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Resume

Anomalous tropospheric refraction causes performance of naval radar systems to deviate from
the normal. The main goal of this thesis is to develop a refractivity inversion technique to predict
the anomalies in radar coverage accurately in real-time. In this study, the altitude-dependent
refractivity is predicted from phaseless radio wave measurements taken in bistatic configuration.

We are interested in exploring the inversion techniques which are efficient in high-dimensional
realistic scenarios during maritime operations and which can maintain accuracy with minimum
possible need for case-specific a priori information. The long-term goal is to transfer the de-
veloped techniques and knowledge to advance to a ’Refractivity-From-Clutter’ system, which is
the ideal self-contained inversion technique to upgrade ship self-defense, but more complex to
analyze and develop properly.

The inverse problem is formulated as a simulation-driven nonlinear optimization problem
which is tackled using Quasi-Newton methods. The simulations are modeled with the 2D wide
angle parabolic wave equation of Thomson and Chapman. The gradient of the optimization
problem is obtained using variational adjoint approach and it is estimated cheaply at the cost of
two forward model simulations regardless of parameter dimension. The derivations are validated
numerically using synthetically-generated measurements.

The numerical tests confirmed the nonlinear and ill-posed character of the inverse problem
which often led to inaccurate inversion results, even in ideal conditions when no modeling or
measurement errors existed. Quality of the results was improved by using multiscale strategies
which overcame non convexity and nonlinearity of the problem. Accurate inversion results are
obtained using reduction in search and data spaces. The advantages and the limitations of the
technique is discussed in realistic high-dimensional scenarios.
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Résumé

Une réfraction troposphérique anormale peut entraîner une perte de performances des systèmes
radar par rapport à la normale. L’objectif principal de cette thèse est de développer une technique
d’inversion de la réfractivité pour prédire les anomalies de la couverture du radar avec précision
et en temps réel. Dans cette étude, la réfractivité est supposée ne dépendre que de l’altitude et
elle est estimée à partir de mesures faites en module des ondes radio en configuration bistatique.

Nous sommes intéressés par l’exploration de techniques d’inversion qui sont efficaces dans
des scénarios réalistes pendant les opérations maritimes et qui peuvent maintenir la précision
avec un minimum de besoin en connaissances a priori spécifiques au cas étudié. L’objectif à
long terme est de transférer les techniques et les connaissances développées pour progresser vers
un système de ’Refractivity-From-Clutter’, qui est la technique d’inversion idéale pour améliorer
l’autodéfense des navires, mais qui est plus complexe à analyser et à développer correctement.

Le problème inverse est formulé comme un problème d’optimisation non linéaire, qui est
résolu à l’aide de méthodes de Quasi-Newton. Les simulations sont effectuées en utilisant
l’équation d’onde parabolique dite grand angle de Thomson et Chapman. Le gradient du prob-
lème d’optimisation est obtenu à l’aide de l’approche variationnelle adjointe. Il est calculé grâce
à deux simulations du modèle direct, quelle que soit la dimension de l’espace des paramètres. Les
développements sont validés numériquement en utilisant des mesures générées synthétiquement.

Les tests numériques ont confirmé le caractère non linéaire et mal posé du problème inverse qui
conduit souvent à des résultats d’inversion inexacts, même dans des conditions idéales, lorsqu’il
n’existe aucune erreur de modélisation ou de mesure. Comme le problème est non linéaire et non
convexe, des stratégies multi-échelles sont développées pour améliorer la qualité de la solution.
Des résultats d’inversion plus précis sont obtenus en réduisant les espaces de paramètres et de
mesures. Les avantages et les limites de cette méthode sont discutés à partir de scénarios réalistes
en dimension élevée.

xv





Chapter 1

Introduction

Contents
1.1 The Phenomenological Background . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Refraction of propagating waves . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Refraction of radio waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Estimation of Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 The Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.1 Assumptions and constraints in the thesis . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Synthèse – Les systèmes radar navals fonctionnent près du niveau de la mer en émettant des
ondes radio à travers l’atmosphère. La propagation des ondes radio dépend de la distribution
des indices de réfraction dans l’espace aérien autour du radar. Certaines distributions de
l’indice de réfraction peuvent faire dévier la trajectoire de propagation du faisceau radar
de manière significative par rapport à ce qui est normalement prévu et elles sont appelées
conditions de réfraction anomales ou non standard. Ces conditions peuvent donner lieu à des
anomalies dans les performances du système radar, comme l’apparition de zones aveugles dans
l’espace aérien. Il est donc essentiel de connaître avec précision la réfractivité ambiante pour
prédire les performances du radar.

La distribution de la réfractivité dans l’atmosphère est n’est pas prévisible a priori. Il n’est pas
non plus possible de mesurer la distribution de la réfractivité atmosphérique tout autour d’une
plate-forme radar de manière suffisamment détaillée et en temps réel pendant toute la durée
d’une opération. Une technique appelée Refractivity-From-Clutter (RFC) est proposée pour
inverser la réfractivité à partir des données mesurées par le radar. L’idée est d’exploiter l’écho
de l’émission radar qui revient vers le navire à partir de la surface ondulée de la mer. Comme
cet écho est dû aux ondes radio qui se sont propagées dans l’espace aérien, il doit contenir
les traces de la distribution de la réfractivité ambiante et nous devrions être en mesure de les
récupérer.

Il existe des modèles décrivant la relation entre la réfractivité m (paramètre distribué du sys-
tème) et la puissance du signal reçu PR (données observables) grâce aux Equations (1.2), (1.4),
(1.7) et (1.5). Selon ces relations, le RFC est un problème inverse mal posé dans lequel les
données et le paramètre sont liés de manière non linéaire. Une première question concerne la
résolution du problème direct qui doit être énoncé clairement et précisément avant de résoudre le
problème inverse car celui-ci est déjà très difficile à résoudre même lorsque les modèles physiques
sont parfaitement connus. Une autre difficulté d’un tel problème est qu’il existe peut-être
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plusieurs distributions de réfractivité qui peuvent expliquer les données de manière comparable.
Les méthodes qui ont traité ces questions dans la littérature s’accompagnent de certaines
hypothèses et limitations que nous voulons lever dans cette thése.

Afin d’explorer en détail la possibilité d’inverser la variation de réfractivité, nous avons
construit un scénario idéal. Notre stratégie est de commencer nos investigations à partir du
problème le plus simple que nous puissions avoir dans le contexte de l’inversion de la réfractivité
en milieu maritime et d’augmenter progressivement la difficulté au fur et à mesure que nous
le résolvons. L’objectif est de comprendre les questions liées à l’inversion de la réfractivité
en général et de construire des méthodes qui sont également applicables au problème RFC
original que nous avons considéré au début.

À cette fin, nous avons construit un scénario numérique idéal dans une configuration bistatique
où nous prenons une tomographie de l’atmosphère en utilisant un réseau d’antennes réceptrices
positionnées verticalement à une certaine distance du navire. Cette configuration est illustrée
Figure 1.9 sous le nom de Refractivity-By-Tomography (RBT) en comparaison avec le
RFC. Dans ce scénario, nous supposons également que les modèles physiques sont connus
parfaitement. Nous réduisons notre problème à un problème d’identification de paramètres de
réfractivité distribués dans une équation d’état aux dérivées partielles où la fonction d’état
est connue dans une partie du domaine de calcul. De plus, nous supposons que nous pouvons
mesurer le champ réduit u, qui est une grandeur associée au champ électrique, en chaque
point de l’altitude avec ce réseau de récepteurs et que le paramètre de réfractivité m varie
uniquement avec l’altitude.

Afin d’effectuer cette inversion de manière efficace, le problème inverse est formulé comme un
problème d’optimisation des moindres carrés non linéaires piloté par la simulation où la dif-
férence entre les données mesurées et simulées sur u est minimisée sur le paramètre de réfractivité
m. Nous utilisons des méthodes d’optimisation de Quasi-Newton pour minimiser la fonction
d’erreur dont le gradient est calculé en utilisant l’approche variationnelle adjointe. Enfin, nous
utilisons des stratégies multi-échelles comme dans les problèmes inverses géophysiques, afin
d’atténuer la difficulté de l’inversion.

Naval radar systems operate near sea level by emitting radio waves through the atmosphere.
The propagation of the radio waves depends on radio refractive index distribution around the
radar, which depends on ambient atmospheric conditions. Some refractive conditions can cause
the propagation path of radar beam to deviate significantly from what is normally expected.
Those conditions can give rise to anomalies in radar system performance. For example, some
part of the airspace can become a blind zone where targets cannot be detected. For that reason,
it is important to have situational awareness about the refractive conditions in the surrounding
of the radar.

In theory, we can predict the radar coverage and provide it as a diagram by simulating the
propagation in the ambient conditions. However, the ambient refractive index information is not
known well and detailed enough a priori, to feed the simulations as input. There exist numerous
refractivity estimation techniques which respond to the needs of mission planners to certain
extent during the maritime operations, some of which are still being improved. If we want our
modern detection systems to be more precise, our systems need to exploit more detailed real-time
accurate information about the ambient refractivity.

In this dissertation, the goal is to develop techniques which can predict the detailed vertical
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Figure 1.1: A 2D illustration of the radar coverage in non-standard maritime environment. White
zones are weakly-illuminated zones in the airspace. See Section 1.1.2 for a detailed description
of this diagram.

profile of the ambient radio refractive index in the first few hundred meters above sea surface.
The prediction is made by analyzing the wave field of the radar emission measured at a distance
from the ship, that is, at bistatic configuration.

In the following sections, we explain atmospheric refraction phenomenon in maritime environ-
ment in our context. Later we outline the methods that are used for predicting the refractivity
in the literature and justify our choice of refractivity estimation technique.

1.1 The Phenomenological Background

1.1.1 Refraction of propagating waves

Everyone should be familiar with the effects of refraction of light from the visual daily life
experiences. The three examples can be, (1) our perception of a spoon bent in a glass filled with
water or (2) the blurry sight we have when looking at the trees through heat haze of the barbecue
during picnic or (3) the spherical sun appearing shorter than normal during sunset. Although
many may not be able to relate those experiences to the refraction of light waves readily, (4)
being unable to catch a fish using our hands when swimming in the sea reminds many of us the
refraction experiment that we had in the elementary school: (5) the bending of light beam when
passing through a prism denser than air. Light beam change direction at the sea-air interface,
so our brain miscalculates the direction to the fish and the depth.

We observe the phenomena (1) to (5) due to bending of propagation path of light before
reaching our eyes. The bending of the propagation path is due to change of refractive index in
the environment, along the propagation path of the light beam. Snell’s law of refraction explains
the phenomena (4)-(5) in a very basic framework by only considering the refractive index and
geometry of the problem; bending of light wave depends on change of refractive index and the
launch angle of the light.

Refraction is a phenomenon which is not specific to light (electromagnetic wave). Refraction
is indeed, more broadly, related to the propagation of waves in an environment where the wave
propagation speed changes in space and time, which does not necessarily require a contact
discontinuity like a prism or sea interface with air, so depends on the medium state rather than
the type to be more exact. Hence the refraction can occur even in the same type of medium. For
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example, the distortion of sun during sunset in (3) is due to change of atmospheric state (pressure)
with altitude. The bending of sunlight during sunset makes sun visible when the sun is beyond the
geometric horizon. Radio waves, which is also an electromagnetic wave like light, launched from
a ground station horizontally into atmosphere can be refracted significantly, upward toward outer
space or downward to earth surface depending on variant refractive conditions. Consequently, it
is sometimes possible to receive radio signals at locations beyond the geometric horizon of the
broadcasting station. Also, the sound (acoustic wave) propagation path can be bent depending
on sound speed distribution in the atmosphere. Four Day Battle1 is an historical example where
the acoustic refraction in the atmosphere did not allow some to hear the shocks from naval guns
of the battle although explosions were heard by some others further away.

In sum, electromagnetic wave refraction depends on the spatio-temporal changes in propa-
gation speed v in the medium through which the waves propagate. Conventionally, the electro-
magnetic propagation speed is measured relative to the propagation speed of the electromagnetic
waves in vacuum c by defining refractive index n:

n(xxx, t) = c/v(xxx, t) (1.1)

where t is time and xxx is the position vector in space.

1.1.2 Refraction of radio waves

Target detection After this general introduction to the refraction phenomenon, let us now
restrict our focus on the refraction of radio waves emitted by radar systems of a naval ship.
Maritime surveillance radars operate near sea level through the atmosphere, by sending out
electromagnetic waves at radio frequencies at a direction into the surrounding airspace. When
the waves hit an object, some part of the wave reflects from the object and returns back to radar.
The radar system can identify the existence of a target from the emergence of a new echo that
normally should not exist in the environment. The radar system can also predict the position of
a target by analyzing the time difference between the emission and reception of the radio wave
in some prescribed propagation channel (i.e., radar beam propagation pattern) [5, Chapter 1,
p. 1].

Target detection and positioning performance of radar system depends on the ambient refrac-
tivity. Analogous to the examples given in Section 1.1.1, the propagation path of radar energy
can be bent such that the radio waves do not illuminate the airspace at the direction that the
radar is geometrically pointing at but illuminate somewhere else, like in the example (5) of light
propagation through a prism. The ambient refractive conditions can enable the radar to detect
target beyond geometric horizon, like in the example of visibility of the sun below geometric
horizon during sunset. Similar to not being able to locate the fish in the sea as in the example
(4), the refractive conditions may allow radar system to detect the target but cause to mises-
timate its position. In addition, the refracted radio waves may hit the sea surface more than
normal and return back to radar, contaminating the target echo display with sea echo (called
clutter). Moreover, radar holes may appear in the airspace near the radar where the wave field
fades rendering the detection impossible although targets can be detected at longer ranges, very
much like the acoustic signal void in the shadow zones that occurred at the British coastline
during Four Day Battle.

