necessarily relying on an underlying physical model. In the second,
the goal is to estimate the aircraft’s motions from noisy or incomplete measurements based
on a model, often in real time. A survey on MM for tracking maneuvering targets is
provided by [X Rong Li and Jilkov, 2005].

As explained by [Bar-Shalom et al., 2002] (Chapter 11), the MM approach relies on a
Bayesian framework. Starting with prior probabilities of each model being correct (the
system is in a particular mode), the corresponding posterior probabilities are obtained
based on some measurements. An aircraft motion model is specified for each mode as well
as the mode transition probabilities. To tackle the problem of exponentially increasing
number of histories, the Interacting Multiple Model (IMM) is commonly used (see the
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seminal contribution of [Blom, 1984]). It offers a great compromise between complexity
and performance (refer to [Blom and Bar-Shalom, 1988]).

The HMM method we suggest does not rely on a predefined model of the aircraft’s motion.

Main contributions of the chapter

In this chapter, we propose a univariate HMM for the detection of the three main
flight phases (climb, cruise, and approach), as well as a multivariate model for
the detection of the taxi, takeoff, climb, cruise, approach, and rollout phases. In
terms of accuracy, both our models outperform the state-of-the-art fuzzy logic seg-
mentation. Unlike most methods, our approach places the temporal aspect of the
trajectory at the core of segmentation by modeling the transition probabilities from
one flight phase to another which reduces the number of invalid transitions from one
flight phase to another. Importantly, the HMM framework we develop allows for
uncertainty quantification in segmentation, providing the probability of belonging
to each class for each point, which is not possible with current methods. We discuss
the impact of data preprocessing on the quality of flight segmentation and suggest
a way to adapt HMMs for the segmentation of a flight for which the phases to be
identified are not specified in advance. The work presented here is the subject of
a research paper [Perrichon et al., 2024a] that was originally presented at the 2023
OpenSky Symposium.

The chapter is organized as follows. First, the methods and performance metrics commonly
used for the flight phase segmentation problem are presented in Section 3.1. Second, some
theoretical elements on HMMs are recalled in Section 3.2. Third, the univariate HMM
we propose to segment the three main phases of a flight is detailed in Section 3.3. Next,
we present a more advanced model capable of segmenting six flight phases in Section 3.4.
Finally, we establish that our approach can be adapted to segmenting a helicopter flight
where the number, nature, and sequence of phases are not specified in advance. It is the
subject of Section 3.5.

3.1 Flight phase identification in the literature

As explained in Section 3.1.1, there are two main families of methods in the literature for
flight phase segmentation. Popular metrics for evaluating the quality of a segmentation
are reviewed in Section 3.1.2.

3.1.1 The two main approaches

As put by [Fala et al., 2023], two main approaches are employed to identify phases from
flight data records: logical rule-based decision-making, and probabilistic-based decision-
making.

Regarding rule-based approaches, several studies have focused on establishing thresholds
to segment flight phases such as [Goblet et al., 2015, Paglione and Oaks, 2006]. Given the
challenge of specifying universal thresholds for flight phase segmentation, the fuzzy logic
approach has established itself in the literature as a flexible, simple, and fast method.
Early references on the subject include the work of [Kelly and Painter, 2006]. Several
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publications such as [Sun et al., 2016, Sun et al., 2017a], and its implementation in Ope-
nAP [Sun et al., 2020] have now made it a widespread method. For each point, it is worth
noting that fuzzy logic does not strictly return the probability of belonging to each class.
Additionally, it does not consider the temporal nature of the trajectory. Data smoothing
is often necessary to achieve good results in practice.

Recently, many contributions have framed the problem of flight phase detection as a
machine learning task. The use of decision trees classifiers to segment flight phases has
been explored by [Tian et al., 2017]. Some machine learning methods are compared by
[Kovarik et al., 2020]. K-means clustering and LSTM neural networks have been combined
by [Arts et al., 2021]. Gaussian Mixture Models have been used by [Liu et al., 2020].
To achieve good results, some methods often require a large number of inputs, often
unavailable in ADS-B data. For instance, the engine fan speed is used by [Liu et al., 2020].
In any case, many steps seem necessary in the machine learning literature: selection of
the parameters, implementation of a decision tree classifier and clustering of the results
by [Tian et al., 2017], transformation of trajectory data into fixed length sequential data
before using an LSTM neural network by [Arts et al., 2021]. The difficulty of obtaining
a reliable training dataset leads some authors such as [Arts et al., 2021] to use simulated
data.

HMMs do not suffer from most of the mentioned limitations, as explained in the sequel.

3.1.2 Performance metrics

The comparison of flight phase identification methods is complex on several levels. One
initial challenge relates to the number and types of flight phases selected. These can vary
greatly depending on whether one considers commercial aviation or general aviation. A
second challenge lies in the lack of consensus on the choice of a performance metric. It
appears that the latter can be grouped into three main categories:

• The traditional metrics for classification problems such as the error rate, preci-
sion and recall (see [Goblet et al., 2015, Paglione and Oaks, 2006, Tian et al., 2017,
Arts et al., 2021, Liu et al., 2020])

• Metrics that focus on the total duration of each phase (see [Zhang et al., 2022])

• Metrics that examine the transitions that are incorrectly predicted between phases as
well as the total number of transitions (see [Sun et al., 2017a])

In all contributions, the results are, of course, initially visualized. Because it is easy to
find a degenerate segmentation that would provide an exact value for the duration of each
phase while alternating the flight phases very randomly, it seems reasonable to consider
that at least two metrics should be used. The use of classification metrics for each flight
phase allows for the detection of the model’s inability to segment some flight moments
correctly, while global metrics provide an overview of the model’s average performance.
Since certain flight phases last significantly longer than others, the overall accuracy metric
must be interpreted with caution. Counting the number of improbable transitions as
well as the total number of transitions seems to be crucial in measuring the realism of
a segmentation. From an operational perspective, the aircraft does not spend its time
rapidly transitioning between phases. In the following, we systematically consider multiple
performance metrics.
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For each flight phase, we typically define the usual F-1 score as the harmonic mean of
precision and recall. If we consider the cruise phase, precision would be the amount of
correctly predicted cruise points among all the points the model predicted as belonging
to the cruise phase. Recall would be the number of cruise points are correctly identified
as such among all the cruise points in the reference trajectory. The F-1 score is a metric
commonly used in binary classification tasks. It rewards models that can achieve high
precision and recall simultaneously. Using the F-1 score avoids to select a method that
would label all points of the flight as belonging to a single phase (maximum recall for that
phase but very poor precision), or another one that would consist of not labeling many
points as belonging to that phase (poor recall but high precision for that phase).

3.2 Hidden Markov Models

A basic overview of HMMs is given in Section 3.2.1. In the HMM framework, flight phase
identification are going to be considered as a decoding task. Some definitions for this task
are presented in Section 3.2.2.

3.2.1 Overview

As their name suggests, HMMs involve the mathematical theory of Markov processes,
which was developed in the early 20th century through the work of Markov (refer, for
instance, to the 1913 lecture translated into English in [Markov, 2006]). Early works
on HMMs focused on the iterative maximum likelihood estimation of model parame-
ters and the proof of consistency of these estimates (refer to [Baum and Petrie, 1966,
Baum and Eagon, 1967]). An important development in the HMM theory is the maximi-
sation technique proposed by [Baum et al., 1970]. More details on the history of HMMs
my be found in [Poritz, 1988].

HMMs have been used for at least three decades in signal-processing applications,
especially in the context of automatic speech recognition (refer to [Rabiner, 1989]).
Interest in their theory and application has expanded to other fields (environment,
biophysics, ecology etc.) as recently explained by [Zucchini et al., 2016]. As a re-
sult, numerous statistical packages are now available for their implementation such as
[Visser and Speekenbrink, 2010].

In the following, we will consider both univariate and multivariate HMMs. The interested
reader can refer to [Zucchini et al., 2016] for a modern formulation of usual definitions and
the theoretical elements necessary for most applications. The following simulated example
shows a realisation of a 2-state HMM.

Example 3.2.1: A 2-state HMM

Let us simulate a 2-state HMM. The initial distribution is chosen to be u(1) =
(0.1, 0.9) and the transition probability matrix is given by

Γ =

A
0.99 0.01
0.01 0.99

B
. (3.1)

For a given time, the state-dependent distributions are N (5, 0.04) (state 1) and
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N (6, 0.01) (state 2). A realisation involving T = 500 observations is shown on
Figure 3.1.

Figure 3.1: One realisation for the simulated example.

In practice, one would not observe the state labels.

3.2.2 Flight phase identification as a decoding task

Given a HMM and associated observations, one can deduce information about the states
occupied by the underlying Markov chain. Such inference is known as decoding. Two main
approaches to decoding are local and global decoding.

Definition 3.2.1: Local decoding

Local decoding at time t involves identifying the state most likely to occur at that
specific moment. For each time t œ {1, ..., T} (T is the number of observations), one
can determine the distribution of the state Ct, given the observations x1, ..., xT . For
m states, it is a discrete probability distribution with support {1, ..., m}. The con-
ditional distribution of Ct given the observations can be obtained, for i = 1, 2, ..., m,
as

P(Ct = i | X(T ) = x(T )) =
P(Ct = i, X(T ) = x(T ))

P(X(T ) = x(T ))
(3.2)

where X(T ) is the history of the state-dependent process up to T . For each time
t œ {1, ..., T}, the most probable state given the observations, is defined as

iú
t = argmax

i=1,...,m

P(Ct = i | X(T ) = x(T )). (3.3)

Local decoding comes with one crucial advantage: an uncertainty quantification in
the decoded state sequence.