1The naval battle that occurred in June 1666 between Kingdom of England and Dutch Republic.

4



Summing up by speaking technically, some abnormal refractive conditions create blind zones,
increase clutter level, alter detection range and cause range-altitude errors [6]. It is crucial for
the ship commanders to be aware such situations and take them into account in the mission
planning, because these conditions can create problems in terms of ship self-defense [7].

Let us first present the mathematical model that can estimate which parts of airspace is
covered at what refractive conditions. Using this mathematical model, we are going to elaborate
on what the normal condition is and what those aforementioned abnormal refractive conditions
are quantitatively more in detail.

Radar equation The radar system is effective up to a certain spatial extent, beyond which
radio emission fades in the airspace and targets remain undetected. The radar equation explains
how the target echo is related to the incident wave field on the target and its position. It is
equation (1.2) that models the received signal power PR (target echo) measured at the radar, as
function of properties of radar (PT, G, λ), target (σ), propagation channel (FFF , ζ0, Lmisc) and
the distance between the radar and target (d):

PR = PT G

( 1
4πd2

)2
σ Seff ||FFF ||4 Lmisc (1.2)

where PT is the antenna power, G is the gain, d distance between the target and the antenna, σ
is radar cross section of the target, FFF is the propagation factor in the channel, ζ0 is the medium
impedance and lastly Lmisc is there to account for losses. The term Seff is the effective area of
the antenna and it is given by

Seff = Gλ2

4π (1.3)

where λ is EMWF (ElectroMagnetic Wave Field) wavelength. The propagation factor FFF is
related to the electric field EEE, which is a complex vector field as function of position in space,
according to (1.4)

FFF (xxx) =
√

2πd√
PT G ζ0

EEE(xxx). (1.4)

For more details about the radar equation, see [6]. Also for discussions about the equation in
the context of this thesis, see [8, Section 2.2] and [9, Section 3.2].

The dependency of the radar coverage on refraction of radio wave propagation appears in
FFF in the maritime airspace. In what follows, we explain how we model the refractive effects to
determine FFF .

Propagation model Naval ship commanders want to know how far and well their radar can
detect during the operations. In order to find out the spatial extent of the radar platform, we need
to simulate the physics that can model the propagation of electromagnetic waves (i.e., electric field
EEE appearing in (1.4)) from the radar source considering the atmosphere as propagation medium.
This physics is ruled by the Maxwell’s equations, for which we cannot propose a closed-form
analytical solution. Therefore, the question has to be solved numerically on a computer, which is
not only burdensome in terms of computing resources and time but also too accurate in theory
for predicting the radar coverage in naval applications.

In this regard, several different approximations of Maxwell’s equations are proposed, with
their own assumptions and limitations, to reduce the computational load of modeling radio
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wave propagation in the atmosphere. Those approximate models are transformed into computer
software and are provided to the ship commanders as tactical decision aid by estimating the radar
coverage in real-time [10]–[15]. Nowadays, a reasonable trade-off is found between the accuracy
and the speed of radar coverage predictions in open-sea environment thanks to the numerical
solution of (1.5a) [16] using split-step wavelet technique [17]:

∂u

∂r
+ j

k0(m− 1) +

√k2
0 + ∂2

∂z2 − k0

u = 0, (1.5a)

u(0, z) = φ(z), (1.5b)
u(r, 0) = 0. (1.5c)

where k0 ∈ R+ is the wave number in vacuum and m ∈ R+ is the modified refractive index
that accounts for earth roundness. The function u(r, z) ∈ C is related to the power at the
receiver antenna by taking into account the distance, antenna gain and medium impedance [18]
by modeling the propagating wave field at radar operation frequency f = k0c/2π in cylindrical
coordinate system in range, azimiuth and altitude (r, θ, z). This model considers the boundary
condition of a flat perfectly-electric-conducting surface at z = 0 with source term φ(z) modeling
the initial field of emitted radio waves at horizontal polarization.

The equation (1.5a) is known as the Wide-Angle Parabolic Equation (WAPE) in the radar
community due to its theoretical accuracy. With this choice of the propagation model (1.5),
we restrict our focus on 2D representation of the propagation at open-sea environment with
azimuthal symmetry with respect to θ. The parameter m is the refractive index that accounts for
the curvature of earth such that the earth can be considered as flat in rectangular computational
domain. It is related to the physical refractive index n via [19], [20]:

m = n+ z

Re
(1.6)

with Re being the radius of earth. The function u(r, z) ∈ C is related to the electric field EEE
which is normally a vector quantity in 3D but replaced with a scalar E because it is only in the
direction of θ in our 2D application, i.e., EEE = E θ̂̂θ̂θ, and the relation becomes (see Section 4.5 and
4.6 in [18]):

E(r, z) = u(r, z) 1√
k0r

e−jk0r. (1.7)

Here, the time dependency of the wave field is given by:

E(r, z, t) = <
{
E(r, z) ejωt

}
(1.8)

where ω = k0c is angular velocity and <{y} is the real part of y ∈ C. The temporal phenomenon
is considered in frequency domain at frequency f = k0c/2π = ω/2π assuming time-harmonic
dependency. Lastly, in our context, the radar coverage is presented with the contour diagram of
the amplitude of the complex wave field quantity E, in the unit of Volt per meter. It is customary
to display the wave field amplitude in logarithmic scale in decibels as shown in Figure 1.1:

|E(r, z)|dB = 20 log10(|E(r, z)|), (1.9)

so |E(r, z)|dB is in the unit of decibel Volt per meter (dBV/m).

In order to predict the radar coverage, we need to first solve (1.5) for unknown u(r, z) for
known φ(z), k0, m(r, z) and then use the relations (1.7) and (1.9) to display |E(r, z)|dB. The

6



problem is that m in (1.5a) is not known well and detailed enough in the atmosphere a priori,
to be provided as input for solving (1.5a) with sufficient accuracy.

1.1.3 Estimation of Refractive Index

A priori knowledge about refractivity The refractive index n is typically around 1.00033
at sea level and it varies in the interval [1.000250, 1.000400] in the first few hundred meters
altitude in the atmosphere where we want to estimate the radar coverage [6]. However, this
variation is not a fixed distribution like in solid media, also it is not smooth or monotonic. In
fact, refractivity is controlled by atmospheric conditions which vary from one location to another
in airspace and evolve dynamically with time. Hence n, and so m, are unpredictable a priori.
Radio wave propagation is sensitive to the spatial details at around a-millionth of m and certain
abrupt spatial variations can diverge the radar coverage from what is normally expected even
if those variations are local compared to considered airspace. Therefore, we need to measure
m according to some prescribed level of accuracy and detail within the spatial extent of the
radar, and the measurements must be updated to keep pace with the changes in the atmospheric
conditions. By the virtue of the fact that the variation of m is limited to a narrow interval above
unity, the medium is characterized with a modified refractive index M which reads:

M = (m− 1)× 106. (1.10)

where m is defined in (1.6). Consequently, the atmospheric refractivity will be presented now
with M belonging to the interval [250, 400].

How to estimate the refractivity There are a number of factors that determine how precise
and accurate refractivity should be measured in the airspace and with what measurement tech-
nique. The requirements depend on the maritime application. To begin with, aircrafts can be
equipped with refractometer to measure n directly along the flight paths but the measurements
cannot be taken cost-effectively everywhere in the airspace. Range-dependency of refractivity
could be omitted during open-seas operations [21], [22], so baloonsondes and rocketsondes could
be flown or fluttered down vertically with rather disposable pressure (P ), temperature (T ) and
humidity (e) sensors to estimate n using empirical relation (1.11) [23]:

n = 1 +
[77.6
T

(
P + 4810 e

T

)
× 10−6

]
(1.11)

but the use of sondes brings limitations in terms of desired resolution, extent and refresh rate
of the measurements [24], [25]. An alternative is to model the thermodynamic state of air
(P, T, e) numerically but it is a challenge when it comes to resolve the state accurately at a
desired vertical resolution [26, pp. 41-42] and refresh rate [27, p. 13] in the lower troposphere
because of the complex chaotic system that governs (P, T, e). Other approach is to infer the
refractivity using some remote sensing method, such as the use of Doppler spread radars [28]–
[31], lidar [32], [33], and GPS signals [34]–[38] which potentially solve the resolution and refresh
rate related issues but still have certain drawbacks needing to be solved before operational use
(for discussion, see [39] or Section 1.2.3 in [40]).

Another choice is to use the influence of the refractive conditions on radio wave field dis-
tribution over the sea surface, for estimating the ambient refractivity. This technique is called
Refractivity-From-Clutter (RFC) [41] because refractivity is predicted from the clutter, which
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Figure 1.2: A realistic scenario. (a) The 2D view EMWF with respect to range and altitude,
θ = 0, (b) the clutter with respect to range and azimuth (radar PPI display in our ship).

is the back-reflected part of the radar emission returning from wavy sea surface back to radar,
that is normally measured but filtered out from the Plan Position Indicator (PPI) display of the
ship radar to keep only echo of the targets (see Figure 1.2b). Since the echo power PR depends
on propagation via (1.2) and (1.4), and the propagation depends on refractivity via (1.7) and
(1.5), then there must be a way to deduce what the refractivity is by analyzing the clutter2 [28],
[41]–[43].

If RFC technique works in practice, it has the potential to outperform other refractivity
estimation techniques. RFC constitutes a self-contained system that only uses the radar of
the ship as measurement device which is already available in the ship and already capable of
measuring the clutter. The measurements can be taken remotely at the spatial extent of the radar
for entire operation duration in real-time dynamically in cost-efficient fashion. The independence
of RFC system from other measurement assets provides various advantages, provided that the
RFC system performs successfully without external aid.

Inversion of refractivity Let us now look more closely to the cause-and-effect relation be-
tween refractivity and clutter shown in Figure 1.3 to understand how we can develop an RFC
system. Estimation of refractivity from clutter constitutes an inverse problem where the direct
(or forward) problem is to go rightward in the workflow in Figure 1.3 so as to predict the clut-

2We cannot model the clutter from the electric field at the sea level if we use (1.5c) as the boundary condition
at the sea level. For this reason, we have to select u of (1.7) not exactly at z = 0 but slightly above the sea level,
depending on the application.
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Figure 1.3: Direct and inverse problem workflow.

ter phenomenon by solving the physical model (forward model) for known model parameters
including refractivity. The forward model is composed of problems (1.5), (1.7), (1.4) and (1.2)
which are numerically well-posed (meaning their solution exist and are unique and the solutions
continuously depend on the parameters) and it is assumed that the solution can explain the
clutter phenomenon with an acceptable error. Whereas in the case of the inverse problem, we
are dealing with an ill-posed problem because the clutter data is not enough to determine the
refractivity in the whole airspace properly and uniquely.

The sources of the ill-posedness in the inverse problem are related to its formulation (metric),
parametrization, data and physical model. To begin with clutter data, the measurements are
taken at some part of the domain of interest, they are sparse and contain noise. On the other
hand, the formulation of the inverse problem and the parametrization can lead to that many
different refractivity solutions can explain the sparse and noisy clutter data comparably.

Avoiding modeling issues on nonlinear inverse problem The clutter model (1.2) that
relates the propagation to measured clutter contains open questions in regard to modeling of σ
and F which are scenario-dependent and still under research [40], [44], [45]. For example, one
basic question is about how to relate u to PR (clutter) the best if (1.5c) is used as the boundary
condition, depending on the application. There are some aspects that should be considered
when making an uninformed choice in the clutter model for the sake of developing an RFC system
because the inverse problem might become more complex to solve. In fact, a small change on data
can cause a big change on the estimated parameter, and noise can be such a cause in particular,
and this already prevents us from approaching the solution satisfactorily. Furthermore, the
clutter model relates the clutter data to the function u in (1.5) (see Figure 1.3) where the
relation between the refractivity m and the function u is implicitly defined and nonlinear. It
is already really hard to solve nonlinear inverse problems and there is not a general solution
technique that can tackle them. Solving it (RFC) requires expertise in the forward problem and
tedious step-by-step analysis of the inverse problem to arrive at a specially-tailored innovative
solution for the particular problem in a specific setup. Ideally, there should not be question
about the suitability of a physical model in the forward modeling part, or at least, the most
accurate affordable model should be chosen, before starting to work on the inverse problem. As
a non-specialist of clutter modeling, it is tough to choose one model from the literature without
being able to work with real data, and tailor the algorithm accordingly and then claim that it
will perform well in real world. We think that clutter model needs special attention and for some
reasons given in the following, we put the attention on other aspect of the inverse problem and
avoided working with a clutter model.
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Figure 1.4: Standard, super-refraction and trapping (ducting) conditions at f = 2 GHz. (a) M-
index for the standard atmosphere, (b) Propagation for (a), (c) M-index for the super-refracting
atmosphere, (d) Propagation for (c), (e) M-index for the ducting atmosphere, (f) Propagation
for (e).

Need for a priori knowledge Let us now be more specific about our goals when elaborating
on the other aspects that should be taken into account when developing our RFC system. We are
interested in retrieving the details of the atmosphere by representing the refractivity parameter
with a very high-dimensional vector. Broadly speaking, the refractivity in the airspace of half
a km in altitude, several hundred km in range and few degrees in azimuth can be represented
by millions of refractivity parameter ideally. However, finite amount of data can be expressed
by infinite number of continuous parameter functions when the problem has infinite degree of
freedom. In the case of finite degree of freedom, the high-dimensionality in the problem may
still lead to unphysical oscillating solutions. Identifying the proper solutions from the unphysical
ones and stabilizing the problem (the solution) require some a priori knowledge to be employed
in the solution process. How to use this a priori knowledge is a delicate question to be answered
because if the knowledge is wrong, the solutions can be ruined. On the other side, we do not want
a technique that relies on case-specific a priori information, that depends on geophysical location
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Figure 1.5: Examples for three general class of nonstandard conditions in maritime environment
at f = 2 GHz. (a) M-index for a surface-based duct, (b) Propagation through the surface-based
duct in (a), (c) M-index for an elevated duct, (d) Propagation through the elevated duct in (c),
(e) M-index for an evaporation duct, (f) Propagation through the evaporation duct in (e).

of the ship and time of operation for example, because we are looking for a worldwide-applicable
inversion method and such quality knowledge may not always be available.

Standard refractivity distribution The vertical refractivity distribution that obeys dM/dz =
0.118 M-unit/m is called as the standard refractivity distribution (see Figure 1.4a). The propaga-
tion condition under this parameter distribution is called as the standard propagation condition
(see Figure 1.4b). The radio waves leave the earth surface with range under this propagation
conditions as shown in Figure 1.4b.

Ducting refractivity distribution The gradient of the refractivity distribution governs how
the radio energy is bent during propagation as shown in Figure 1.4. Typically, the refractivity
variation is not straight like shown in Figure 1.4 but the refractivity profile contains some small
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Figure 1.6: Impact of small spatial details on the propagation at f = 2 GHz. (a) M-index, (b)
Propagation in the refractive conditions described in (a), (c) M-index obtained by removing the
perturbations from (a), (d) Propagation in the refractive conditions described in (c).

scale departures from the global structure like shown in Figure 1.5. When those small scale
structures contain parts with dM/dz < 0, the energy is bent downwards when propagating
through those small scale structures like in Figure 1.4f. Such refractivity conditions are called
ducting propagation conditions or anomalous propagation conditions. Three important ducting
conditions in the context of maritime applications are illustrated in Figure 1.5.

Past parametrizations Another worth-mentioning aspect of such high-dimensional problem
is how to parametrize the medium and how to retrieve it efficiently. The solution techniques
which are proposed starting from the early introduction of the RFC [41] in 1997 till the end of
2000s [8], [22], [39], [46]–[53], require a lot of forward model simulations, and their computational
cost increases with the number of parameter to invert. The techniques were made affordable by
low dimensional parametrization of refractivity. Their assumptions were sometimes to neglect
the range-dependency of m in the airspace, but more commonly to search for the gradient
information in vertical m profile (see dm/dz → E relation in Figure 1.4) by idealizing the
buried small-scale deviations from the major structure [5], [40], [54] with piecewise linear and
logarithmic functions [55, p.4] (see Figure 1.5). A combination of the piecewise linear and
logarithmic functions could be used for approximating a realistic refractivity profile, e.g., as in
Figure 1.6a, more smoothly by using only a few control parameters to describe the profile with
the aforementioned functions, e.g., as in Figure 1.6c [49], and this would not mean much change
in the texture of the wave field (see Figure 1.6b and Figure 1.6d).

Need for high-dimensional parametrization Although these assumptions reduce the com-
putational load of the inversion by reducing the number of degrees of freedom in the problem,
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Figure 1.7: Impact of refractivity perturbation on the propagation at f = 2 GHz. (a) M-index,
(b) Propagation in the refractive conditions described in (a), (c) M-index obtained by adding
perturbations on (a), (d) Propagation in the refractive conditions described in (c).

the validity of the approximations are questionable in some cases. It is firstly unsure if the ill-
posedness permits that such coarse approximation of the realistic continuous parametrization by
using e.g., piecewise linear or logarithmic functions omitting small details always leads to correct
radar coverage predictions with acceptable error3 (cf. Figure A3 in [56]). Also, we can find in-
stances where local departures from the mean profile should be taken into account without being
filtered out as shown in Figure 1.7, contrary to the arguments given for Figure 1.6. In addition,
the local departures gain more and more significance when the frequency f of the radar increases
(see Figure 3 in [55]). When f increases from 2 GHz in Figure 1.7 to 10 GHz in Figure 1.8, we
see that the propagation becomes more sensitive to the spatial details of the refractivity profile.
More spatial details of the refractivity should be provided to the detection systems working at
higher frequencies if higher detection precision is desired. This means refined parametrizations
should be used during inversion to feed modern detection systems. That is why later works have
investigated the inversion of refractivity efficiently using high-dimensional parametrization.

Large-scale inversions In 2010, an efficient solution of the high-dimensional refractivity in-
version problem was developed in [57] using the variational adjoint approach and gradient-based
optimization techniques. The studies using the adjoint technique have shown that the high-
dimensional problem is severely ill-posed and the use of regularization techniques does not guar-
antee improvement of the solution [58]–[60]. Unfortunately, today adjoint-based RFC techniques
still require unrealistically good initial guess with additional a priori information or need to in-
corporate dimensionality reduction techniques [61], [62]. The main drawback of the most recent

3An exception is when the ambient condition is dominated by the evaporation from the sea surface, then duct
formations like in Figure 1.5e emerge. Such conditions are studied successfully in terms of parametrization and
inversion using statistical and deterministic approaches.
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Figure 1.8: Impact of refractivity perturbation on the propagation at f=10 GHz. (a) M-index,
(b) Propagation in the refractive conditions described in (a), (c) M-index obtained by adding
perturbations on (a), (d) Propagation in the refractive conditions described in (c).

solution is that the inversion results depend on how the principal components of the reduction
are estimated; the training of the algorithm should be done in similar conditions to that of am-
bient in order to have good results, so we are limited by a priori information. Also some other
techniques have been proposed in 2010s, but their performance is not demonstrated in high-
dimensional scenarios [63]–[67]. Thus, reliable inversions which are purely driven by real-time
data have not been realized yet in high-dimensional realistic configurations in 2-D.

Successful examples Adjoint-based methods are widely used in many science and engineering
disciplines because the method is very capable of handling problems efficiently. The literature is
rich with examples. The method is used in the following problems, for example:

• fluid flow state control [68], [69],

• aircraft jet noise suppression [70],

• petroleum extraction from subsurface reservoirs [71],

• suppressing structural vibrations and attenuating contact forces [72], [73],

• structural optimization problems [74],

• sensitivity of materials to thermal stresses [75],

• controling object deformation in fluid-structure interaction [76],

• heat transfer [77],
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• electromagnetism [78],

• geophysics [79].

Adjoint-based methods are particularly relevant to the partial differential equation-constrained
nonlinear large-scale parameter estimation problems from limited data. In that context, the last
subject in the list (geophysics) contains successful examples where acoustic wave propagation
speed is inverted with greatly higher degree of freedom in parametrization than that we currently
try to achieve in RFC community. If we examine the successful implementations [80]–[82], we
notice that their success relies on (1) the forward model accuracy, (2) the richness of their
excitation and so the data [83] in terms of frequency content (dynamite explosion) and (3) how
smartly they benefit from what is called multiscale strategies [84] when using the adjoint-based
methods [85]. In addition, successful examples in fluid mechanics present consistently first some
validation graphs when a new adjoint code is developed, and then discuss the test results.

Refractivity inversion in 2021 Some notable present-day efforts try to enrich the RFC
problem. Firstly, the work [86] considers enhancing the frequency content of the measurement
data by taking the measurements at different radar operation frequencies like discussed in [87].
The work in [88] considers collecting the measurements above sea level using a receiver array
antenna mounted on a ship like discussed in [89], [90]. The work [91] considers using vertically
positioned receiver array antenna at a fixed distance from the source to take the measurements
(called bistatic configuration) so that angle of arrival of the propagating radio beams can be
estimated alongside the signal power PR. We should also mention the possibility of using radar
phase measurements [92] in conjunction with the aforementioned enrichment efforts, as also
discussed in [93]–[95].

1.2 The Scope of the Thesis

The goal of this dissertation is to develop an efficient refractivity inversion algorithm that does
not rely on case-specific a priori information for as wide applicability as possible. What is meant
by case-specific a priori information is an empirical background knowledge that constraints the
problem correctly only in limited scenarios in practice. Two examples are, (1) a background
knowledge on refractivity distribution at a specific geophysical location based on climatic con-
ditions, time of the day, meteorological conditions etc. (2) a background knowledge on the
parametrization that evaporation ducts with logarithmic variation in altitude should be sought.
Although the use of a priori information might seem inevitable in some cases, constraining the
inverse problem with such type of knowledge will work well depending on how the actual ambient
conditions deviate from the background knowledge.

We ensure the efficiency using gradient-based optimization techniques by formulating the
problem as a least square optimization problem and then estimating the gradient using variational
adjoint approach. Penalization of the least square problem is avoided as much as possible during
the development of the algorithm at this stage because it would mean adding case-specific a
priori information mostly, which could be added later if it is really necessary. Instead, we use
multiscale strategies to cure the ill-posedness of the problem by adopting a generic approach.

The inverse problem is simplified by avoiding clutter models in the forward model. Namely,
we cut the workflow in the middle in Figure 1.3 at the EMWF propagation model; we assume that
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we can retrieve the function u in (1.5) perfectly from the measurement data. This assumption is
made so as to focus on the development of an efficient adjoint code for WAPE, similar to what
is done in [57], [58] for NAPE during initial stages of adjoint code development. In order to be
able to test the inversion algorithm in real world, we find an application in bistatic configuration,
where the propagating wave field is measured by a vertically positioned receiver array antenna
at a certain distance from the radar. Additionally, we want to explore if it is interesting to use
this configuration. We can test a wider range of refractivity profiles in this configuration than
we could do in RFC because we do not have to worry about whether the ambient refractivity
profile is retrievable4 or not in the sense it is described in [96]. By measuring almost the entire
propagating wave field with large receiver arrays in bistatic configuration, we can focus more
on fixing the issues related to the nonlinearity of the inverse problem that leads to failure of
inversion in a more ideal setup.

Therefore, the algorithm is developed and the numerical tests are performed in bistatic con-
figuration. We call this method as Refractivity-By-Tomography (RBT) or the tomographic
approach throughout the dissertation. Then effectively, our final goal is to complete the radar
coverage diagram given in Figure 1.9 from the measurements collected at the end of the domain
in radial direction. The measurements are limited by the receiver array height and spatial den-
sity of the receivers on the array. The measurement data are generated synthetically on the grid
nodes with the same forward model that is used during inversions with the exact same numerical
settings. We restrict our scope of analysis with such a setup because, firstly this is the most ideal
condition where modeling error does not appear during the inversions, secondly RBT is also very
ill-posed even in these ideal conditions, thirdly we hypothesize that the algorithm will not work
in real world if it cannot deal with the synthetic problem in such ideal conditions. Thanks to
the analysis, we are able to claim that the code is ready for being tested with real world data
at the end, with some minor modifications on the algorithm because in reality we probably will
not have a receiver at the position of every grid node.

The tests of the algorithm is done in ideal conditions. What we mean by the ideal conditions
is that we guarantee that the data came from the forward model, which is not the case in reality.
We perform the inversion tests by using the synthetically generated measurement data. We start
the inversion with simple scenarios where the receiver array is positioned not so far from the
source, the source is quasi plane wave, the phase information is measurable in addition to the
amplitude of the wave field and the true ambient refractivity varies linearly. We increase the
level of difficulty of the problem and at the end we work on the realistic scenarios where the
receiver array is far from the source, the excitation source is a point source similar to radar, only
the amplitude of the wave field is measurable, and the true ambient refractivity is a complex
mixed type duct made of logarithmic and piecewise linear variations in altitude but also contains
perturbations, which make the point-by-point inversion a harder problem.

Another worth-mentioning aspect of this study is that the developed techniques and knowl-
edge in the aforementioned scope are transferable to the RFC problem. The derivation of the
adjoint of WAPE operator in (1.5) is achieved by an analysis on the square-root propagation
operator which does not change with the measurement configuration (RBT or RFC) and the
3D extension of the analysis is easy for the square-root propagation operator appearing in wide-
angle formulation in Cartesian coordinates (see [97, Equation C.31]). The derived adjoint model
constitutes the backbone on which our inversion strategy will be built. For this reason, we paid

4Retrievable duct in RFC refers to the type of refractivity distribution that bends the radio energy to the
degree that part of the radar beam hits the sea surface and reflects back to the radar. In contrast, an anomalous
propagation condition like in Figure 1.5d also ducts the radar energy in the airspace but without interacting with
the sea. For details, see [96].
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Figure 1.9: A 2D schematic of the two popular techniques to construct the radar coverage diagram
in an airspace. For RFC, the plotted measurement data in the colorful frame is dobs(r) = |E(r, z)|
for r ∈ [0, 100] km, z = 1 m. For RBT, it is dobs(z) = |E(r, z)| for r = 100 km, z = [0, 100] m.

attention to its validation more than normal, and we try to present as much validation result
as possible in this dissertation. Lastly, the developed modules for the application of multiscale
strategies are independent of the details of the problem so the derivations and the algorithm
related to that part are reusable in future RFC applications in the project.

1.2.1 Assumptions and constraints in the thesis

Part of the assumptions made in this dissertation originates from the choice of the forward model.
We are only listing them without elaborating on those aspects, the reader may refer to [18] for
the details.

• The forward model (1.5) is derived from the Maxwell’s equations assuming the medium
through which the waves propagate is linear, homogenous and isotropic.