Definition 3.2.2: Global decoding

Global decoding deals with the most likely sequence of hidden states. Instead of
maximizing P(Ct = i | X(T ) = x(T )) over i for each t (Equation 3.3), one seeks
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that sequence of states c1, c2, ..., cT which maximizes the conditional probability
P(C(T ) = c(T ) | X(T ) = x(T )) where C(T ) denotes the history of the parameter
process up to T .
There is a highly efficient algorithm for determining this sequence of states,
known as the Viterbi algorithm (refer to [Viterbi, 1967]). Details on this
algorithm may be found in [Zucchini et al., 2016] (Subsection 5.4.2) and in
[Visser and Speekenbrink, 2022] (Subsection 4.5.2).

The outcomes of local and global decoding are frequently quite similar, although not
identical. For the remainder, we will focus exclusively on local decoding, as it allows to
establish a measure of uncertainty for flight phase segmentation. Next, local decoding is
illustrated on a simulated example.

Example 3.2.2: Local decoding of two 2-state HMMs

Let us consider two 2-state HMMs. For both models, the initial distribution is
chosen to be u(1) = (0.1, 0.9) and the transition probability matrix is given by

Γ =

A
0.99 0.01
0.01 0.99

B
. (3.4)

For the first model, at a given time, the state-dependent distributions are N (5, 0.04)
(state 1) and N (6, 0.01) (state 2). For the second model, the state-dependent
distributions are N (5, 0.04) (state 1) and N (5, 0.01) (state 2). Given one realisation,
the local decoding result for the first model is shown on Figure 3.2.

Figure 3.2: One realisation for the simulated example (model n°1) [top], local de-
coding result [middle] and estimated state probabilities [bottom].
Given one realisation, the local decoding result for the second model is shown on
Figure 3.3.
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Figure 3.3: One realisation for the simulated example (model n°2) [top], local de-
coding result [middle] and estimated state probabilities [bottom].

3.3 Application n°1: Identification of three main flight
phases for a single commercial flight

The following application is based on [Perrichon et al., 2024a] and was initially presented
at the 2023 OpenSky Symposium. A data description may be found in Appendix A.1.
The goal is to propose a HMM model to segment three main flight phases for a sample of
flights.

The RoC, also named the altitude rate in Appendix A.1, is selected to identify three flight
phases: the climb, the cruise, and the approach. In the HMM framework, flight phases may
be seen as the hidden states. Regarding commercial aviation, it is known that transitions
between the states are very constrained: one should go from the climb to the cruise and
from the cruise to the approach. It is very unlikely to jump from the climb directly to the
approach and it is impossible to go from the approach to the climb. A constrained 3-state
univariate HMM is specified for which the transition graph of the corresponding Markov
chain is represented in Figure 3.4. The transition probability matrix of this first model is

Γ1 =

Q
ca

“11 “12 0
“21 “22 “23

0 “32 “33

R
db . (3.5)

The first hidden state is a good candidate to represent the climb phase. To ensure the
correspondence between the hidden states and the flight phases, the initial distribution is
taken to be u(1) = (1, 0, 0) (it is fixed). The second state naturally refers to the cruise
and the third one to the approach. The state-dependent density that is considered for the
RoC is the Gaussian one.

In practice, the maximization of the likelihood with respect to the parameters is made
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Figure 3.4: Transition graph of the constrained 3-state Markov chain.

numerically. It leads to well-known problems if estimation is done based on the direct
maximization of the likelihood (refer to [Zucchini et al., 2016]). 20 different starting values
are used to increase the chances of finding the global maximum for the likelihood. Initial
values are chosen as follows

• As the climb is known to last for some time, “11 is drawn from the uniform distribution
U[0.8,0.95] and we set “12 = 1 ≠ “11. Likewise, we draw “21 from U[0.01,0.04], “22 from
U[0.9,0.95] (the cruise lasts some time), we fix “23 = 1 ≠ “22 + “23 (after the cruise comes
the approach), “32 from U[0.01,0.04] and “33 = 1 ≠ “32.

• The means of the normal distributions are drawn randomly as well as the standard
deviations. Because there are 3 states, there is one mean and one standard deviation
per state.

The choice of such plausible starting values avoids numerical instabilities.

Per se, HMM are unsupervised methods. As a consequence, the model does not return
a segmentation involving the original data labels (climb, cruise, approach). Indeed, the
states of the HMM are fully data-driven and do not have a predefined interpretation. Yet,
the a priori meaning of the states has been integrated into the constraints such that there
is no ambiguity in assigning the original labels.

The performance of the described model is compared to that of two other models. The
first model is a naive segmentation based on the following rules:

• If the altitude rate is positive (with some tolerance Á), the phase is said to be the climb.

• If the altitude rate is zero (with some tolerance Á), the phase is said to be the cruise.

• If the altitude rate is negative (with some tolerance Á), the phase is said to be the
approach.

The tolerance parameter Á is chosen through trial and error. The second model is the
state-of-the-art model, that is to say a fuzzy logic segmentation with values provided in
[Sun et al., 2017a].

A visual result for a typical flight is provided in Figure 3.5. With the naked eye, the
obtained segmentations all appear very satisfactory. On this particular flight, there is no
striking difference.

We examine four performance metrics to assess the quality of the results from a quanti-
tative perspective. First, we use the global accuracy per flight (proportion of points that
are correctly labeled). Second, we compute the F-1 score for each phase separately. We
also consider the number of unlikely transitions per flight and the number of transitions
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Figure 3.5: Identification results for a typical flight on the altitude profile.

per flight. We consider two unlikely transitions: going (directly) from climb to approach
and from approach to climb. Note that in short flights, it is feasible to transition directly
from climb to descent (approach) without a cruise phase. Yet, this situation is very un-
common in our sample as the minimum duration is at least thirty minutes. The empirical
distributions of these performance metrics over a subsample of 2,823 flights are presented
as several box plots in Figure 3.6. Among the NASA flights, the subsample corresponds
to flights that have at least the 3 flight phases of interest. Details on how to calculate
the performance metrics using the fuzzy logic of [Sun et al., 2017a] are provided below
(because flight phases are not exactly the same).

Remark 3.3.1: Issues with the definition of flight phases

Defining performance metrics is complicated by variations in terminology. This is
a classic issue in the literature on flight phase detection. For example, there is no
such thing as a level flight subphase in our reference flight phase labels. In order to
calculate various performance metrics, the level flight subphase is identified using
fuzzy logic (as usual) and then renamed climb, cruise or approach. If half of the
flight has already been completed and if the altitude is below 10,000 feet, the level
flight subphase is labeled approach. If half of the flight is not done and if the
altitude is below 10,000 feet, the level flight subphase is labeled climb. Otherwise,
it is labeled cruise. These few adjustments allow for accommodating the definition
of flight phases used in the reference data.
Similarly, if a cruise phase is detected below 10,000 feet with the naive method
or the HMM, it is renamed to climb or approach depending on whether half of
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3.3 Application n°1: Identification of three main flight phases

Figure 3.6: Box plots of the global accuracy [left box plot] and F-1 scores per state. The
crosses correspond to the averages.

the flight has already been completed or not. This small adjustment is due to the
fact that the altitude profile is not used as an input for these models. It would be
possible to avoid this last transformation by incorporating a binary variable into
the model, indicating whether the altitude is above or below 10,000 feet at the cost
of a less parsimonious model.
More generally, the level-off phase during climb or descent may be identified with
HMMs. One should specify a constrained multivariate HMM with 5 states (ground,
climb, descent, cruise, level flight). The model’s good performance crucially depends
on the chosen input variables. As a first guess, one could use variables that are part
of the fuzzy logic of [Sun et al., 2017a].

Regarding the global accuracy, it appears that our HMM model performs well on the
considered trajectories. The lower performance of the fuzzy logic is surely explained by
the absence of any data pre-processing. Allowing a tolerance Á for the naive method
explains its good results. The dependency of fuzzy logic on the erratic nature of FDR
data logically results in a large number of transitions. While the median number of
transitions is 6 for the entire set of reference flights, it is 21 for fuzzy logic, 14 for the naive
method, and 6 for the HMM. Taking into account the temporal dependence of the points
helps avoid too frequent alternation between the phases. The inflation in the number
of transitions translates into some unlikely transitions. The median number of unlikely
transitions across the entire sample is 0, the same as for the naive logic and the HMM.
However, with fuzzy logic, if the data is not pre-processed, at least 50% of the flights have
2 unlikely transitions. Unlikely transitions are inherently quite uncommon with HMMs
because small transition probabilities make certain sequences very rare. Crucially, it must
be highlighted that there is a non-zero proportion of invalid transitions in the reference
data. About 8% of the reference flights in the subsample have at least an invalid phase
transition. With our method, 91% of the flights have no invalid transitions (74% for the
naive method, 21% for the fuzzy logic if no pre-processing is done).

3.3.1 Missing values

In the case of HMM, a simple adjustment needs to be made to the likelihood computation
if data are missing. It may be the case with some RoC values.

If one assumes that missingness is ignorable, the so-called ignorable likelihood is a reason-
able basis for estimating parameters (refer to [Zucchini et al., 2016], p.40). To be more
precise, this likelihood may be used if one assumes that data are missing at random as
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Figure 3.7: Identification results for a given flight. The initial segmentation [left] can be
compared to our one [right]. 500 points are missing in this example (drawn uniformly at
random).

Figure 3.8: For each method, the median value of the overall accuracy for different band-
width values. The naive method and the HMM do not use the ground speed as an input.
In abuse of notation, a bandwidth value of 0 means that there has been no smoothing. A
subsample of several hundred flights was selected to limit the calculation time.

defined by [Rubin, 1976]. An important case in which this assumption does not hold is
the state-dependent missingness case. Note that it is necessary to include time points
with missing observations to allow the state probabilities to be computed properly (sim-
ply ignoring the missing time points is not valid). Missing points may be consecutive or
not. Figure 3.7 shows that the quality of the final segmentation is minimally affected by
missing values.