• The approximation (1.5) is valid in the far field from the source, as long as the medium
has azimuthal symmetry in terms of refractivity distribution and the wave field propagates
forward.

• Although the medium is assumed uniform and later range independent once more, those
conditions are relaxed in the context of radio wave propagation in the troposphere where
the atmospheric refractivity varies slowly in range and altitude.

• The earth-flattening transform applied in the refractivity parameter of (1.5) is valid within
the first few hundred meters away from the source in altitude.

• There are errors related to the splitting of the refractive effects from the square-root prop-
agation operator in one-way equation, which are reasonable in our context.
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• In addition, we use split-step wavelet technique to accelerate the simulations and this
technique introduces negligible errors due to wavelet compression, which are controllable.

• We approximate the sea surface as flat although it is wavy in reality, and the boundary
condition (1.5c) can be replaced with Leontovich impedance boundary conditions to be
more accurate [98].

The errors associated with those assumptions are accepted so as to obtain a reasonable trade-off
between the accuracy and the speed of the propagation simulations not to get lost among the
vast number of options.

From the inverse problem side, the main assumptions are as follows.

• The validity of the derived adjoint model is restricted to the propagating waves and does
not include the evanescent waves which is also modeled with (1.5).

We have to give a little explanation on that at this point. Since the evanescent part of the wave
field decay exponentially with range in the theory of the forward model (1.5), we assume that
the evanescent part contributes to the measurements negligibly, so it is not a problem if the
evanescent part is not modeled numerically. In the forward and the adjoint model this is ensured
by choosing the mesh size as function of the wavelength λ, such that the grid spacing in the axial
direction is greater than λ/2, according to Section 4 in [17]. In addition, the mesh size is already
chosen greater than this condition in order to speed up the inversion, so this condition does not
appear as a constraint from practical point.

• Another limitation is that the refractivity is considered invariant with range and only varies
in altitude.

In reality, refractivity also varies in range although this variation is small compared to the
variations in altitude. Also, propagation depends mostly on the variation of refractivity in
altitude than in range [99] in the scenarios that we consider because the launch angle of the
radio waves is zero in our analyze, that is to say, the radar points at a direction parallel to the
radial axis geometrically. The extension of the derivations is straightforward when the refractivity
varies in range as well, as discussed in the conclusion.

• Also, atmospheric attenuation is not considered.

Nevertheless, the scenarios can be extended to the presence of atmospheric attenuation, where
the refractive index becomes a complex quantity with the imaginary part which accounts for
the attenuation during the propagation, by modification in the derivations, as discussed in the
conclusion.

1.2.2 Objectives of the thesis

The objectives are listed as follows:
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• derive the adjoint model for the inversion of refractivity from wave field data measured
in bistatic configuration where the forward model is the wide-angle parabolic equation of
Thomson and Chapman

• construct a wavelet-based adjoint solver from an existing split step wavelet code that models
the solution of WAPE so as to solve the adjoint model

• validate the derivations and the implementations by comparing the gradient computed with
the adjoint model to that obtained by a Finite Difference approximation

• develop an inversion algorithm by feeding Quasi-Newton optimization methods with the
gradient computed using the adjoint model

• perform inversion tests on synthetically generated measurement data by inverting the re-
fractivity at every meter point in altitude

• increase the inversion difficulty step by step, analyze the results to identify the difficulties
so that new ideas can be proposed in order to solve the issues

• employ basic multiscale strategies in the parameter and data to remedy the inversion
difficulties

• invert a realistic refractivity profile which contains perturbations which cannot be approx-
imated with only few parameters with the choice of multiscale basis in the parametrization

• show the limitations of the technique

These objectives are fulfilled throughout the thesis work and presented in this dissertation ac-
cording to the plan described in the next section.

1.2.3 Outline of the thesis

In this dissertation, the inverse problem is formulated as a simulation driven nonlinear least
squares optimization problem where the difference between the measured and simulated data is
minimized over refractivity parameter. A main contribution of this dissertation is the derivation
of the adjoint model that express the gradient of the error functional analytically when the
problem is constrained with (1.5). The second contribution is the application of the multiscale
strategies on inversion parameter and the measurement data. The work related to the derivation
of the adjoint model and the application of multiscale strategies are presented in Chapter 2 and
Chapter 3 respectively.

Chapter 2 is dedicated to the derivation of the adjoint model mainly but contains some pre-
liminary tests. The derivation of the adjoint model is done for RBT. The derivations is validated
numerically considering the quasi plane wave as the source. Two problems are considered when
the phase is measurable alongside the amplitude of the wave field, and when only the amplitude
is measurable. We analyze why the RBT is difficult to achieve when the measurements are taken
at long ranges. RBT is shown to have local minima problem in most practical cases. The anal-
ysis shows that more knowledge about the wave field does not necessarily mean that the radar
coverage will be predicted better, the way we use the information matters as much as the extent
of the information. To be more precise, the inversions are successful when the receiver antenna
is positioned within the first few km from the source if the difference between the simulated and
the measured complex wave field u is minimized. When difference between the amplitudes are
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considered only, the error functional contains fewer local minima and we can retrieve at least the
synoptic structure of the true refractive index profile at longer receiver antenna positions. We
have performed some inversion tests which revealed interesting features of RBT problem such as
multimodality (in the problem) and robustness of the algorithm alongside how to pick the initial
guess smartly and so on.

In Chapter 3, we consider more realistic scenarios where the source resembles more to a point
source, only the amplitude of the wave field is measurable (as in the case of RFC) and true
refractivity parameter contains perturbations. We have found out that point source makes the
problem less stable, and the advantages that were gained with the removal of the phase from
the measurement data are lost. We apply multiscale strategies to mitigate the nonlinearity of
the problem. The multiscaling hierarchy is built using multiple subspace approaches firstly in
the parametrization. We pick the simplest basis function that we could think of being capable
to capture the variations, to construct the reduction basis and at the same time do not rely
on any case-specific a priori knowledge or analysis: piecewise linear functions. We approach
the inversion of any refractivity profile somewhat successfully at more distances from the source
thanks to the use of a very basic multiscale parametrization. Later this subspace approach
is extended to the data reduction in a multiscale hierarchy. Further improvement is achieved
by search space reduction in synchronization with data space reduction. We show successful
applications and limitations of the technique in realistic scenarios.

Lastly in Chapter 4, we make a synthesis of the findings and suggest some subjects to cover
in future work.
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Chapter 2

Adjoint-based Refractivity Inversion
Technique
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Synthèse – Dans ce chapitre, nous étudions deux problèmes différents d’inversion de la réfrac-
tivité à partir de la quantité mesurée u dans le montage tomographique illustré dans la Fig-
ure 2.1. Premièrement, nous résolvons ce problème en supposant que la phase et l’amplitude
de u sont accessibles à partir des mesures (Equation (2.10)). Deuxièmement, nous le résolvons
pour étudier comment les résultats de l’inversion seraient affectés lorsque seule l’amplitude de u
est connue à partir des mesures (Equation (2.11)). Les gradients des deux fonctions d’erreur as-
sociées sont exprimés analytiquement en utilisant deux modèles adjoints différents dérivés dans
la Section 2.5.3. Notre principal objectif dans ce chapitre est de valider le calcul des gradients.
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Pour ce faire, nous comparons le gradient calculé avec la méthode basée sur les adjoints que
nous construisons au gradient calculé à l’aide d’un schéma aux différences finies. Le résultat
de cette validation est illustré par la Figure 2.6 et la Figure 2.8.

Nous effectuons ensuite des tests d’inversion pour les deux scénarios où la phase est mesurable
et non mesurable. Dans ces tests, nous essayons d’inverser le profil objectif MOBJ à partir de
l’estimation initialeMIG présentée dans la Figure 2.4a. À cette fin, nous générons les données de
mesure qui correspondent au profil de réfractivité objectif recherché, calculée à l’aide du modèle
numérique de propagation. La source est une onde quasi plane se propageant à la fréquence de
f = 2 GHz. Les résultats de l’inversion sont calculés pour les mesures avec phase et sans phase
pour cinq positions différentes de l’antenne dans la Figure 2.9 et la Figure 2.11 respectivement.
Les résultats des tests nous montrent que les résultats d’inversion les plus précis sont obtenus
lorsque la phase et l’amplitude de la fonction d’état sont toutes deux utilisées dans l’inversion
lorsque les mesures sont prises à courte distance de la source (voir Figure 2.9a). La topographie
de la fonction d’erreur devient beaucoup plus complexe lorsque nous plaçons le réseau de
récepteurs plus loin de la source. Pour le problème que nous étudions, nous avons observé que
l’inversion est réussie lorsque les données sont collectées dans les premiers kilomètres de distance.

L’inversion utilisant les données de mesure sans phase présente quelques caractéristiques intéres-
santes. Bien que la suppression de la phase dans les données rende de nombreuses solutions
de réfractivité candidates moins distinguables les unes des autres, elle semble "convexifier" la
topographie de la fonctionnelle de l’erreur. Pour le problème que nous étudions, nous observons
qu’il est possible de retrouver la structure synoptique du profil objectif dans une plage de 14 km.
De plus, ce problème possède des solutions multimodales qui sont récupérables dans la première
plage de quelques km (voir Figure 2.20). Enfin, nous montrons que la précision de l’inversion
pourrait potentiellement être améliorée dans une stratégie où l’inversion sans information de
phase pourrait être améliorée en incorporant l’information de phase comme deuxième étape de
l’inversion.

2.1 Introduction

Radar systems performance under anomalous propagation conditions can be predicted if the
atmosphere is properly known. The accuracy of the simulated 2-D radar coverage diagrams
depends on how accurate the atmospheric refractivity is known. The radar coverage diagrams
can be estimated by solving parabolic wave equation in which the refractivity is an input. The
refractivity can be inferred by solving a simulation-driven optimization problem where the error
between measured and simulated wave field data is minimized.

We consider the bistatic configuration given in Figure 2.1. This section formulates two
different nonlinear least-square problems for refractivity inversion depending on the two different
wave field data type: with and without the phase information. The problems are solved iteratively
using gradient-based methods where the gradient function is derived and computed efficiently
using adjoint state method.

This gradient derivation is novel. Adjoint state method is applied to the 2-D wide-angle
parabolic equation of Thomson and Chapman (WAPE-TC) [16] using variational adjoint ap-
proach.

The specificity of Thomson and Chapman’s equation [16] is that it is the most accurate
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propagation model on which numerically efficient split-step technique is applicable unlike other
wide-angle propagation models. The use of this equation is supposed to reduce the ill-posedness
of the inverse problem while keeping the simulation cost the same, as compared to standard
narrow-angle parabolic equation since the modeling error is reduced theoretically. However, this
preferable equation comes with a square-root propagation operator which makes the derivation
of the adjoint model less straightforward than the other propagation models which are made of
linear operators.

This section concerns the inversion of refractivity from data measured with an array of radio
receivers in open-sea environment. It is shown how to derive the adjoint model for WAPE-TC in
this scenario, explains how to construct the adjoint code, and validates the adjoint model by using
a finite-difference approach. The parametric study indicates the potential use of this method
as a refractivity gradient retrieval system under certain circumstances. Some overcomplicated
scenarios are analyzed to show the limits of this adjoint-based tomographic approach.

2.2 Background

Non-standard refractive index variations cause performance anomalies for maritime communica-
tion and surveillance platforms [7]. Prediction of tropospheric refractivity in abnormal propaga-
tion conditions is crucial for survey radars because these conditions create blind zones, increase
clutter level, alter detection range and cause range-altitude errors [6]. Although accurate radar
coverage estimation methods exist taking refractivity as input [10]–[14], abnormal conditions are
poorly quantified in practical sense [56]. It is necessary to quantify the refractivity over spa-
tial extent of the platform for the entire operation time dynamically with robust, cost-effective
methods [99]. Refractivity-from-clutter (RFC) is proposed to address these requirements in near-
real time [41]–[43]. It is a self-contained remote sensing method for refractivity inversion which
potentially outperforms other refractivity estimation techniques [40], [55].

The current objective of RFC is to invert refractivity from sea-surface reflected radar clut-
ter typically under 10 minutes with high reliability in realistic numerically-high-dimensional1
scenarios [100], [101]. Commonly, the inversion problem is formulated as a simulation-driven
nonlinear optimization problem [55]. Computationally-efficient simulation methods exist solv-
ing parabolic equations with split-step techniques [17], [98]. The inversion technique [55] and
the clutter model [45] are scenario-dependent open questions, however. Inversion of refractivity
from sea-reflected radar clutter or array antenna measurements, as illustrated in Figure 2.1, is
a complex nonlinear, ill-posed problem [102]. Historically, the inversion complexity has been
reduced thanks to coarse parametrization with functional representations in altitude [46], [47].
In parallel, range-independent medium is assumed [22]. Until the end of 2000s, several RFC
techniques have been proposed with varying degrees of simplification on the spatial variability
of refractive index (e.g., [8], [39], [48]–[53]). However, these techniques are not applicable for
numerically-high-dimensional problems since the computational cost of inversion increases with
the number of parameters to invert. Therefore, they are not efficient for problems at high fre-
quencies when the propagation becomes increasingly sensitive to the spatial details of the medium
inhomogeneities [55].

The first refractivity inversion technique whose computational cost does not depend on the
number of parameter to invert has been developed in [57] in the framework of variational adjoint

1High-dimensionality refers to the dimension of the parameter vector obtained after the discretization of the
model, it is not about the geometric dimension of the inverse problem.
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Figure 2.1: An illustration of the bistatic configuration. Initial field φ(z) propagates rightward
in horizontally stratified atmosphere, which is characterized with refractivity m(z). Our goal is
to retrieve m(z) from wave field measurements obtained with receiver array at distance R from
the known source.

approach in 2010. The authors have derived the adjoint model (AM) for two-dimensional narrow-
angle parabolic equation (2-D NAPE) which is solved using split-step Fourier (SSF) technique.
Following studies have confirmed the severity of ill-posedness in high-dimensional scenarios de-
spite regularization [58]–[60]. Unfortunately, adjoint-based RFC techniques of today still require
unrealistically good initial guess with additional a priori information or need to incorporate di-
mensionality reduction techniques [61], [62]. Thus, reliable inversions which are purely driven
by real-time data have not been realized yet in high-dimensional realistic configurations in 2-D.
Other recent efforts concentrate on improving RFC in low-dimensional scenarios [63]–[67].

Despite the prominence of forward model (FM) accuracy in inverse problems, no previous
study has attempted to fuse the adjoint-based approach with a wide-angle propagation model
in RFC community. In this work, we extend the adjoint approach for 2-D wide angle parabolic
equation (WAPE) by identifying the adjoint of square-root propagation operator. The proposed
solution is validated numerically. Our main motivation is to enrich the pool of available adjoint
models in radio and acoustic wave propagation communities with the most accurate WAPE on
which split-step technique is applicable. We simulate the adjoint model with split-step wavelet
(SSW) technique [17], which is faster than SSF, to tend towards a real-time accurate system. We
aim at capturing any refractive condition at the spatial resolution of FM simulations by adopting
point-by-point inversion approach in altitude [57].

Unlike previous work, the obtained gradient of the cost function is computed and validated
successfully using a finite differences approximation. We also include the optimization landscapes
in our analysis in order to visualize the inversion complexity and to explain how much the inver-
sion is sensitive to initial guess for a given setup [103]. The method is presented for tomographic
approach as an intermediate step towards a full effective RFC system. Although regularization
techniques are kept out of scope of this work at this stage, our parametric study still shows the
potential of our proposed approach.

The outline of the chapter is as follows. After general remarks in Section 2.3, the formulations
of our problem are presented in Section 2.4. The adjoint problem is derived in Section 2.5 and
the numerical methods are described in Section 2.6. The computational setup and the validation
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of the derivations are presented in Section 2.7. Numerical test results are detailed in Section 2.8.

2.3 Adjoint Formalism

In this section, we first give an overview of adjoint method in generic sense. After defining
the forward problem and the inverse problem, the adjoint model is derived in the next sections.
The derivation is done in continuous adjoint form, so the parametrization and data are kept in
functional forms. The recipe for the discrete adjoint formulation and finite dimensional setting of
data and parametrization are explained in further sections. A basic introduction is given below.

Here, the inverse problem framework is presented following [104], [105] to put forward the
motivation. The inverse problem is seen as the minimization of a square error functional over
control parameter m in the bounded admissible setMad given by:

min
m∈Mad

J(m) = min
m∈Mad

1
2

∥∥∥dsimm − dobs
∥∥∥2

D
. (2.1)

The cost function J(m) depends on the parameter m through the simulated measurement dsimm .
The observation state dobs is an experimental measurement function. We seek for a solution using
an efficient gradient-based optimization method. For that reason, we choose to work with the
square error functional (2.1) as this norm is differentiable. We present the standard formalism
to obtain the gradient of the cost function below.

Consider the inverse problem (2.1) where D = L2(ΓR) and ΓR is a part of the physical domain
Ω where the measurements are taken. The map of misfit quantification is given by:

K :D → R,

d 7→ K(d) = 1
2

∥∥∥d− dobs∥∥∥2

D
.

(2.2)

The simulated measurements dsimm are taken via an observation operator P that applies to the
the state um ∈ U , i.e.,

P :U → D,

um 7→ dsimm = P (um) .
(2.3)

The state u is uniquely defined for a given parameter m with the state equation F (u,m) = 0 at
u = um. This latter is calculated from m using the forward map S:

S :Mad → U,

m 7→ um = S(m) such that F (um,m) = 0.
(2.4)

Note that the cost function J is a composite function given by J(m) = K ◦ P ◦ S(m). The
gradient of J with respect to m is given by [104]:

∇mJ = ψ′(m)∗(ψ(m)− dobs), (2.5)

where ψ(m) = P ◦ S(m) and ψ′(m) is the differential of the mapping ψ(m). The asterisk ∗
denotes its adjoint. Since ψ is implicitly defined with the solution of the state equation, the
implementation of (2.5) is not straightforward in our case. Therefore, we cast (2.5) using the
variational form in order to obtain an explicit adjoint equation which allows the gradient to be
identified and to be calculated more simply. In the following sections, the elements given in this
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section are specified for our particular problem.

2.4 Problem Definition

The forward and inverse problems are presented here. In order to define the inverse problem
more clearly, the forward problem is defined first.

The forward problem is to solve the physical model to estimate the ElectroMagnetic Wave
Field (EMWF) in the environment for known source, geometric features and atmospheric param-
eters in the physical domain. In the inverse problem, we estimate the atmospheric parameter for
known EMWF (which is measured in some part of the physical domain typically) and for known
source and geometric features.

Throughout this dissertation, we estimate the vertical profile of atmospheric refractivity
from wave field measurements by obtaining the measurement data in the bistatic configuration
illustrated in Figure 2.1 using a receiver array antenna. This problem is called the tomography
problem. From a known source, initial field propagates towards a vertically-positioned receiver
array in horizontally stratified atmosphere, which is characterized by refractivity m as function
of altitude z. The refracted propagating field is measured with this receiver array at several
altitude points at a certain distance from the source. The goal is to deduce the refractivity of
the atmosphere from the wave field measurements obtained with receiver array, for given source
and ground conditions.

In this section, we present the formulations defining this inverse problem and describe our
solution strategy.

2.4.1 The forward problem

This section discusses the physical modeling part in the adjoint formalism given by (2.4). In the
context of propagation at open-sea environment with azimuthal symmetry, modeling of electro-
magnetic wave propagation considers solely forward propagating part of the Helmholtz equation
in cylindrical coordinates:

∂ru− jk0 (1−Q)u = 0, (2.6)

which is also called the one-way equation. The square-root operator Q is given by

Q =
√
m2(z) + k−2

0 ∂2
z (2.7)

with k0 the wave number in vacuum and m(z) ∈ R+ the modified refractive index that accounts
for earth roundness. Equation (2.6) is exact for range-independent medium as long as the far
field approximation holds, and takes into consideration the entire forward propagating wave field
propagating at frequency f = k0c/2π. The reduced field u(r, z) ∈ C is related to the power at the
receiver antenna by taking into account the distance, antenna gain and medium impedance [18].
In this work, (r, z) belongs to the domain Ω which is given by [0, R]× [0, Z] where R and Z are
range of interest and altitude of interest respectively.

There are numerous choices to model the propagation in the lower troposphere depending
on how accurate Q is approximated in (2.6) [18], [106]. The standard parabolic approximation
(NAPE) is the first order approximation of Q [107]. It has limited accuracy [108] and it is the only
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model used in adjoint-based RFC systems so far [57]–[62]. In this paper, we use the wider angle
approximation (WAPE) as forward model, which is introduced by Thomson and Chapman [16]
for underwater acoustics according to the splitting of Q as proposed by Feit and Fleck [109]:

∂ru+ j

[
k0(m(z)− 1) +

(√
k2

0 + ∂2
z − k0

)]
u = 0, (2.8a)

u(0, z) = φ(z), (2.8b)
u(r, 0) = 0. (2.8c)

This model considers the boundary condition of a flat perfectly-electric-conducting surface at
z = 0 with source term φ(z) modeling the initial field of emitted radio waves at horizontal
polarization. Note that the state equation (2.8a) could also consider a dielectric ground using a
variable change proposed by [98].

To sum up, the forward problem is to determine the state um for a given parameter model
m by solving (2.8).

2.4.2 The inverse problem

This section discusses the misfit quantification (2.2) in the adjoint formalism. In our inverse
problem, we target to determine the parameter model m that minimizes the following cost
function:

min
m∈Mad

J(m) = min
m∈Mad

1
2

∥∥∥dsimm − dobs
∥∥∥2

L2(ΓR)
= min

m∈Mad

1
2

∫ Z

0

∣∣∣dsimm − dobs
∣∣∣2 dz. (2.9)

where Mad is the admissible set of parameters which prescribes m to belong to a particular
physical interval [mmin,mmax], see Section 1.1.3. Depending on the type of measurement data
dobs, different cost functions can be constructed. For example, when both the amplitude and the
phase of the field is available, we can choose dobs = uobs(R, z) and we can formulate the cost
function as:

J(m) = 1
2

∫ Z

0
|um(R, z)− uobs(R, z)|2dz. (2.10)

and when the phase is not measurable, we can choose dobs = |uobs(R, z)|2 and we can formulate
the problem as:

J(m) = 1
2

∫ Z

0
||um(R, z)|2 − |uobs(R, z)|2|2dz. (2.11)

Also some other formulations are possible but not discussed here. In this section, we seek the most
basic misfit forms which are also easily differentiable and are straightforward for substitution in
the driver section of the adjoint model.

The problem (2.10) and (2.11) are designed with some idealizations which help the validation
of the inversion process. Namely, for an objective refractivity model mOBJ, the experimental
measurements will be synthetically generated using the forward model (2.8). Referring to the
tomographic approach described in Figure 2.1, the synthetic measurements are taken at the range
r = R such that

P : u(r, z) 7→ uobs(R, z) such that F (uobs,mOBJ) = 0 (2.12)

when phase is measurable and

P : u(r, z) 7→ |uobs(R, z)|2 such that F (uobs,mOBJ) = 0 (2.13)
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when phase is not measurable. Data space D is such that ΓR = {R} × [0, Z]. In our study, the
parameter model m is function of altitude z only. Note that dobs ∈ Im(P ◦ S) so the existence
of global minimum is guaranteed for (2.9). But some other solutions become indistinguishable
from mOBJ especially when the phase is not measurable.

In a realistic scenario, simulated measurement with (2.8) would not perfectly produce the
experimental measurement. The ground is modeled better as dielectric ground. The refractivity
varies with range. In addition, measurements are time-averaged, contain noise and cannot be
pointwise in practice. Modelling and measurement errors will add to the complexity of the
idealized inverse problem. Therefore, it is of interest to avoid real-world data during validation
of the inversion routine.

We note also that noise needs to be added to synthetic measurements in order to assess the
robustness of the inversion algorithm against instabilities. Here, the noise modeling does not aim
to be realistic and the inversion results from noisy data are neither an indicator of performance
in real operation nor conclusive. Instead, the aim is to deduce the sensitivity of solver of (2.9) to
perturbations. In order to be able to draw conclusion from inversion of noise-free synthetic data,
it is necessary to show a certain level of robustness to noise. In that context, additive Gaussian
noise can be added to the simulated measurements, i.e.,

dobsnoisy = dobs + ζ (2.14)

where ζ follows a centered normal Gaussian distribution with a standard deviation of τ ×
rms

(√
dobs

)
. The function rms(x) is root-mean-square of function x ∈ R and τ is termed

as the level of noise in this work.

2.5 The Adjoint Problem

The adjoint problem is defined and solved in order to compute the gradient of the cost functions
with respect to control parameters of refractivity efficiently. In this section, the derivation of the
adjoint model is presented. Further theoretical and practical information can be found in [104],
[110]–[113].

2.5.1 The tangent linear model

Let us denote F (um,m) = Fm for brevity. Assume a linear perturbation on the parameter model
m(z) ∈Mad in the direction m̂(z) as

m̃(z) = m(z) + αm̂(z). (2.15)

The function ũ is the state function evaluated at the parameter model m̃:

F (ũ, m̃) = Fm+αm̂ = 0 (2.16)

where ũ = um̃ = um+αm̂. We seek for the operator F ′ which fulfills the following relation:

lim
α→0

‖Fm+αm̂ − Fm − F ′(ûm,m; m̂)αm̂‖
‖αm̂‖

= 0. (2.17)
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Here, the operator F ′ is referred to as the Fréchet derivative of operator F . The function ûm
satisfies the tangent linear model (TLM) F ′(ûm,m; m̂) = 0 and it is referred to as the Gâteaux
differential of um with respect to m in the direction of m̂:

lim
α→0

um+αm̂ − um
α

= ûm. (2.18)

We are trying to estimate the impact of small linear perturbations of m on u in the physical
system F (um,m) = 0, so that we can figure out how to reduce the misfit driven by u by controlling
m. Now let us perturb linearly the physical system:

∂rũ+ j

[
k0(m̃(z)− 1) +

(√
k2

0 + ∂2
z − k0

)]̃
u = 0, (2.19a)

ũ(0, z) = φ(z), (2.19b)
ũ(r, 0) = 0. (2.19c)

We now subtract the two state equations to see the linear change in the physical model. In the
limit of the vanishing perturbation amplitude α→ 0, we have

lim
α→0

{∂r(ũ− um)
α

+ jk0(m(z) + αm̂− 1) ũ− jk0(m(z)− 1)um
α

+
j

(√
k2

0 + ∂2
z − k0

)
(ũ− u)

α

}
= 0

lim
α→0

{∂r(ũ− um)
α

+
j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
(ũ− um)

α
+ jk0αm̂ũ

α

}
= 0

∂rûm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]̂
um + jk0m̂um = 0

(2.20)
Homogeneous initial and boundary conditions are obtained the same way using (2.18). For
example, at r = 0 we obtain:

lim
α→0

um+αm̂(0, z)− um(0, z)
α

= ûm(0, z)

lim
α→0

φ(z)− φ(z)
α

= ûm(0, z) = 0.
(2.21)

Boundary condition can be obtained at z = 0 in similar way. We obtain that ûm satisfies the
Tangent Linear Model (TLM) given in the following:

∂rûm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]̂
um + jk0m̂um = 0 on Ω, (2.22a)

ûm(0, z) = 0, (2.22b)
ûm(r, 0) = 0. (2.22c)

In what comes next, for two given functions f and h, we will make use of the following inner
products:

〈〈f, h〉〉 =
∫ Z

0

∫ R

0
f(r, z) ·h(r, z) drdz,

〈f, h〉Z =
∫ Z

0
f(R, z) ·h(R, z) dz,

(2.23)

where h̄ is the complex conjugate of h.
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2.5.2 Gradient of the cost function

The gradient ∇mJ of the cost function J , at the parameter model m, can be obtained using the
fact that

J ′(m; m̂) = J ′(m) · m̂ = 〈∇mJ, m̂〉Z , (2.24)

where J ′(m; m̂) is the Gâteaux differential of J(m) with respect to m in the direction of m̂

J ′(m; m̂) = lim
α→0

J(m+ αm̂)− J(m)
α

= ∂

∂α
J(m+ αm̂)|α=0, (2.25)

and J ′(m) is derivative of J(m) with respect to m. In what comes next, we apply the chain rule
of differentiation to obtain the gradient simpler than by using the limit (2.25). Referring to the
formalism in Section 2.3, we find it beneficial to remind the reader about the formal application
of the chain rule on the Gâteaux differential of the composite function J(m) = K ◦ ψ(m) with
respect to m in the direction of m̂. Our goal is to help the reader when following the terms
appearing in the derivation because norm remains expressed with two dot products formally for
some time.