3.3.2 Pre-processing data

Raw data may be erratic for some flights. To solve this problem, a common practice
is to smooth the input curves with a kernel. The effect of smoothing on the quality
of segmentation is quite clear when it comes to the number of transitions. In general,
smoothing data tends to result in a lower number of transitions. Using kernel smoothing
with a bandwidth value of 0.01 for the RoC and a bandwidth of 0.01 for the ground speed,
the median number of transitions drops to 4 with the fuzzy logic. The median number of
unlikely transitions drops to zero.

To assess the benefits of pre-processing data, we adopt a grid search approach in which we
vary the bandwidth values for the RoC and the ground speed. We observe that the HMM
achieves a better overall accuracy with minimal smoothing as illustrated in Figure 3.8.
However, the global accuracy of the naive method and fuzzy logic improves with some
smoothing of the RoC.
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Figure 3.9: Transition graph of the constrained 6-state Markov chain.

The bandwidth value of the ground speed does not seem to play any role in the evolution
of the fuzzy logic global accuracy. Even if ground speed values are noisy, it appears that
it is not of key importance to correctly label the climb, the cruise and the approach.

3.4 Application n°2: A multivariate model for flight phase
identification

This application is a direct extension of a first application presented in Section 3.3. It
aims at detecting a broader range of flight phases thanks to a multivariate HMM model.

We consider the RoC, the ground speed (in knots) and the first differences of the ground
speed to identify six flight phases: taxi, takeoff, climb, cruise, approach, and rollout.
Again, flight phases may be seen as hidden states. We naturally specify a constrained
6-state multivariate HMM for which the transition graph of the corresponding Markov
chain is represented in Figure 3.9. The transition probability matrix of the multivariate
model is

Γ2 =

Q
ccccccca

“11 “12 0 0 0 0
0 “22 “23 0 0 0
0 0 “33 “34 0 0
0 0 “43 “44 “45 0
0 0 0 “54 “55 “56

“61 0 0 0 0 “66

R
dddddddb

. (3.6)

The first state is a good candidate to represent the taxi phase. To ensure this, the initial
distribution is taken to be u(1) = (1, 0, 0, 0, 0, 0) (it is fixed). State 2 refers to the takeoff,
state 3 to the climb, state 4 to the cruise, state 5 to the approach, state 6 to the rollout.
We use 20 different starting values to increase the chances of finding the global maximum.
We use Gaussian distributions to set up the state-dependent densities of the RoC. The
ground speed is transformed into a binary variable (1 if the ground speed is less than
ÁM = 0.05, 0 otherwise). We use Bernoulli distributions as the state-dependent densities
of this variable. Finally, a discretized version of first difference of the ground speed is used.
A value of 1 is assigned if the first difference at the point is greater than the quantile q0.995,
-1 if the first difference is less than the quantile q0.05, and 0 otherwise. We use multinomial
distributions as the state-dependent densities of this variable. The initial values are chosen
in the same way as for the univariate model.

A visual result for a typical flight is provided in Figure 3.10. Results are very good
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Figure 3.10: Identification results for a typical flight on the altitude profile and on the
ground speed profile.

Figure 3.11: Evaluation of the performance. Box plots of the F-1 scores per state. The
crosses correspond to the averages.

from a visual perspective. The value of several performance metrics over a subsample are
presented in Figure 3.11. Among the 2,868 flights, the subsample corresponds to flights
that have at least the 6 flight phases of interest. If F-1 scores are very high, we can
observe significant disparities among the flight phases. Strikingly, the F-1 score is lower
for the takeoff and landing phases. Several reasons can explain this. First, these phases
represent a very small number of data points across the entire trajectory (on average 6
points out of 1,000 for the takeoff and 4 out of 1,000 for the landing). Second, it may
be necessary to include other variables to more accurately identify the takeoff and rollout
phases (considering variables such as pitch angle may be interesting).

3.4.1 Pre-processing data

When considering the multivariate HMM for detecting 6 flight phases, there is a slow
decrease in the median value of the overall accuracy with an increase in the bandwidth
value of the RoC (Figure 3.12). A similar pattern emerges with the distributions of
F-1 scores by phase as we observe in Figure 3.13. The effect of data preprocessing is
particularly significant on the decoded number of phases, as observed in Figure 3.14.
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Figure 3.12: For each bandwidth value of the RoC, box plots of the global accuracy for
the multivariate HMM. In abuse of notation, a bandwidth value of 0 means that there
has been no smoothing. A sample of several hundred flights was selected to limit the
calculation time.

Figure 3.13: For each bandwidth value of the RoC, box plots of the F-1 scores for the
multivariate HMM. In abuse of notation, a bandwidth value of 0 means that there has been
no smoothing. A sample of several hundred flights was selected to limit the calculation
time.

Figure 3.14: For each bandwidth value of the RoC, density of the number of decoded
transitions. The distribution of the number of transitions in the reference data is in red.
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Figure 3.15: Segmentation of the 6 main phases of the flight using the multivariate HMM
and probabilities of belonging to each class.

3.4.2 Uncertainty quantification

Fuzzy logic provides a measure of uncertainty that is not perfect: by nature, the degree of
membership in each class is not a probability. This is not the case with HMMs, for which
it is possible to obtain a probability of belonging to each class (Equation 3.2). For a given
point in the flight, the sum of the probabilities of belonging adds up to 1. An illustration
is provided for the multivariate model (Figure 3.15).

3.5 Application n°3: The segmentation of a helicopter flight
with an unknown number of flight phases

Unlike fuzzy logic and supervised methods, where it is necessary to know the number of
phases in advance, HMMs can be employed even when flight phases are not known. It
is typically the case when extracting continuous flights from a scattered ADS-B dataset.
Another interesting application is the maneuver detection problem for rotorcraft and fixed-
wing aircraft as the order of maneuvers is not predetermined.

Regarding HMMs, it not possible to propose a model with constraints because the sequence
of phases is unknown by assumption. The decoding step (local or global decoding) will
provide a segmentation with labels that need to be interpreted afterward. The main
difficulty with HMM is the following: it won’t be enough to test a different number of
states and to choose the best model because in a basic HMM with m states, increasing
m always improves the fit of the model (as judged by the likelihood) at the cost of a
quadratic increase in the number of parameters. It is common model selection problem
in statistics. In the frequentist approach, a common criterion is the Akaike Information
Criterion (AIC):

AIC = ≠2 log LT + 2p (3.7)

where log LT is the log-likelihood of the fitted model and p denotes the number of pa-
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Figure 3.16: Visualization of the helicopter flight. Altitude, longitude, latitude, ground
speed, vertical rate, and track angle profiles [left], flat view [center], and three-dimensional
view [right]. Time is scaled so that the flight starts at t = 0 and ends at t = 1. There are
T = 297 points. Time resolution is 10 seconds. The track angle is a clockwise angle from
the geographic north.

rameters of the model. The first term is a measure of fit, and decreases with increasing
number of states m. The second term is a penalty term, and increases with increasing m.
In the Bayesian approach, the BIC differs from AIC in the penalty term:

BIC = ≠2 log LT + p logT (3.8)

where log L and p are as for the AIC, and T is the number of observations. Compared
to the AIC, the penalty term of the BIC has more weight for T > exp(2), which holds
in most applications. Thus the BIC often favours models with fewer parameters than
does the AIC. More theoretical details can be found in [Visser and Speekenbrink, 2022]
(Subsection 2.6.2).

We illustrate this use of HMMs with the segmentation of a helicopter flight. We have
downloaded some ADS-B data from the Opensky Network’s Impala shell for the helicopter
with registration SE-JPU (ICAO24: 4aaa15) operated by the Swedish National Police.
We select a flight from June 7, 2021. The flight has a complicated shape as shown in
Figure 3.16.

We consider a multivariate HMM with the longitude first differences, the latitude first
differences, the ground speed (m.sec≠1), and the vertical rate (m.sec≠1). We use 100
different starting values to increase the chances of finding the global maximum. For each
iteration and for each number of states, we compute the BIC. The final number of states
is the one that has reached the lowest median value of the BIC, that is to say 8 in this case
as shown in Figure 3.17. The final segmentation is shown in Figure 3.18. It is observed
that certain states are easily interpretable. States 1 and 3 correspond to climbing phases
at medium (state 1) and high (state 3) speeds. State 2 is characterized by significant
oscillations in the first differences of longitude and latitude. It appears to represent the
helicopter’s circling. In fact, these are rotations (as clearly seen with the track angle).
State 5 corresponds to very rapid horizontal movement. The same goes for state 7, but
the direction is different. State 6 corresponds to a descent.

3.6 Conclusion and perspectives

For commercial aviation, and when the number of states is predetermined, the HMM we
propose can detect up to 6 flight phases (Section 3.4). The overall accuracy on nearly
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Figure 3.17: Distribution of the BIC value for each number of states.

Figure 3.18: Identification results for the helicopter flight.
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3,000 flights is about 97% (median accuracy). These results are highly competitive with
the state-of-the-art literature. When looking at each phase separately, notable differences
emerge. While the taxi phase is identified almost perfectly, takeoff and landing appear to
be more challenging to detect (Figure 3.11). We believe that this is primarily explained
by the fact that these phases represent, on average,6 and 4 points, respectively, out of the
1,000 points in the trajectory. F-1 scores associated to these flight phases are still very
high. In any case, HMMs seem to adapt well to the fine granularity of FDR data. Missing
values do not pose any issues (Figure 3.7). Note that, if there are good reasons to believe
that some flights are not observed in their entirety (which is often the case working with
ADS-B data), it is preferable not to specify the number of states in advance, following the
approach used for helicopter flights.