J(m) = K ◦ P ◦ S(m) = K ◦ ψ(m) = (K ◦ ψ)(m)
J ′(m; m̂) = (K ◦ ψ)′(m; m̂) = K ′(ψ(m);ψ′(m; m̂))

= K ′(ψ(m);ψ′(m) · m̂) = K ′(ψ(m); ψ̂)
= K ′(ψ(m)) · ψ̂

= <{(ψ(m)− dobs) · ψ̂} = <{(ψ(m)− dobs) ·ψ′(m) · m̂}.

(2.26)

Here, <{x} denotes the real part of x ∈ C and we recall that ψ is defined as ψ(m) = dsimm
according to the descriptions in Section 2.3. One can verify that taking the limit in (2.25) leads
to the same results which are presented in the following of Section 2.5.2.

2.5.2.1 Gradient for the generic least square error functional

A generic expression for the gradient of the cost function (2.9) with respect to m is obtained
observing the dependency of the simulated data dsimm on m during the differentiation.

J(m) = 1
2

∫ Z

0
(dsimm − dobs) · (dsimm − dobs)dz

J ′(m) = 1
2

∫ Z

0

[
(dsimm − dobs)′· (dsimm − dobs) + (dsimm − dobs) · (dsimm − dobs)′

]
dz

= 1
2

∫ Z

0

[
(dsimm )′· (dsimm − dobs) + (dsimm − dobs) · (dsimm )′

]
dz

J ′(m) · m̂ = 1
2

∫ Z

0

[
(dsimm )′· (dsimm − dobs) + (dsimm − dobs) · (dsimm )′

]
· m̂ dz

=
∫ Z

0
<
{

(dsimm − dobs) · (dsimm )′· m̂
}
dz

(2.27)

so from (2.24) we deduce that:

〈∇mJ, m̂〉Z =
∫ Z

0
<
{

(dsimm − dobs) · (dsimm )′· m̂
}
dz. (2.28)
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2.5.2.2 Gradient when phase of wave field is measurable

For the cost function (2.10) with the phase information on the wave field, we substitute dobs =
uobs(R, z) and dsimm = um(R, z) and use the definition of the Gateaux derivative of u at m in the
direction m̂ and use the definition of inner product 〈 . , .〉Z to obtain the relation below:

〈∇mJ, m̂〉Z =
∫ Z

0
<
{

(um(R, z)− uobs(R, z)) ·u′m(R, z) · m̂
}
dz

=
∫ Z

0
<
{

(um(R, z)− uobs(R, z)) · ûm(R, z)
}
dz

= <
{〈

(um(R, z)− uobs(R, z)), ûm(R, z)
〉
Z
}
.

(2.29)

2.5.2.3 Gradient when phase of wave field is not measurable

For the cost function (2.11) without the phase information on the wave field, we substitute
dobs = |uobs(R, z)|2 and dsimm = |um(R, z)|2, and we obtain:

〈∇mJ, m̂〉Z =
∫ Z

0
<
{

(|um(R, z)|2 − |uobs(R, z)|2) · |um(R, z)|2′· m̂
}
dz

=
∫ Z

0
<
{

(|um(R, z)|2 − |uobs(R, z)|2)

·
[
u′m(R, z) ·um(R, z) + um(R, z) ·u′m(R, z)

]
· m̂

}
dz

= 2
∫ Z

0
<
{

(|um(R, z)|2 − |uobs(R, z)|2) ·um(R, z) · ûm(R, z)
}
dz

= 2<
{〈(
|um(R, z)|2 − |uobs(R, z)|2

)
um(R, z), ûm(R, z)

〉
Z
}
.

(2.30)

2.5.3 The formal derivation of the adjoint model

The variational problem The gradient ∇mJ is defined by deriving the adjoint state equation
F ′∗ from the variational form of F ′. Assume an adjoint state wm(r, z) ∈ C exists such that2〈〈

wm, F
′(ûm,m; m̂)

〉〉
= 0. (2.31)

Let us drop index m from the function wm, um and ûm for brevity. The variational form of the
TLM (2.22) reads

〈〈w, ∂rû〉〉+ 〈〈w, jk0(m− 1)û〉〉+ 〈〈w, j(
√
k2

0 + ∂2
z − k0)û〉〉+ 〈〈w, jk0m̂u〉〉 = 0. (2.32)

Applying rule of partial integration and the adjoint identity using the initial condition (2.22b)
and the boundary condition (2.22c) of the TLM, we obtain, for the first term:

2See [111, Theorem 3.21] for further information.
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〈〈w, ∂rû〉〉 =
Z∫

0

R∫
0

w· ∂rû drdz

=
Z∫

0

(
w· û

)∣∣∣r=R
r=0

dz −
Z∫

0

R∫
0

∂rw· û drdz

= 〈w, û〉Z |r=R − 〈w, û〉Z |r=0 − 〈〈∂rw, û〉〉
= 〈w, û〉Z |r=R − 〈〈∂rw, û〉〉

(2.33)

because û(0, z) = 0 in (2.22b). For the second term, we obtain:

〈〈w, jk0(m− 1)û〉〉 =
Z∫

0

R∫
0

w· jk0(m− 1)û drdz

=
Z∫

0

R∫
0

−jk0(m− 1)w· û drdz

= 〈〈−jk0(m− 1)w, û〉〉 .

(2.34)

The analysis of the third term is not as straightforward as the first and the second because it
contains the square-root operator. The considerations are given below. We begin with using the
adjoint identity 〈〈w,Aû〉〉 = 〈〈A∗w, û〉〉 and keep the asterisk above the square-root term for which
we do not know readily what the adjoint is:〈〈

w, j

[√
k2

0 + ∂2
z − k0

]
û

〉〉
=
〈〈
−j
[(√

k2
0 + ∂2

z

)∗
− k0

]
w, û

〉〉
(2.35)

Let the operator A be equal to k2
0 + ∂2

z . In fact, using an already existing theorem in functional
analysis [114, Theorem 1] and combining it with the knowledge on what this square-root operator
models in free-space propagation, we can find out what

√
A
∗ is in our context. Firstly, observe

that A is a self-adjoint operator in our context. The term k0 ∈ R+ is a coefficient that is fixed
with the frequency of the radar, so 〈〈w, k2

0û〉〉 = 〈〈k2
0w, û〉〉. The operator ∂2

z is found to be self-
adjoint when homogeneous Dirichlet type boundary conditions are applied on the function û and
w:

〈〈
w, ∂2

z û
〉〉

=
Z∫

0

R∫
0

w· ∂2
z û drdz

=
R∫

0

[
w· ∂zû

]z=Z
z=0

dr −
Z∫

0

R∫
0

∂zw· ∂zû drdz

=
R∫

0

[
w· ∂zû

]z=Z
z=0

dr −

 R∫
0

[
∂zw· û

]z=Z
z=0

dr −
Z∫

0

R∫
0

∂2
zw· û drdz


=
〈〈
∂2
zw, û

〉〉
+

R∫
0

[
w· ∂zû

]z=Z
z=0

dr −
R∫

0

[
∂zw· û

]z=Z
z=0

dr

=
〈〈
∂2
zw, û

〉〉
.

(2.36)

Then, A is a self-adjoint operator when w(r, 0) = w(r, Z) = 0 and û(r, 0) = û(r, Z) = 0. The
homogenous Dirichlet boundary conditions of the TLM and AM at the upper boundary, i.e.,
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û(r, Z) = w(r, Z) = 0, are assumptions that are reasonable in our context from numerical point
of view and they are going to be validated [115, p. 795], [116, p. 386]. In a way, zero boundary
condition is assumed at an artificial upper boundary above the physical boundary at z = Z in
order to make our numerical technique work. Also note that this assumption is valid when u is
zero at z = Z and so w is at the top of the domain.

Secondly, observe that the sign of A depends on the considered eigenvalue spectrum of ∂2
z at

fixed k2
0 ∈ R+ because ∂2

z is a negative operator for f(z = 0) = f(z = Z) = 0 in its domain:

〈〈
f, ∂2

zf
〉〉

=
Z∫

0

R∫
0

f · ∂2
zf drdz

=
R∫

0

[
f · ∂zf

]z=Z
z=0

dr −
Z∫

0

R∫
0

∂zf · ∂zf drdz

= −
Z∫

0

R∫
0

∂zf · ∂zf drdz

= −〈〈∂zf, ∂zf〉〉 = −‖∂zf‖2 ≤ 0. (2.37a)

We can observe that,

〈〈Af, f〉〉 ≥ 0 when 〈〈−∂2
zf, f〉〉 ≤ 〈〈k2

0f, f〉〉, (2.38a)
〈〈Af, f〉〉 < 0 when 〈〈−∂2

zf, f〉〉 > 〈〈k2
0f, f〉〉. (2.38b)

Let us now elaborate on (2.38) briefly. As ∂2
z is a negative operator, we cannot expect to have

(2.38a) for all f . However, when a numerical scheme is used, the eigenvalues of the discretized
∂2
z are lower bounded and (2.38a) becomes possible when k0 matches with discretized ∂2

z . This
matching is linked to a condition on the mesh size described in Section A. To sum up, we can
describe the sign of A after laying out the spectrum of the operator numerically (see Section A).

In addition, from a physical point of view, observe that (2.38a) is effectively the case when
propagating part of the wave field is accounted in the numerical solution of (2.8). The case when
〈〈Af, f〉〉 < 0 in (2.38b) numerically corresponds to the evanescent waves in the numerical solution
which decay exponentially with range during propagation [18], [106]3.

Lastly, there exists a self-adjoint square-root operator
√
A =

√
A
∗ when A is a positive self-

adjoint operator, according to [114, Theorem 1], as in the case of propagating (non-evanescent)
part of numerical solution coming from (2.8a) in our context [18]. Thus,

√
A
∗ =
√
A is valid as

far as the scope of resolution is restricted on the propagating part of the field. If we assume that
propagating part of the wave field corresponds to the essential part of the physical measurements
because the evanescent part vanishes exponentially as stated, self-adjointness of the square-root
operator can be asserted in the context of our study.

Numerically this corresponds to restricting the eigenvalues that would otherwise extent to
−∞ by choosing a mesh such that step size in the axial direction is greater than λ times a
multiplicative constant C. This means ensuring ∆z ≥ Cλ where ∆z is the step size in the
axial direction of the domain Ω and λ is the wavelength. The value of the constant C should
be obtained by analyzing the numerical method that is used for solving the WAPE and also
should be verified empirically by experimenting with the FM and AM. We discuss about this in

3The reader may refer to the discussion in Section 2.4.1, Section 2.4.3 and Section 3.4 of reference [18].
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Section A. In our case for example, we should satisfy ∆z ≥ λ/π (see Section A)4. Under this
condition, the third term reads:〈〈

w, j

[√
k2

0 + ∂2
z − k0

]
û

〉〉
=
〈〈
−j
[√

k2
0 + ∂2

z − k0

]
w, û

〉〉
(2.39)

with homogeneous Dirichlet boundary conditions applied on w in z. Finally, for the fourth term,
we have:

〈〈w, jk0m̂u〉〉 =
Z∫

0

R∫
0

w· jk0m̂u drdz =
Z∫

0

R∫
0

−jk0wu· m̂ drdz

= 〈〈−jk0wu, m̂〉〉 .

(2.40)

In sum, we arrive at the following variational problem:

− 〈〈∂rw, û〉〉+ 〈w, û〉Z |r=R − 〈〈jk0(m− 1)w, û〉〉
− 〈〈j((k2

0 + ∂2
z )1/2 − k0)w, û〉〉 − 〈〈jk0wu, m̂〉〉 = 0.