For each point, it is possible to obtain a probability of belonging to each class, which is not
the case with most existing methods (Figure 3.15). Depending on operational applications,
one may focus on points for which the flight phase is decoded with high confidence.

The strength of HMMs lies in their great flexibility. When the number of phases is not
known or their sequence is not predetermined (as it is the case with helicopters, for ex-
ample), HMMs can still be used. We have illustrated this point with a flight example for
which the HMM produces interpretable phases (Figure 3.18). By working on the inputs,
we believe that it is possible to detect the relevant maneuvers for each application.

Several exciting aspects fall outside the scope of this work and may be considered as
perspectives for future research:

• Defining new performance metrics. Since flight phase segmentation produces a
sequence, it would be interesting to compare the resulting sequence to the ground truth
sequence. A first step in this direction would be to investigate distances employed for
text analysis ([Pevzner and Hearst, 2002]).

• Considering covariates. There are multiple ways to incorporate covariates in HMMs.
Covariates may be considered in the state process (expressing state transition proba-
bilities as functions of covariates) or/and in the state-dependent process (which is less
common). The integration of covariates can lead to a better understanding of the
transition probability values and more generally to the drivers of the state-switching
dynamics ([Zucchini et al., 2016], Chapter 10, p.145).
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Acronyms

AIC Akaike Information Criterion
BIC Bayesian Information Criterion
CAGD Computer-Aided Geometric Design
DDA Dynamic Data Analysis
DNL Day-Night Average Sound Level
DP Dynamic Programming
DTW Dynamic Time Warping
ETS Equitable Threat Score
FDA Functional Data Analysis
FDR Flight Data Recorder
FPCA Functional Principal Component Analysis
GCV Generalized Cross-Validation
HMM Hidden Markov Model
IATA International Air Transport Association
ICAO International Civil Aviation Organization
IDW Inverse Distance Weighting
IPCC Intergovernmental Panel on Climate Change
ISA International Standard Atmosphere
KED Kriging with External Drift
NASA National Aeronautics and Space Administration
NMT Noise Measurement Terminal
NOAA National Oceanic and Atmospheric Administration
ODE Ordinary Differential Equation
OODA Object Oriented Data Analysis
PCA Principal Component Analysis
RFPCA Riemannian Functional Principal Component Analysis
RoC Rate of Climb
SR-PDE Spatial Regression with Partial Differential Equation
SRVF Square-Root Velocity Function
SUR Seemingly Unrelated Regressions
UK Universal Kriging
UTM Universal Transverse Mercator
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Appendix A

Datasets

A.1 NASA flights

Interest of the dataset

The NASA data are FDR data. It is one of the few datasets where flight phases
are labeled and fuel consumption and flow rate are available. The major drawback
is the lack of clear documentation.

A flight recorder is an electronic device installed in an aircraft to aid in investigating
aviation accidents and incidents. Flight recorders are mandatory regulatory equipment on
public transport aircraft, business jets, and large helicopters.

Of the three types of regulatory recorders comprising the device, one is the Flight Data
Recorder (FDR), which logs the most crucial flight parameter values related to the air-
craft’s behavior, including speed, altitude, engine operation, autopilot, control surface
positions, flight controls, and so on. The number of parameters and information recorded
per second varies from dozens to several thousand, depending on the type of aircraft and
the technology of the onboard equipment.

NASA has provided access to a unique FDR dataset to enhance the evaluation and pro-
gression of data mining capabilities aimed at bolstering aviation safety. The files comprise
real data recorded aboard a singular model of regional jet operating in commercial service
throughout a span of three years. Data are stored on DASHlink, a collaborative sharing
network for researchers in the fields of data mining and systems health. Data contain
detailed aircraft dynamics, system performance, and other engineering parameters, that
is to say 186 parameters in total. Some key parameters are listed in Table A.1. The FDR
data is organized into frames of 4 seconds, which are further divided into subframes of
one second each. A subframe consists of a variable number of 12-bit words, ranging from
64 to 1024 as of today. The lack of documentation for NASA data makes decoding FDR
data complex.

Provided zip files contain individual flight recorded data in Matlab file format. We focus
on the 9 zip files for tail 687. In total, there are 5,376 Matlab files (7.36 Go).

The dataset presents an inherent challenge due to the varying sampling rates. For a given
flight, there are four times more pressure altitude values than longitude or latitude values.
A simple procedure is employed to address this issue and involves the following steps:
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A.1 NASA flights

Parameter Sampling rate (Hz) Units Description

Longitude 1 degrees
Latitude 1 degrees
Pressure altitude 4 feet
Barometric altitude 4 feet
Ground speed 4 knots
True airspeed 4 knots
Altitude rate 4 feet/min
Wind speed 4 knots
Wind direction 4 degrees

Flight phase 1 -
Labels are “unknown”,
“preflight”, “taxi”, “takeoff”, “climb”,
“cruise”, “approach”, “rollout”.

Year 0.25 -
Month 0.25 -
Day 0.25 -
Hour (GMT) 2 -
Minute (GMT) 2 -
Second (GMT) 2 -

Table A.1: Some parameters for NASA flights

• Determining the timestamps associated with the first and last points, respectively. If
one of these two values is missing, the flight is not considered.

• Computing the duration of the flight (in seconds) based on the difference of these two
timestamp values.

• Comparing this duration with the duration derived from the frame counter. If the
difference between these two durations exceeds 300 seconds (5 minutes), the flight is
discarded.

• Keeping the flight if the number of different flight phases is exceeding 5.

• Linearly interpolating the values to avoid the sampling rate problem.

The final sample comprises 2,857 flights.

Remark A.1.1: Cleaning steps

More detailed decoding of NASA data would be possible if documentation were
provided.

Including all flights, the first point is observed on 2001-04-11 11:57:30 and the last one on
2004-07-26 17:54:36. Some spatial positions clearly exhibit anomalies, occurring when the
longitude and/or latitude values abruptly drop to zero. Without taking time into account,
Figure A.1 provides an accurate representation of the spatial coverage of flights.
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A.2 Eurocontrol flights

Figure A.1: Spatial positions corresponding to the NASA flights (aberrant spatial positions
have been removed for the plot)

A.2 Eurocontrol flights

Interest of the dataset

Eurocontrol data are particularly rich and extensive, providing unique access to
flight plans and clearly indicating departure and arrival airports. However, the
temporal resolution of the flights is low.

Eurocontrol provides some traffic datasets covering all historic commercial flights in four
fixed, sample months that are: March, June, September, December. Some terms and
conditions apply to access the dataset. Military, state and general aviation flights are not
available and the data are provided with no quality guarantees.

The main data source for this dataset is flight plans submitted by airlines and other aircraft
operators to the Eurocontrol Network Manager (NM). Flights profiles generated by NM’s
systems. In some cases, the aircraft operator value in the flight plan has been updated
with more accurate values from Eurocontrol Central Route Charges Office (CRCO) data.
The so-called “actual” version of the data includes some updates from radar observation
of the flight’s path. Some key parameters are listed in Table A.2.

Definition A.2.1: Flight level

A Flight Level (FL) is an aircraft’s altitude at standard air pressure, expressed in
hundreds of feet. Flight levels are used to ensure safe vertical separation between
aircraft, despite natural local variations in atmospheric air pressure.

We are focusing on flights from midnight to noon on March 1, 2022. A total of 5,457
flights were recorded. Focusing on flights longer than one hour with at least 10 available
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A.3 Drone flights

Parameter Units Description

Identifier -
Unique numeric identifier for each flight
in Eurocontrol PRISME Data Warehouse.

Time over - Time (UTC) at which the point was crossed.
Flight level - Altitude in flight levels at which the point was crossed.
Longitude degrees Longitude in decimal degrees.
Latitude degrees Latitude in decimal degrees.

Table A.2: Some parameters for the Eurocontrol flights

Min Q1 Median Mean Q3 Max

Duration (h) 1.00 1.28 1.67 2.05 2.38 10.31

Table A.3: Summary statistics for the flight durations (hours).

data points, and after several data cleaning steps, a sample of 2,406 flights was compiled.
Some descriptive statistics for the flight durations are provided in Table A.3.

The spatial coverage of flights may be seen on Figure A.2.

A.3 Drone flights

Interest of the dataset

Drone flights exhibit distinct characteristics from commercial flights, introducing
more intricate case studies for smoothing and flight phase detection tasks. The
data presented here were collected as part of this thesis.

Overview

The “volière drones Toulouse-Occitanie” indoor flight arena is a specialized facility situated
in Toulouse, France, designed specifically for the purposes of conducting research, exper-
iments, and educational activities focused on Unmanned Aerial Vehicle (UAV) systems.
It is equipped with precise localization instruments to rigorously measure, monitor, and
analyze experimental conditions and results within an environment conducive to accurate
replication. The total floor area is 560 square meters. The flight area measures 10 meters
in length, 10 meters in width, and 8 meters in height. A schematic representation of this
volume and its associated coordinates can be seen in Figure A.3. The indoor positioning
system comprises 16 cameras.

Eight drone flights were captured during the open day event held at the French National
School of Civil Aviation (ENAC) on Saturday, December 2nd, 2023. All these flights were
operated by a drone named Anton which is a quadrirotor. The drone weighs about 600
grams and has a LiPo 3S battery. Its frame is constructed from carbon and 3D printed
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A.3 Drone flights

Figure A.2: Spatial positions corresponding to some Eurocontrol flights

Parameter Units Description

East meters
The east-west position in the flight volume.
A negative sign indicates a position towards the west.

North meters
The north-south position in the flight volume.
A negative sign indicates a position towards the south.

Up meters The up-down position in the flight volume.
East speed meters/sec The east-west component of the speed.
North speed meters/sec The north-south component of the speed.
Up speed meters/sec The up-down component of the speed.
Flight time seconds
Input battery voltage volts

Table A.4: Some parameters for the drone flights

plastic. A picture of the drone is shown on Figure A.4. The key parameters that have
been measured are listed in Table A.4.

Each of the 8 flights corresponds to the same nominal mission, the stages of which are
schematized in Figure A.5. In theory, the flight patterns are therefore the same with some
variations. More specifically, the exact starting position, the location of the building to
be identified, the position of the rover, its remote control, and the final landing position
may vary slightly.

Descriptive Statistics and Visualizations

Some descriptive statistics for the flight durations are provided in Table A.5.

Some flight profiles are shown on Figure A.6. As expected, measured positions are ex-
tremely accurate. In comparison, input battery voltage profiles are extremely noisy, as can
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A.3 Drone flights

Figure A.3: Schematic view of the flight volume.

Figure A.4: Picture of the drone ‘Anton’.

Min Q1 Median Mean Q3 Max

Duration (s) 78 134.4 158.6 154.7 169.4 239.5

Table A.5: Summary statistics for the drone flight durations (seconds).
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A.3 Drone flights

Figure A.5: Diagram of the drone’s nominal mission. The drone takes off from the pink
cloud and scans the buildings (represented by gray squares) until it finds a landmark on
the roof of a building [A]. The drone then delivers a package to the roof of the building [B].
It then joins a ground rover whose position is known [C]. The ground rover is manually
controlled while the drone follows the rover at altitude [D]. When the rover is facing a
wind field, the drone lands on the rover. The drone is brought back near the starting point
and landed on the remote-controlled rover [E].
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A.3 Drone flights

Figure A.6: Some drone flight profiles.

be seen in Figure A.7. It is known that voltage measurements are generally quite noisy,
even more so on a flying drone where sources of electrical disturbances are significant.

The battery voltage for this drone can vary between 12.4 V (full charge) and 9.0 V (dead
battery). The voltage will decrease during flight but will also depend on the current
consumed by the motors at any given time. This means that the voltage may rise after
landing, for example.
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Figure A.7: The 8 input battery voltage profiles.

A.4 IAGOS flights

Interest of the dataset

The flights in the IAGOS dataset are particularly valuable for comparing methods
of interpolating meteorological values. It is the only sample for which a highly
comprehensive set of meteorological values is measured on board. Moreover, the
flights occur all over the globe.

The Measurement of Ozone and Water Vapour on Airbus In-service Aircraft (MOZAIC)
program started in 1994 ([Marenco et al., 1998]). This initiative was driven by the need to
improve three-dimensional chemistry and transport models, which have been used to in-
dicate minor ozone increments in the upper troposphere due to present aircraft emissions.
The MOZAIC program was transferred into the European Research Infrastructure IAGOS
(In-service Aircraft for a Global Observing System) in 2008 ([Petzold et al., 2015]). IA-
GOS operates ‘a global-scale monitoring system for atmospheric trace gases, aerosols and
clouds utilising the existing global civil aircraft. As of 2020, the MOZAIC/IAGOS fleet
had visited 330 airports. Due to the high frequency of the flights covered by IAGOS, data
are highly representative of the altitude band and flight corridors frequented by passenger
aircraft’.

The focus is made on the IAGOS L2 time series data product, that is to say data that have
been submitted to final quality control (level 2) ([Boulanger et al., 2018]). One single file is
provided for each flight. The data notably encompass the aircraft’s position recorded every
4 seconds (longitude, latitude, altitude), along with measurements of air temperature,
relative humidity, and the two horizontal wind components.

IAGOS data demonstrate sufficient reliability to be considered as the actual weather con-
ditions experienced by the aircraft, as demonstrated in [Neis et al., 2015]. In the following,
we consider a sample of IAGOS flights. Flights are downloaded from the IAGOS data por-
tal (observational data). Details for the IAGOS data request are provided in Table A.6.

In the IAGOS system, quality labels are assigned to data. To ensure data reliability,
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Start date 2019-01-01
End date 2019-12-31
Projects IAGOS-CORE

Variables
Relative humidity with respect to ice (RHI)
Relative humidity with respect to liquid water (RHL)
Water vapor mixing ratio (H2O)

Data processing level L2
Include L4 ancillary data No
Data format NetCDF
South West latitude -90
South West longitude -180
North East latitude 90
North East longitude 180

Result 2,290 flights

Table A.6: Details for the IAGOS data request.

Min Q1 Median Mean Q3 Max

Duration (h) 1.32 5.02 6.60 7.16 9.48 12.32

Table A.7: Summary statistics for the flight durations (hours).

we only choose data with a validity flag of ‘0’, indicating trustworthy measurements
([Gierens et al., 2020]). Since each weather variable comes with its quality label, we assess
the combined quality of four variables: Relative Humidity with respect to Ice (RHI), air
temperature, and the horizontal wind components (u and v). For a given flight, if more
than 90% of the points have a joint validity flag ‘0’, invalid points are dropped and the
flight is retained. Otherwise, if the majority of data points are not reliable, we discard the
entire flight. Following this process, we are left with 1,366 flights.

Every flight undergoes linear interpolation and is regridded onto 100 evenly distributed
points spanning from 0 to 1. This final step may not be essential, but it helps to reduce
computation time when focusing on comparing spatial interpolation methods.

Duration and spatial coverage

Some descriptive statistics for the flight durations are provided in Table A.7.

The spatial coverage of flights may be seen on Figure A.8.

Corresponding ERA5 data

For each IAGOS flight, ERA5 data are downloaded thanks to the Climate Data Store
(CDS) Application Programming Interface (API). ERA5 data are presented in Section A.6.
A margin of 2 degrees of longitude and latitude is chosen. At the end of this step, the
final sample consists of 1,212 flights.
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Figure A.8: Spatial positions corresponding to some IAGOS flights

A.5 Noise data

Interest of the dataset

The noise measurement at Chicago airport provides an interesting case study for
comparing spatial interpolation methods.

Currently, there are 36 noise monitors registering aircraft noise throughout the O’Hare
International Airport region [noa, 2024]. The Chicago Department of Aviation plans to
install and commission additional noise monitors in Chicago Wards 40, 41 and 39.

The Chicago Department of Aviation (CDA) routinely checks the calibration and performs
annual preventative maintenance for every noise monitor in the Airport Noise Management
System (ANMS). Noise monitors are sited in consultation with community representatives
and based primarily on the criteria outlined in the fact sheet titled Criteria for the Per-
manent Noise Monitors at O’Hare International Airport.

Once the noise events are collected and downloaded to the CDA’s ANMS, they are cor-
related to actual aircraft operations. The process that correlates noise events to aircraft
operations uses defined parameters to match every eligible noise event to specific aircraft
operations. Noise events that fall outside these parameters are classified as community
noise.

Several fact sheets can be accessed on the O’Hare Noise Compatibility Commission
(ONCC) website.

Noise monitors

A noise monitor is an electronic instrument that measures sound pressure levels. The
CDA’s noise monitors record noise events based on threshold exceedance. Each noise
event starts at the time the noise level exceeds a decibel threshold, typically slightly
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above the background or ambient noise level, and ends at the time the noise level returns
to the threshold. For each noise event recorded, a start date/time, end date/time, Leq
(Equivalent Sound Level), and Lmax (Maximum Sound Level) is recorded. On average,
the noise monitors around O’Hare capture and record noise events at a radius of greater
than three miles.

Defintion - Usual descriptors for sound and noise (Lmax)

Lmax is simply the highest sound level recorded during an event or over a given pe-
riod of time. It provides a simple and understandable way to describe a sound event
and compare it with other events. In addition to describing the peak sound level,
Lmax can be reported on an appropriately weighted decibel scale (A-weighted, for
example) so that it can disclose information about the frequency range of the sound
event in addition to the loudness. Lmax, however, fails to provide any information
about the duration of the sound event.

Defintion - Usual descriptors for sound and noise (Leq)

The equivalent sound level (Leq) metric may be used to define cumulative noise
dosage, or noise exposure, over a period of time. In computing Leq, the loga-
rithmically calculated total noise energy over a given period of time, during which
numerous events may have occurred, is averaged over the time period. The Leq rep-
resents the steady sound level that is equivalent to the varying sound levels actually
occurring during the period of observation. For example, an 8-hour Leq of 67 dB
indicates that the amount of sound energy in all the peaks and valleys that occurred
in the 8-hour period is equivalent to the energy in a continuous sound level of 67
dB. Leq is typically computed for measurement periods of one hour, eight hours, or
24 hours, although any time period can be specified. It is also frequently computed
for a single noise event.

Once the noise events are collected and downloaded to the CDA’s ANMS, they are cor-
related to actual aircraft operations. The process that correlates noise events to aircraft
operations uses defined parameters to match every eligible noise event to specific aircraft
operations. Noise events that fall outside these parameters are classified as community
noise.

Airport Noise Management System (ANMS) reports

The ANMS integrated system includes many components including a network of 33 per-
manent noise monitors that measure the noise environment. The system directly connects
to the FAA’s air traffic control radar that collects aircraft flight tracks. More than 5
million data points are recorded and stored by the system each day.

The Day-Night average sound Level values are considered for December 2022.
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Focus on the Day-Night average sound Level (DNL)

Defintion - Usual descriptors for sound and noise (DNL)

The Day-Night average sound Level (DNL) metric is a special variation of the
24-hour Leq metric. Like Leq, the DNL metric describes the total noise exposure
during a given period. Unlike Leq, however, DNL, by definition, can only be applied
to a 24-hour period. In computing DNL, an extra weighting of 10 dB is assigned
to any sound levels occurring between the hours of 10:00:00 p.m. and 6:59:59 a.m.
This penalty is intended to account for the greater annoyance that nighttime noise
is presumed to cause for most people. Recalling the logarithmic nature of the dB
scale, this extra weight treats one nighttime noise event as equivalent to ten daytime
events of the same magnitude. As with Leq, DNL values are strongly influenced by
the loud events. For example, 30 seconds of sound of 100 dB, followed by 23 hours,
59 minutes, and 30 seconds of silence would compute to a DNL value of 65 dB. If
the 30 seconds occurred at night, it would yield a DNL of 75 dB.