(2.41)

Let operator B(m) = ∂r + jk0(m− 1) + j(A− k0), then the variational problem becomes

− 〈〈B(m)w, û〉〉+ 〈w, û〉Z |r=R − 〈〈jk0wu, m̂〉〉 = 0. (2.42)

Measurement with phase The gradient ∇mJ can be identified from the following equations:

〈∇mJ, m̂〉Z = <
{〈

(um(R, z)− uobs(R, z)), ûm(R, z)
〉
Z
}

〈〈jk0wmum, m̂〉〉 = −〈〈B(m)wm, ûm〉〉+ 〈wm(R, z), ûm(R, z)〉Z
(2.43)

Measurement without phase The gradient ∇mJ can be identified from the following equa-
tions:

〈∇mJ, m̂〉Z = 2<
{〈(
|um(R, z)|2 − |uobs(R, z)|2

)
um(R, z), ûm(R, z)

〉
Z
}

〈〈jk0wmum, m̂〉〉 = −〈〈B(m)wm, ûm〉〉+ 〈wm(R, z), ûm(R, z)〉Z
(2.44)

Observing the symmetry of the operators in the variational form, we can think of obtaining
an adjoint state equation which is the same as (2.8a) so that the forward model (FM) solver can
be inherited for the adjoint model (AM) with minimal modification.

Measurement with phase Now let us identify the gradient and the adjoint model explicitly.
When the phase is measurable, let wm be given by:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (2.45a)

wm(R, z) = um(R, z)− uobs(R, z), (2.45b)
wm(r, 0) = 0, (2.45c)

4Please also see [17] and [117] for the comments about how to choose ∆z as function of λ.
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Measurement without phase When only the amplitude is measurable, let wm be given by:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (2.46a)

wm(R, z) = 2
(
|um(R, z)|2 − |uobs(R, z)|2

)
um(R, z), (2.46b)

wm(r, 0) = 0, (2.46c)

such that (2.47) holds for both measurement data types:

∇mJ = <
{
jk0

∫ R

0
wm(r, z)um(r, z) dr

}
. (2.47)

The estimation of such gradient will now enable us to use gradient-based optimization methods
(e.g., Quasi-Newton methods) which are suitable for large-scale inversion problems. In the next
section, we give the implementation details for the adjoint models and present an approach to
validate both the derivation and the implementation.

2.6 Algorithm

In this section, we explain how we build our inversion algorithm following the descriptions of the
workflows in [57] and Chapter 6 of [104].

2.6.1 Adjoint-based Inversion Algorithm

The inversion process starts from an initial guess mIG which gives a simulated measurement data
dsimm using propagation model (2.8). Next, the adjoint equation is solved in order to estimate the
gradient using (2.47). The iteration parameters are estimated with a gradient-based minimization
algorithm, which includes inner cost function estimations using the propagation model. The same
process continues until a convergence criteria is met.

In our study, we do not have access to measurements. Therefore, we generate the measure-
ments dobs synthetically using the forward model given by (2.8) for a known objective refractivity
profile mOBJ. The workflow given in Figure 2.2 summarizes the inversion strategy and the used
notations. Next section presents the numerical methods which we use.

2.6.2 Numerical Methods

Simulation technique The functions um and wm are estimated numerically from the forward
and adjoint models using split-step wavelet (SSW) technique [17]. The function um is computed
numerically using a forward model (FM) that is developed at ENAC during the thesis work of
Hang Zhou [118] and Thomas Bonnafont [97]. I use the forward model as a black-box. My task
is to derive the adjoint code for the given forward model code and I do not have contribution on
the SSW technique.

Discretized Model The variables presented until this section are in functional form for sim-
plicity. However in the following, u, w, d and m are treated as finite dimensional vectors in a
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Eq. (2.12)
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Eq. (2.13)
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Forward Model

Successful ?
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Quasi-Newton
update
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INITIALIZE

START

END

Measurement

Adjoint Model

Eq. (2.8)
Eq. (2.45)

or
Eq. (2.46)

Eq. (2.47)

Eq. (2.8)

SYNTHETIC EXPERIMENTAL MEASUREMENT

END

Figure 2.2: Scheme of inversion workflow. The algorithm corresponding to the red boxes will be
validated.

numerical method that tackles the partial differential equations and the integrals. We are going
to introduce their finite representations so as to explain our techniques.

Our numerical domain is illustrated in Figure 2.3. It extends from 0 to R and Z in the radial
and the axial directions, respectively. The domain is discretized using a structured mesh. The
position (r, z) becomes (rnr , znz ) in this domain, which are controlled by uniform mesh size and
station number on the grid. The position vector is expressed by the following relations.

rnr = nr ∆r, nr ∈ [0, Nr], (2.48a)
znz = nz ∆z, nz ∈ [0, Nz]. (2.48b)

Here, Nr and Nz are the number of grid nodes (computation stations) on the discretized domain.
Accordingly, u(r, z) ∈ C, w(r, z) ∈ C, m(z) ∈ R and ∇mJ(m) ∈ R becomes of dimension
u(rnr , znz ) ∈ CNr×Nz , w(rnr , znz ) ∈ CNr×Nz , m(znz ) ∈ RNz and ∇mJ(m) ∈ RNz , respectively.
The finite dimensional representations are built on the punctual values computed at grid nodes.
One example is given for u in Figure 2.3.

Adjoint code derivation The adjoint model solver is derived from the forward model solver.
The forward model can be treated as a black box with minor modifications when deriving the
adjoint code because we can derive an adjoint-PWE thanks to the symmetry of the operators
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0

Figure 2.3: Discretized computational domain.

appearing in the numerical application in our particular context. The adjoint initial condition is
achieved by replacing (2.8b) with (2.45b) or (2.46b) in the FM solver depending on the choice
of the cost function. Adjoint backpropagation is achieved by changing sign of range step from
∆r to −∆r and 180◦ rotation of computational domain around axial direction in the FM solver.
This change of sign occurs in the free-space propagator, boundary condition and phase screen
operators in [17].

In the forward and adjoint solver, the field is apodised with the Hanning absorbing window
for z > Z. The ground boundary is modeled using local image method. So as to improve the
accuracy of the numerical method, we have used the splitting scheme given below [17], [106]:

u|r+∆r,z= eB/2T −1
{
PT

{
eB/2u|r,z

}}
, (2.49)

where B = {−jk0(m − 1)∆r} is the term accounting for the atmosphere, T is the wavelet
transform operator with compression, T −1 is the inverse wavelet transform, and P is the operator
modelling the free-space propagation in the wavelet domain.

Computing the norm and its gradient The cost function (2.9) and its gradient (2.47) are
computed using Simpson’s rule of integration.

Optimization The optimization algorithm is the well-known BFGS algorithm [119]. The opti-
mization process stops when the cost function can no longer be decreased sufficiently respecting
Wölfe conditions [120], [121] in the descent direction as described in [119, Section 3.1].

2.7 Validation of the Gradient

The algorithm presented in Figure 2.2 is suited for inverting the air refractivity above sea surface
which corresponds to the measured wave field data. In order to be sure that the algorithm
works properly, a validation experiment can be organized. We choose an ambient refractivity
distribution and generate the corresponding measurement data synthetically with a physical
modeling technique.

During synthetic data generation, the modeling technique is chosen as the same as the forward
model of the inversion algorithm with the same code and mesh which is used during inversion.
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This inversion experiment falls in the category of an inverse crime [104], [122], [123]. Such a setup
eliminates measurement errors, modeling errors and noise which exists in real-world operations
in practice. With this experimental setting, we check if our algorithm is capable to find the
ambient refractivity distribution in ideal conditions.

As discussed later, even in ideal conditions, the inversions often fail because the problem is
ill-posed. In this case, we want to check, at least, if the analytical derivation of the gradient
and the numerical implementation is correct or not. After the contribution is validated, we can
analyze the test cases to figure out the mechanism behind the failure.

In order to make the validation and analysis easier, we choose the parameters and the source
condition of the validation experiment as given in Figure 2.4. The details are given in the next
section. The baseline computational setup of the validation process is given in Section 2.7.1
which also contains some notes on the validation methodology. Numerical validation is given in
Section 2.7.3.

Remember that the variation of the refractivity is discussed in terms of M which is related
to the parameter m of the FM through (2.50).

M = (m− 1)× 106. (2.50)

The refractivity m varies at the order of part per million in the troposphere. The refractivity is
discussed with the modified parameter M(z) in the following sections.

2.7.1 Computational Setup

In the baseline computational setup, the geometry of the computational domain Ω is a two
dimensional plane constructed on axial and radial directions as given in Figure 2.1. The geometry
is truncated such that Ω = [0, R] × [0, Z]. Altitude of interest Z is limited to 150 m. Range of
propagation R is considered mainly at 5 different values, and it is equal to 1, 5, 10, 30, 60 km
respectively.

The mesh of discretized domain ΩNr,Nz is a uniform grid. The parameter Nr and Nz are the
number of grid points along the directions r̂ and ẑ, respectively. The cell size in altitude is set to
∆z = 1 m for all cases. The cell size in range ∆r is determined such that r ∈ [0, R] is discretized
into 100 equal intervals with ∆r < 100 m, otherwise the cell size is fixed at ∆r = 100 m for the
control of numerical error.

The initial condition φ(z) is obtained from a Complex Point Source (CPS) positioned at
(rs, zs) = (−100 km, 25 m) and its amplitude and phase is shown in Figure 2.4b and Figure 2.4c
respectively. The CPS has width of 5 m and emission frequency fs = 2 GHz at horizontal
polarization. The source is placed far from the computational domain in order to obtain a |φ(z)|
profile which is close to a plane wave. This quasi plane wave profile is necessary for illuminating
the entire domain in short ranges, which is useful for validation.

The synthetically generated data dobs is obtained by solving the forward model for parameter
model M = MOBJ. Therefore the global minimum of the nonlinear least squares problem is
MOBJ and the success of the inversion is evaluated by checking how far inverted parameterMINV
is from MOBJ. The iterations start from an initial guess refractivity MIG.

The objective and the initial modified refractivity parameters of the baseline computational
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Figure 2.4: The selected source profile and refractivity profiles suited to the validation purposes.
(a) MIG and MOBJ, (b) |φ(z)|, (c) arg(φ(z)).
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Figure 2.5: Propagating fields at different measurement array position R for the computational
setup given in Section 2.7.1. (a) Synthetically-generated measured field, (b) simulated field for
initial guess.

setup are given in Figure 2.4a. The initial guess profile MIG(z) assumes uniform guess at
MIG(z) = 330 M-unit. The objective refractivity MOBJ(z) has a trilinear structure of surface
based ducts [47]. The duct is described by the following altitude-refractivity pair:
(z,MOBJ(z)) = {(0, 330.0), (50, 350.0), (100, 330.0), (150, 335.90)}. Refractivity does not depend
on range.

The parameters MOBJ,MIG and MINV all belong to RNz . The measurement data and the
simulated data also belongs to Nz-dimensional space. Accordingly, the aim is to invert Nz = 151
refractivity parameters from 151 experimental data sample, all of which are estimated at each
one of grid node in altitude. To be clear, there are 151 receivers on the receiver array extending
from ground level to the altitude of interest Z = 150 m, with the receiver spacing of ∆z in the
scenarios that we consider in this chapter.

In the next section, we give the inversion results of the workflow given in Figure 2.2 at
different ranges for the baseline computational setup. The objective and initial guess fields are
given in Figure 2.5 with their difference.
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2.7.2 Validation Method

For solving this least squares inverse problem, we use gradient-based optimization method for
the inversion. Therefore, the validation of the gradient is crucial. The contribution from the
variational adjoint approach is its accuracy and efficient calculation of the gradient of the ob-
jective function to a large number of medium parameters. This gradient is derived analytically
and expressed by (2.47). Assuming our physical system is approximated with our state function
properly, the accuracy of the gradient depends on the quality of the measurement function and
the adjoint state function. The validation is a classical and compulsory process which is described
in [104], [111]. After validating the gradient of the optimization, the next question is going to
be if there is local minima for this least squares inverse problem.

In the last decade of adjoint-based RFC systems, inversion of synthetically generated data
have been used for demonstrating the proper derivation and implementation. However, the
problem (2.9) is difficult to solve accurately even in the absence of modeling errors, measurement
errors and noise. In fact, the inversion results are not accurate enough for validating the quality of
the implementation except for oversimplified cases which are not interesting in terms of practical
applications (e.g., [2]). Therefore, we cannot rely on inversion results for validation and it is
necessary to perform the validation process starting from checking the gradient computation
for interesting overcomplicated inversion scenarios. Clearing the validation step of the gradient
(which includes the adjoint model validation) provides a solid basis for holding ill-posedness
responsible for inaccurate inversion results. In that context, the part of the inversion algorithm
lacking validation is shown in the workflow in Figure 2.2 in red.

If the adjoint state wm is formulated and simulated properly, ∇mJAM would match the
gradient computed with a reference method. A costly approximation of the gradient from a
finite differences (FD) scheme can be treated as a secure reference method respecting some
conditions as described in [104]. The reference estimation of the gradient can be obtained using
a first order forward differences scheme. Typically, for a number Nz of inversion parameters, the
ith component of the FD approximation of the gradient is given by

[∇mJFD]i = J(m+ εeeei)− J(m)
ε

, (2.51)

where eeei is the n-sized column vector whose ith component is one while all the others are zeros,
and ε is chosen as 10−6. Note that the estimation of the gradient with a finite differences scheme
requires n + 1 evaluations of the cost function, while ∇mJAM is computed at the cost of 2 FM
runs [104].

To sum up, the gradients ∇mJFD and ∇mJAM should follow each other if the adjoint field is
formulated and simulated properly and the numerical integration of (2.47) is done properly.