DNL is the standard metric used for environmental noise analysis in the U.S. This practice
originated with the USEPA’s effort to comply with the Noise Control Act of 1972.

A.6 ERA5 data

Interest of the dataset

The ERA5 data used here are high-quality external meteorological data. They can
be used to associate meteorological conditions with trajectory data.

ERA5 is the fifth generation European Centre for Medium-Range Weather Forecasts
(ECMWF) reanalysis for the global climate and weather for the past four to seven decades
([Hersbach et al., 2020]). Reanalysis combines model data with observations from across
the world into a globally complete and consistent data set using the laws of physics.

The focus is made on a data set named ERA5 hourly data on pressure levels from 1940
to present. It is a regridded subset of the full ERA5 data set on native resolution. In this
data set, several weather variables are available on an hourly basis for 37 pressure levels
(from 1000 hPa to 1 hPa) on a 0.25¶ ◊ 0.25¶ longitude-latitude grid. Some variables of
interest are described in Table A.8.

Grid geometry, coordinate system

ERA5 data is produced and archived on a reduced Gaussian grid.

Definition - Gaussian grid

A Gaussian grid is used in the earth sciences as a gridded horizontal coordinate
system for scientific modeling on a sphere (i.e., the approximate shape of the Earth).
At a given latitude (or parallel), the gridpoints are equally spaced. On the contrary
along a longitude (or meridian) the gridpoints are unequally spaced. By contrast,
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Name Units Description

Relative humidity percentages

This parameter is the water vapour pressure as a percentage of the value at which the air becomes saturated
(the point at which water vapour begins to condense into liquid water or deposition into ice).
For temperatures over 0°C (273.15 K) it is calculated for saturation over water.
At temperatures below -23°C it is calculated for saturation over ice.
Between -23°C and 0°C this parameter is calculated by interpolating between the ice and water values using a quadratic function.

Temperature kelvins

This parameter is the temperature in the atmosphere.
It has units of kelvin (K).
Temperature measured in kelvin can be converted to degrees Celsius (°C) by subtracting 273.15.
This parameter is available on multiple levels through the atmosphere.

U-component of wind meters/second

This parameter is the eastward component of the wind.
It is the horizontal speed of air moving towards the east.
A negative sign indicates air moving towards the west.
This parameter can be combined with the V component of wind to give the speed and direction of the horizontal wind.

V-component of wind meters/second

This parameter is the northward component of the wind.
It is the horizontal speed of air moving towards the north.
A negative sign indicates air moving towards the south.
This parameter can be combined with the U component of wind to give the speed and direction of the horizontal wind.

Table A.8: Some variables of interest from the dataset ERA5 hourly data on pressure
levels from 1940 to present

in the usual geographic latitude-longitude grid, gridpoints are equally spaced along
both latitudes and longitudes. Gaussian grids also have no grid points at the poles.
In a regular Gaussian grid, the number of gridpoints along the longitudes is constant,
usually double the number along the latitudes. In a reduced (or thinned) Gaussian
grid, the number of gridpoints in the rows decreases towards the poles, which keeps
the gridpoint separation approximately constant across the sphere.

Since data are requested in NetCDF format, interpolation to a regular grid is mandatory.
ECMWF’s NetCDF implementation only supports regular grids.

All gridded data is made available in decimal degrees, with latitude values in the range
[-90°,+90°] referenced to the equator and longitude values in the range [-180°,+180°] ref-
erenced to the Greenwich Prime Meridian.

Limitations regarding relative humidity values

Despite the fine spatial and temporal granularity of ERA5 data, they exhibit a number of
well-documented limitations.

More specifically, in situ measurements of weather and modelled data may differ at the
tropopause level. Differences between in situ measurements provided by IAGOS and
reanalysis data of ERA-Interim (an old version of the ERA5 data set we consider) have
been quantified by [Reutter et al., 2020]. Temperature values are found to be very similar
as well as water vapour volume mixing ratio values. However, IAGOS water vapour volume
mixing ratio values show a larger variability and stronger extreme values, which has a
consequence on the values of relative humidity with respect to ice. Crucially, ERA-Interim
and IAGOS behave differently when relative humidity with respect to ice exceeds 100% (ice
supersaturated regions). This assessment is also made by [Gierens et al., 2020]. A review
of existing studies that have identified the limitations of humidity fields provided by the
ECMWF ERA5 product is given in the supplementary material of [Teoh et al., 2022].

Limitations of humidity fields have a very important consequence on the comparison of
interpolation methods: even a perfect interpolation based on ERA5 data would not be
able to retrieve measured weather values (IAGOS). It is expected that interpolation errors
will be more significant for relative humidity values than for temperature ones, and this,
regardless of the quality of the interpolation.
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A.6 ERA5 data

Without further clarification, the relative humidity referred to in this work is always the
relative humidity with respect to ice.
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A.6 ERA5 data
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Appendix B

Basic differential geometry of
curves

The general concept of a curve refers to various mathematical objects. Basic differential
geometry studies parameterized curves in R

n that are differentiable. The main references
for this appendix are [Pressley, 2010] and [Carmo, 2016].

Definition B.0.1: Parameterized curve

A parameterized curve in R
n is a map α : (a, b) æ R

n for some numbers a and b
such that ≠Œ Æ a < b Æ +Œ. The open interval (a, b) is denoted I. If I is a closed
interval, α is said to be a parameterized path.

Definition B.0.2: Parameterized smooth curve

A parameterized smooth curve is a parameterized curve that is infinitely dif-
ferentiable (CŒ), that is to say, α maps each t œ (a, b) into a point
α(t) =

1
–[1](t), ..., –[n](t)

2
œ R

n in such a way that the component functions

–[1](t), ..., –[n](t) are infinitely differentiable. The variable t is called the param-
eter of the curve.
A parameterized smooth path on a closed interval [a, b] is the restriction of param-
eterized smooth curve on an open interval containing [a, b].

Example B.0.1: Astroid

The astroid is a smooth differentiable curve defined, ’t œ R, as

α(t) = (cos(t)3, sin(t)3). (B.1)

In the following set of definitions, since we consistently refer to parameterized smooth
curves, we will simply write “curve”.

Definition B.0.3: Tangent vector

Let α be a curve. Its first derivative αÕ(t), also denoted α̇(t), is called the tangent
vector of α at the point α(t).
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Definition B.0.4: Trace of a curve

Let α be a curve. The trace of α is the image set α(I) µ R
n.

Example B.0.2: Trace of the astroid

The trace of the astroid defined in Example B.0.1 is shown on Figure B.1.

Figure B.1: The trace of the astroid.

Definition B.0.5: Arc length

Let α be a curve. The arc length of α starting at point α(t0) is the function s(t)
given by

s(t) =

ˆ t

t0

Îα̇(u)Î du (B.2)

where Î.Î is the Euclidean norm.

Definition B.0.6: Unit speed

Let α be a curve. The curve α is a unit-speed curve if α̇(t) is a unit vector for all
t œ I.

Definition B.0.7: Reparametrization

A curve Âα : ÂI æ R
n is a reparametrization of the curve α : I æ R

n if there is a CŒ

bijective map „ : ÂI æ I such that the inverse map „≠1 : I æ ÂI is also CŒ („ is a
smooth homeomorphism) and ’Ât œ ÂI, Âα(Ât) = α(„(t)). Since „ has a CŒ inverse, α

is a reparametrization of Âα. Both curves have the same geometric properties.
If ’t œ ÂI, „̇(t) > 0, α and Âα have the same orientation. It is said that „ is orientation
preserving.
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Definition B.0.8: Regular curve

A curve α is regular if ’t œ I, α̇(t) ”= 0. Any point t where α̇(t) = 0 is a singular
point of the curve.

It is clear that the astroid defined in Example B.0.1 has several singular points.

Proposition B.0.1: Existence of a unit-speed reparametrization

A curve has a unit-speed reparametrization if and only if it is regular. The proof
may be found in [Pressley, 2010] (p.15).

In differential geometry, most curves are assumed to be regular. It ensures the existence
of a unit-speed reparametrization, which is often very convenient. For the following def-
initions, we will refer to a regular curve simply as a curve. Two scalar functions, the
curvature and torsion, are widely used to describe the shape of a curve in R

3 (so-called
space curves). We recall the definition of these functions in the general case, that is,
without assuming a specific parametrization.

Definition B.0.9: Curvature

Let α be a curve in R
3. Its curvature is

Ÿ =
Îα̈ ◊ α̇Î

Îα̇Î3 (B.3)

where ◊ denotes the vector (or cross) product.

Definition B.0.10: Torsion

Let α be a curve in R
3 with nowhere-vanishing curvature. Its torsion is given by

· =
(α̇ ◊ α̈)

...
α

Îα̇ ◊ α̈Î2 (B.4)

where ◊ denotes the vector (or cross) product.
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Appendix C

Polynomial spline functions

A detailed description of polynomial spline functions can be found in many monographs.
Two essential references are [Boor, 2001] and [Schumaker, 2007]. Notations vary from one
author to another.

Definition C.0.1: Polynomial spline function (simple knots)

Based on the notations of [Dierckx, 1993] (Chapter 1, p.3), a function s(x), defined
on [a, b], is called a polynomial spline function of degree k > 0 (order k + 1), having
as knots the strictly increasing sequence ⁄j , j = 0, 1, ..., g + 1 (⁄0 = a, ⁄g+1 = b), if
the following two conditions are satisfied:

• On each knot interval [⁄j , ⁄j+1], s(x) is given by a polynomial of degree k at
most.

• The function s(x) and its derivatives up to order k ≠ 1 are all continuous on
[a, b], that is, s(x) œ Ck≠1([a, b],R).

In particular, cubic spline functions (or cubic splines for short) are polynomial spline
functions of degree k = 3 (order 4). They are used in many applications.

Remark C.0.1: Notations

In [Schumaker, 2007] (Definition 1.2, p.5), polynomial spline functions are defined
as piecewise polynomials that achieve some degree of global smoothness. The k + 2
knots are denoted x0, ..., xk+1. The vector of knots, denoted ∆, partitions the
interval [0, 1] into k + 1 subintervals. These subintervals are Ii = [xi, xi+1) for i =
0, ..., k ≠ 1 and Ik = [xk, xk+1].

Remark C.0.2: Notations

In [Ramsay and Silverman, 2005], the order of the polynomial spline function is
denoted m, the degree is m ≠ 1 so that derivatives up to order m ≠ 2 match at
knots. There are L knots in total.

189



Definition C.0.2: Polynomial spline function (coincident knots)

A more general definition may be proposed if knots are coincident. The continuity
condition is not the same. Namely, if ⁄i≠1 < ⁄i = ... = ⁄i+¸ = c < ⁄i+¸+1 (¸
coincident knots), it is now required that derivatives are continuous up to order
k ≠ 1 ≠ ¸ at point c (¸ Æ k).

Remark C.0.3: Notations

In [Schumaker, 2007] (Definition 4.1, p.108), information on coincident knots is
given by a multiplicity vector. For m a positive integer (that is to say m > 0), the
multiplicity vector is a vector of integers denoted M © (m1, ..., mk) with 1 Æ mi Æ
m for i = 1, ..., k.

Definition C.0.3: Space of polynomial spline functions (simple knots)

The space of polynomial splines of degree k with knots ⁄0 = a, ⁄1, ..., ⁄g, ⁄g+1 = b
is denoted ÷k(a, ⁄1, ..., ⁄g, b). It is a vector space that has dimension g + k + 1. It
is a subspace of Ck≠1([a, b],R).

To get a compact representation, one may want to write any element of ÷k(a, ⁄1, ..., ⁄g, b)
as a unique linear combination of g + k + 1 basis functions. A first idea is to use truncated
power functions.

Definition C.0.4: Truncated power function

A truncated power function is defined as

(x ≠ c)k
+ ©

I
(x ≠ c)k if x Ø c

0 otherwise.
(C.1)

It can be proved ([Schumaker, 2007], Theorem 4.5, p.111) that every splines s(x) œ
÷k(0, ⁄1, ..., ⁄g, 1) has a unique representation in the form

s(x) =
kÿ

i=0

bix
i +

gÿ

i=1

ci(x ≠ ⁄i)
k
+. (C.2)

This representation is useful for theoretical purposes, but it is not well-suited for numerical
applications. Crucially, it relies on what [Schumaker, 2007] refers to as a one-sided basis.
Example 4.6 from [Schumaker, 2007] (p.112) provides a clear illustration of this undesirable
property.

Example C.0.1: Basis functions for a given space of polynomial splines

Let us consider the interval [0, 5] and knots ⁄0 = 0, ⁄1 = 1, ⁄2 = 2, ⁄3 = 3, ⁄4 =
4, ⁄5 = 5. The goal is to find a basis for ÷1(0, 1, 2, 3, 4, 5). This space has dimension
6. Basis functions are given by 1, x, (x ≠ 1)+, (x ≠ 2)+, (x ≠ 3)+, (x ≠ 4)+. They
are represented on Figure C.1.
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Figure C.1: Basis functions for ÷1(0, 1, 2, 3, 4, 5), evaluated on [≠1, 6].

Each of these functions is nonzero on a relatively big set. The basis has no symmetry.

It is actually possible to define a more local and more symmetric basis. This new basis
involves B-spline functions.

Definition C.0.5: B-spline function

It is possible to define B-spline functions and derive their properties using the
concept of divided differences. However, as noted by de Boor himself in [Boor, 2001]
(revised edition of the 1978 book), B-splines can be equally well introduced by
establishing the so called B-spline recurrence relation (Chapter IX, p.87-88). This
second approach is adopted here.
Let ⁄i, ..., ⁄i+k+1 a nondecreasing sequence of real numbers. Based on
[Dierckx, 1993] (Chapter 1, p.8), the i-th (normalized) B-spline function Ni,k+1

of degree k (order k + 1) with knots ⁄i, ..., ⁄i+k+1 can be expressed, based on the
recursion proposed by [de Boor, 1972] (p.90) and [Cox, 1972], as, ’x œ R,

Ni,k+1(x) =
x ≠ ⁄i

⁄i+k ≠ ⁄i

Ni,k(x) +
⁄i+k+1 ≠ x

⁄i+k+1 ≠ ⁄i+1
Ni+1,k(x) (C.3)

Ni,1(x) =

I
1 if x œ [⁄i, ⁄i+1)
0 if x /œ [⁄i, ⁄i+1).

(C.4)

Any term involving a division by zero is conventionally considered to be zero.
A second order B-spline function, also called a linear B-spline as k = 1, consists, in
general, of two nontrivial linear pieces which join continuously to form a piecewise
linear function that vanishes outside the interval [⁄i, ⁄i+1). If ⁄i = ⁄i+1, the linear
B-spline function Ni,2 is a linear piece that has a jump at ⁄i but still continuous at
⁄i+1.
By convention, B-spline functions are not defined at the right-hand endpoint of the
domain. It is usual to set their values at b to be their limits as x approaches b from
the left. For details, see [de Boor, 2001] (p.70 and p.89).
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Example C.0.2: Some B-spline functions

We reproduce an example developed by [de Boor, 2001] (Chapter IX, p.92), con-
sidering the knot sequence (0, 1, 1, 3, 4, 6, 6, 6) © (⁄1, ..., ⁄5+2+1) and associated
parabolic B-splines (that is to say, degree k=2 and order 3) shown in Figure C.2.

Figure C.2: Parabolic B-splines with knots (0, 1, 1, 3, 4, 6, 6, 6) evaluated on [≠1, 7].

As expected, knot multiplicity and smoothness are related. The B-spline function 5
is discontinuous with a discontinuity at 6 corresponding to the fact that the number
6 appears 3 times in the knot sequence involved in the definition of B-spline function
5, namely (4, 6, 6, 6) © (⁄5, ⁄6, ⁄7, ⁄8). There are 3 B-splines with a discontinuous
first derivative:

• B-spline function 1 has a discontinuous first derivative at 1 because the number
1 appears twice in the knot sequence (0, 1, 1, 3) © (⁄1, ⁄2, ⁄3, ⁄4) involved in its
definition.

• B-spline function 2 has a discontinuous first derivative at 1 because the number
1 appears twice in the knot sequence (1, 1, 3, 4) © (⁄2, ⁄3, ⁄4, ⁄5) involved in its
definition.

• B-spline function 4 has a discontinuous first derivative at 6 because the number
6 appears twice in the knot sequence (3, 4, 6, 6) © (⁄4, ⁄5, ⁄6, ⁄7) involved in its
definition.

As defined by [Dierckx, 1993] (p.9), the derivative of a B-spline function can be computed
as, ’x œ R,

N Õ
i,k+1(x) = k

3
Ni,k(x)

⁄i+k ≠ ⁄i

≠ Ni+1,k(x)

⁄i+k+1 ≠ ⁄i+1

4
. (C.5)

Remark C.0.4: Notations

In [de Boor, 2001] (Chapter IX, p.87), the j-th B-spline function of order k is de-
noted Bj,k.

With a given set of knots ⁄j , j = 0, 1, ..., g + 1 such that ⁄0 = a and ⁄g+1 = b, we can
construct g ≠ k + 1 linearly independent B-splines of degree k. To get a full set of basis
functions for the vector space ÷k(a, ⁄1, ..., ⁄g, b), another set of 2k linearly independent
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splines are needed (k + g + 1 B-spline functions in total). To achieve so, additional knots
⁄≠k, ..., ⁄≠1 and ⁄g+2, ..., ⁄g+k+1 are introduced such that

⁄≠k Æ ⁄≠k+1 Æ ... Æ ⁄≠1 Æ ⁄0 = a
b = ⁄g+1 Æ ⁄g+2 Æ ... Æ ⁄g+k Æ ⁄g+k+1.

(C.6)

Remark C.0.5: Remark

[Schumaker, 2007] writes that we actually consider an extended partition.

Doing so, it can be shown that each spline s(x) œ ÷k(a, ⁄1, ..., ⁄g, b) has a unique repre-
sentation,

’x œ [a, b], s(x) =
gÿ

i=≠k

ciNi,k+1(x). (C.7)

Coefficients c≠k, ..., cg are called the B-spline coefficients. Note that “B” in “B-spline”
stands for “basis”.

There are several choices for the position of the additional knots (Equation C.6). Coinci-
dent boundary knots is a common choice. That is,

⁄≠k = ⁄≠k+1 = ... = ⁄≠1 = ⁄0 = a
b = ⁄g+1 = ⁄g+2 = ... = ⁄g+k = ⁄g+k+1.

(C.8)

This choice implies that all B-spline functions vanish outside [a, b]. This is particularly
interesting from a computational standpoint.

Example C.0.3: Basis functions for a given space of polynomial splines (revisited)

Let’s consider the interval [0, 5] and knots ⁄0 = 0, ⁄1 = 1, ⁄2 = 2, ⁄3 = 3, ⁄4 =
4, ⁄5 = 5. The goal is to find a local basis for ÷1(0, 1, 2, 3, 4, 5). We consider B-spline
functions. The (extended) knot sequence is (0, 0, 1, 2, 3, 4, 5, 5). Basis functions are
represented on Figure C.3.

Figure C.3: B-spline basis functions for ÷1(0, 1, 2, 3, 4, 5), evaluated on [≠1, 6].

Each of these functions is nonzero on a relatively small set.

Code C.0.1: B-spline basis functions in fda

By default, as explained in [Ramsay et al., 2009], the
fda::create.bspline.basis(.) function assigns as many knots as the
order of the spline at each end of the time interval. As a result, the function value
will, typically, drop to zero outside of the interval over which the function is defined
(usually [0, 1]). It is consistent with the idea that there is no information, a priori,
about what happens outside of the interval ([Ramsay and Silverman, 2005], p.50).
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Spline functions in their B-spline representation can be manipulated very efficiently. For
instance, the ‹-th order derivative of a spline function s(x) of degree k is itself a spline of
degree k ≠ ‹ having the same knots. Its B-spline coefficients can be computed from those
of s(x).

Definition C.0.6: Derivatives of a spline function

Based on [Dierckx, 1993] (p.13), the ‹-th order derivative of a spline function s is

s(‹)(x) =
‹Ÿ

i=1

(k + 1 ≠ i)
gÿ

i=≠(k≠‹)

c
(‹)
i Ni,k+1≠‹(x) (C.9)

with

c
(i)
j =

Y
]
[

cj if i = 0
c

(i≠1)
j

≠c
(i≠1)
j≠1

⁄j+k+1≠i≠⁄j
if i > 0.

(C.10)
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Appendix D

A Computer-Aided Geometric
Design (CAGD) perspective on
curve fitting

Fitting curves is a prevalent challenge in computational geometry and computer graphics.
It is a crucial aspect of numerous industrial design problems, ranging from shipbuilding
to the manufacturing of both cars and aircraft (refer to [Su and Liu, 1989]).

Vocabulary D.0.1: Computational geometry and related scientific fields

As originally defined by [Forrest, 1971], computational geometry is “the computer-
based representation, analysis, synthesis (design) and computer-controlled manu-
facture of two- and three-dimensional shapes.”
Curves and surfaces are at the heart of computational geometry. This field is closely
intertwined with Computer-Aided Geometric Design (CAGD) and computer graph-
ics in general. CAGD is defined by [Farin et al., 2002] as “the discipline concerned
with the computational and geometric aspects of free-form curves, surfaces and vol-
umes as they are used, for example in Computer-Aided Design (CAD) / Computer-
Aided Manufacturing (CAM), scientific visualization, or computer animation”. A
history of curves and surfaces in CAGD is provided by [Farin, 2002]. Their usage
in computer graphics is detailed by [Salomon, 2006].

Vocabulary D.0.2: Curve fitting in computer graphics

In computer graphics, curve fitting sometimes refers to an approximation problem.
As explained by [Salomon, 2006], the goal is to compute a curve that passes close to
some points but not necessarily through them. Contrary to a smoothing problem,
provided points are not data points. Rather, there are control points that determine
the shape of the curve by exerting a “pull” on it. An approximating curve is con-
structed using control points. Bézier curves are, for example, famous approximating
curves.
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Definition D.0.1: Bézier curve (CAGD point of view)

As defined by [Salomon, 2006] (Chapter 6, p.179), a Bézier curve is a parametric
curve P (t) that is a polynomial function. A set of control points define the degree
of the polynomial. For example, a cubic Bézier curve is defined by four control
points and is a cubic polynomial. By construction, a Bézier curve starts at the first
control point, ends at the last control point but may not pass through the other
control points.
An elegant way to derive a Bézier curve is to consider its Bernstein form. Given
n + 1 control points c0, ..., cn, a Bézier curve is defined as, ’t œ [0, 1],

P (t) =
nÿ

i=0

ciBn,i(t) (D.1)

where Bn,i(t) =
!n

i

"
ti(1 ≠ t)n≠i are the Bernstein polynomials.

Example D.0.1: Two cubic Bézier curves

Four control points are given, c0 = (0, 0), c1 = (0, 1), c2 = (3, 1), c3 = (3, 0). Bern-
stein polynomials are, ’t œ [0, 1]:

B3,0(t) = (1 ≠ t)3 (D.2)

B3,1(t) = 3t(1 ≠ t)2 (D.3)

B3,2(t) = 3t2(1 ≠ t) (D.4)

B3,3(t) = t3. (D.5)

The corresponding cubic Bézier curve is shown in Figure D.1.

Figure D.1: A cubic Bézier curve when control points are c0 = (0, 0), c1 =
(0, 1), c2 = (3, 1), c3 = (3, 0)

The order of the control points is extremely important. Consider the case in which
two control points are swapped, resulting in a cusp (Figure D.2)
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Figure D.2: A cubic Bézier curve when control points are c0 = (0, 0), c1 =
(3, 1), c2 = (0, 1), c3 = (3, 0)

Similar to Bézier curves, B-spline curves are approximating curves. In addition to control
points, knots are provided and allow better control of the final curve shape (local control).
Knot values may be uniformly spaced or not. Let’s provide a definition of B-spline curves
from the perspective of computer graphics.

Definition D.0.2: B-spline curve (CAGD point of view)

As defined by [Salomon, 2006] (Chapter 7, p.275), given n + 1 control points
c0, ..., cn, and t0, ..., tn+k a nondecreasing sequence of n + k + 1 knots, a B-spline
curve P (t) of order k is defined ’t œ R as

P (t) =
nÿ

i=0

ciNi,k(t) (D.6)

where the functions Ni,k(t) are defined recursively by

Ni,k(t) =
t ≠ ti

ti+k≠1 ≠ ti

Ni,k≠1(t) +
ti+k ≠ t

ti+k ≠ ti+1
Ni+1,k≠1(t) (D.7)

Ni,1(t) =

I
1 if t œ [ti, ti+1),
0 if t /œ [ti, ti+1).

(D.8)

Any term involving a division by zero is conventionally considered to be zero. Knots
may be uniform (equally spaced), open uniform (uniform except at the two ends,
where knot values are repeated k times), or nonuniform. Often, knots have normal-
ized values between 0 and 1.

Example D.0.2: Some open uniform B-spline curves

9 control points are given, c0 = (1, 2), c1 = (3, 1), c2 = (5, 2), c3 = (5, 4), c4 =
(3, 5), c5 = (1, 6), c6 = (1, 8), c7 = (3, 9), c8 = (5, 8). We consider:

• An open uniform linear (order 2) B-spline curve with knot vector

(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8)
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• An open uniform parabolic (order 3) B-spline curve with knot vector

(0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7)

• An open uniform cubic (order 4) B-spline curve with knot vector

(0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6)

They are shown on Figure D.3.

Figure D.3: Some open uniform B-spline curves

It is the multiplicity of knot values that causes the open B-spline to start and end
at its extreme control points. This is easy to understand when we realize that every
subinterval of knots corresponds to one segment of the B-spline. Each repeat of a
knot value decreases the continuity at a joint point by 1. At the boundaries, the
subinterval is reduced to a point.

Example D.0.3: Some nonuniform B-spline curves

11 control points are given and we consider 2 nonuniform parabolic B-spline curves
(order 3).

• The first curve has knot vector

(0, 0, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1, 1, 1)

• The second curve has knot vector

(0, 0, 0, 0.1, 0.12, 0.14, 0.16, 0.2, 0.21, 0.22, 0.3, 1, 1, 1)

They are shown on Figure D.4.
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Figure D.4: Some nonuniform B-spline curves

It is clear that adjusting the knot values (as well as having multiple values) is a
feature that helps fine-tune the shape of the curve.
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Appendix E

Map projections

The following definitions are proposed by [Lapaine and Usery, 2017].

Definition E.0.1: Equal-area projections

Equal-area projections maintain the size of map elements relative to one another.

Definition E.0.2: Conformal projections

Conformal projections preserve local angles about any point on a map.

Definition E.0.3: Equidistant projections

Equidistant projections preserve distances between points along some directions.
This property is important for comparing distances between locations. Only some
distances can be preserved because it is impossible to correctly display distances
between all points on a flat map.

Definition E.0.4: Compromise projections

Compromise projections do not preserve area, local angles, or distance. As the
name suggests, a compromise projection is an attempt at balancing the distortion.

Some equidistant world map projections are illustrated below (see [Lapaine and Usery, 2017],
Chapter 9, p.213).

Definition E.0.5: The azimuthal equidistant map projection

The azimuthal equidistant projection is the only projection that preserves all dis-
tances relative to its center. Only distances along straight lines passing through the
center are portrayed correctly. When the cartographer selects one of the poles as the
center, parallels are equally spaced concentric circles. The Polar azimuthal equidis-
tant map projection is shown on Figure E.1. An oblique azimuthal equidistant map
projection is shown on Figure E.2.
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Figure E.1: Polar azimuthal equidistant map projection.

Figure E.2: Oblique azimuthal equidistant map projection (London).

Definition E.0.6: The two-point equidistant map projection

The only projection that preserves distances relative to two points on a flat map is
the two-point equidistant projection. The cartographer can define the two points.
Distances measured along lines passing through either point are mapped without
distortion. An example is given on Figure E.3 for which the two points are Redlands,
California, United States and Ljubljana, Slovenia.
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Figure E.3: The two-point equidistant map projection (Redlands and Ljubljana).

Definition E.0.7: The plate carrée map projection

The plate carrée and the more general equirectangular projection preserve distances
along all meridians and are useful when differences in latitude are measured. This
projection is shown on Figure E.4.

Figure E.4: The plate carrée map projection.

Definition E.0.8: The sinusoidal map projection

The sinusoidal projection preserves distances along all par- allels. This projection
is shown on Figure E.5.

203



Figure E.5: The sinusoidal map projection.
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