2.7.3 Validation

In this section, the adjoint model and the gradient presented in Section 2.5.3 are validated
numerically at the computational setup described in Section 2.7.1, by comparing the gradients
obtained from finite differences and adjoint model ∇mJFD and ∇mJAM. The gradients are
computed for the first descent iteration (i.e., M0 = MIG). This validation is performed for both
data types.
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The validation is performed qualitatively by presenting the gradients as line graphs with
respect to altitude. In fact, J is function of m, so ∇mJ is a function of parameter m as well.
Therefore, the gradient which is computed numerically in discrete manner should be presented
pointwise with respect to parameter index in the vectorial representation. However, m is function
of altitude. Thanks to that relation, we can display the gradient with respect to altitude like in
Figure 2.6. Here, the gradient value at an altitude point is actually the value at the parameter
index that belongs to that altitude.

2.7.3.1 Adjoint model: measurement with phase

In this section, we present the results related to the validation of the gradient for the problem
(2.10). The gradient of (2.10) is computed using (2.47) in which w is the solution of (2.45).

The gradient from the adjoint model (∇mJAM ) is compared to that of finite differences
(∇mJFD) in Figure 2.6. The gradients ∇mJAM and ∇mJFD follow each other at different
measurement antenna position R, so the validation is successful. This validation automatically
validates the derivation of the adjoint model formulation (2.45) according to the workflow of the
algorithm given in Figure 2.2.

In short ranges, the nonlinearity between m and J is weak (we will confirm that later).
The normalized gradient profile in the first few hundred meters range (not shown here) looks
almost like the function −(MOBJ −MIG)/ ‖MOBJ −MIG‖ (see Figure 2.4a and Figure 2.6a).
The gradient is validated also for R > 1 km in Figure 2.6 at several different R to be sure that
we can compute it correctly. In Figure 2.6, we observe that the gradient changes with R. This
evolution is displayed also in Figure 2.7 and might reveal some features of the nonlinearity and
local minima problems reported in [57].

2.7.3.2 Adjoint model: measurement without phase

In this section, we present the results related to the validation of the gradient for the problem
(2.11). The gradient of (2.11) is computed using (2.46) where the adjoint function w is the
solution of (2.47). The adjoint model (2.46) is validated by comparing the gradient which is
obtained thanks to this equation, to the gradient obtained by finite differences.

In Figure 2.8, the gradient calculated with the AM and with FD are plotted with respect to
altitude for the different values of R. Both gradients perfectly match, except that at R = 1 km
there exists some differences due to the very low value of the gradient. Thus the gradient
estimation is more robust for long range applications.

Numerical issues become prominent in the computation of the gradient when the gradient
is low as in the case of Figure 2.8a. For AM, this occurs when the driver of the adjoint model
w(R, z) approaches to zero and the gradient is small like when it is estimated near a stationary
point, according to (2.46b) and (2.47). This causes numerical problems which gives even worse
validation curves at R = 100 m (not plotted here). From FM point of view, this corresponds to
the case where the difference between the field bending effect of differentm is not significant on |u|
at short ranges. For this reason, impact of the perturbations ofm on J are insignificant, according
to (2.51). This observation leads us to the conclusion that a stationarity check is recommended
for RFC applications at the end of inversion. Furthermore, one must be aware that the gradient
might be miscomputed near stationary point and one must take some precautions to compensate
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for this, which is discussed in other sections.

To sum up, the adjoint model is validated with the comparison of the gradient with FD.
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Figure 2.6: Validation of the gradient for the first descent iteration for complex measurement
data type. Comparison of the gradient ∇mJFD computed with finite differences (FD) method
vs. ∇mJAM computed with adjoint model (AM). (a) R = 1 km, (b) R = 5 km, (c) R = 10 km,
(d) R = 30 km, (e) R = 60 km.
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Figure 2.7: Evolution of the the gradient of the first descend iteration as function of R.

2.8 Inverse Problem Resolution

In this section, the inversion routine given in Figure 2.2 is tested for its capability to retrieve
MOBJ from the corresponding measurement.

At this stage, a user-defined convergence criterion is not implemented. The iterations continue
until the optimization algorithm cannot improve the cost function anymore. This is also a sort
of convergence criteria effectively. Therefore, a convergence criteria or maximum number of
iterations is not imposed in this test. The iterations continue until arriving at a stationary point
of the error functional. Furthermore, the parameters of the optimization are not bounded. The
results of this section are preliminary. These questions are left for the realistic scenarios in the
next Chapter.
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Figure 2.8: Validation of the gradient for the first descent iteration for phaseless measurement
data type. Comparison of the gradient ∇mJFD computed with finite differences (FD) method
vs. ∇mJAM computed with adjoint model (AM). (a) R = 1 km, (b) R = 5 km, (c) R = 10 km,
(d) R = 30 km, (e) R = 60 km.

2.8.1 Results: inversion with phase information

In this section, we assume that the phase information of the complex wave field is measurable.
Since no wave field information is lost and error sources are absent, the initial expectation is that
the inversion routine given in Figure 2.2 should invert the objective refractivityMOBJ successfully
if the implementation is correct.

The distribution of the inverted parameters at each altitude point is given in Figure 2.9.
The success of the inversion varies with the measurement array antenna position R. For this
reason, the results are shown at different R ∈ {1, 5, 10, 30, 60} km in order to observe the range-
dependency progressively.

The inversion is successful in short ranges at R =1 km as shown in Figure 2.9a. We obtained
good results for R <1 km and at longer ranges up to a certain critical range Rcrit similar to that
obtained at R =1 km. Beyond R > Rcrit we do not have good results as shown in Figure 2.9 in
the case of R=5, 10, 30 and 60 km. Not only the deterioration of the results are quite sudden
when changing R from 1 to 5 km, but also MINV looks further from MOBJ at 5 km than at
longer ranges in Figure 2.9. The dependency of the dispersion of MINV looked strange and
not in accord from our background knowledge from the relation between propagation range and
ill-posedness of the problem, which should increase with R regularly [57]. For that reason, we
wanted to analyze this transition towards worse results from 1 to 5 km in range and check if we
do something wrong during the optimization. We have found out that this transition starts in the
range interval between 4 km and 4.1 km in our case, as shown in Figure 2.10. The dispersion is
measured with the percent relative error computed with the Euclidian norm according to (2.52):

ε1 = ‖MOBJ −MINV‖
‖MOBJ‖

× 100. (2.52)

The dispersions are quantified using ε1 and presented in the caption of the Figure 2.10. The
dispersions are found to be related to the evolution of the error functional topography rather
than numerical techniques. Our analysis has shown that the dispersion in the results given in
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Figure 2.9: Inverted parameters from data with phase measured at different range R. (a) R =
1 km, (b) R = 5 km, (c) R = 10 km, (d) R = 30 km, (e) R = 60 km.

Figure 2.10 is related to the emergence of new local minimum along the path of iterations in the
parameter space. Although not shown here, we have found out that ∇mJ of the first iteration
gives us an indication about the fate of inversion; we needed to be able to guess the sign of
perturbation on m correctly in the direction of the function −(MOBJ −MIG). If the sign is
predicted different than −(MOBJ −MIG) even if only in some part of the ∇mJ in altitude, the
dispersions start. The dispersion ε1 is measured as 9.9% at R = 4.1 km, 16.7% at R = 5 km, and
6.2% at R = 10 km. As for the reason why the dispersed MINV is stacked around MIG at longer
ranges such as at 30 and 60 km is found to be related to the emergence of more local minima in
the error functional topography which cuts the iterations path of the dispersed parameter model
shorter, so the inverted parameters stay near the initial guess nicer compared to the results
obtained at R = 5 km.

The conclusion of this study is that successful application of this approach is limited to the
very short ranges in our test case, even when there is no modeling and measurement errors and
the measured data do not contain noise. Also, the objective parameter is a very basic trilinear
profile and the initial guess is close to the objective parameter so it is a good initial guess. In real
world applications, we are going to encounter with scenarios where the true ambient profile is far
more complex than that studied in our tests. Given the difficulty of the problem even in ideal
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Figure 2.10: Inverted parameters from data with phase measured in the vicinity of R = 4 km
at different range R. (a) R = 4070 m, (b) R = 4080 m, (c) R = 4090 m, (d) R = 4100 m,
(e) Convergence graphs. The dispersions are characterized with ε1 = (a) 0.15% , (b) 2.3% , (c)
9.6% , (d) 9.9% in parameter M .

conditions, we do not see much interest in analyzing this problem more deeply with different
initial guesses and in upgrading it with techniques to stabilize the problem because we are also
unsure if we could measure the phase alongside the amplitude of the wave field in reality. Also,
the receiver array contains one receiver at each meter point, which may not be the case in reality.

At this point, several potential remedies can be identified right away: change of the error
functional to reduce nonconvexity and local minima (change of data space, change of norm, regu-
larization techniques), reduction of number of control parameters to invert (subspace approaches
like principal component analysis or inversion in Fourier/Wavelet basis), a better initial guess
(global search, historical data, numerical weather prediction, multistart techniques). The sugges-
tions can be expanded to include windowing of the measured data or filtering of the parameter
model or perturbations etc., if applicable.

In the next section, we take only the amplitude of the data into account because firstly we
want to change the error functional topography which seems very difficult to work on according
to the indications from the inversion results. Secondly, removal of some information in data
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improved error functional topography in geophysics applications and led to improvement of the
results in [124].

2.8.2 Results: inversion without phase information

The inversion routine given in Figure 2.2 is tested for its capability to retrieve MOBJ from the
corresponding amplitude measurement. The distribution of the inverted parameters at each
altitude point is given in Figure 2.11 for different R ∈ {1, 5, 10, 30, 60} km.

Similar to the results given in Section 2.8.1, success of inversion depends on R in the range
interval of 1 − 60 km. Different from the results given in the same Section 2.8.1, the inversion
success at R = 1 km is lost with the removal of the phase from data in Figure 2.11a when
compared to its counterpart with phase information in Figure 2.9a. Inversion resultMINV appears
with limited dispersion which allows identification of the similarities between MINV and MOBJ.
A major trilinear structure is retrieved, with slopes in the same direction as MOBJ globally. The
appearance of MINV with leftward shift from MOBJ is linked to the fact that the topography
allows multimodal solutions. It is mainly the wave speed differential in the atmosphere that
governs |u| in the error functional (2.11). Therefore, many other refractivity profiles with a
shape similar to MOBJ appearing with some random shift as explained, gives J ∼ 0 and the
true solution becomes indistinguishable from other solutions. One of the multimodal solutions
is retrieved in Figure 2.11a in the vicinity of MIG.

At R = 5 and 10 km, MINV can represent the true solution MOBJ around MIG by capturing
the slope ofMOBJ with limited dispersion. The major trilinear synoptic structure ofMOBJ cannot
be recognized inMINV when R > 14 km (not plotted). For R = 30 and 60 km, MINV stays closer
to the MIG for increasing R like it was in Section 2.8.1. The synoptic structure (gradient) of the
objective refractivity is not retrieved in those two cases. As failure of the inversion and stocking
of MINV around MIG are progressive with the increase of R, we conclude that (2.9) contains
more local minima with R, and the local minima prevent the iterations to arrive at one of the
multimodal solutions.

The conclusions are as follows. Failure to invert is not due to the proposed adjoint model.
It is probably due to that the error functional topography is rough. In other words, problem
(2.9) is ill-posed even without measurement, modeling and theoretical errors. Potentially, the
ill-posedness could be combined with convergence issues which could be included in a future
work. In the next section, we are interested in visualizing the error functional topography of the
two error functionals (2.10) and (2.11), which give different results, so that the iterations can
skip some local minima and can be guided towards global minimum further.

2.8.3 Results: landscapes of the cost function

There is no general technique to tackle a nonlinear inverse problem [104], [125]. Solving it requires
the development of a special technique considering the characteristics of the problem.

We are asked to find the true parameters at the global minimum of an error functional. In
the context of adjoint-based refractivity inversion, some of the difficulties in finding the true
parameters are reported as: sensitivity to initial guess [60], loss of signal at long ranges [57],
failure of some regularization techniques [58], insufficiency of measurement data [57], high-
dimensionality [61]. These difficulties are commonly seen as the consequence of nonlinearity
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Figure 2.11: Inverted parameters from phaseless data measured at different range R. (a) R =
1 km, (b) R = 5 km, (c) R = 10 km, (d) R = 30 km, (e) R = 60 km.

and ill-posedness characteristics of the problem. In practice, those two characteristics reflect
on the problem (2.9) as nonconvexity of the optimization landscape. Thus, the desired special
technique is the one that can mitigate the nonconvexity on the landscape. For that reason,
visualization of the cost function landscape can be used as a tool to analyze the difficulty and
to develop the right technique for an improved refractivity inversion [103]. The optimization
landscape analysis of RBT problem can be seen as an intermediate step for understanding why
also RFC is still an open problem, which is more complex to analyze.

For the landscape analysis, the baseline setup described in Section 2.7.1 is considered. In
this setup, the parameter model M is controlled by 151 control parameters, so visualizing the
entire error functional topography is not possible. Nevertheless, visualizing several directional
topographies (i.e., in certain directions in M) gives us an idea about the entire topography.
While this does not necessarily reveal local minima, it demonstrates the degree of nonconvexity
of the error functional around the true parameter. At this preliminary stage, such analysis gives
an idea about the width of the attraction basin of the global minimum and its sensitivity to
the sources of nonlinearity and ill-posedness (i.e., those listed in the previous paragraph). The
analysis can reveal some strategies to guide the iterations into the attraction basin of the true
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objective parameter, which is the capability of the ideal inversion technique.

In this work, we limit our analysis to three different one-dimensional optimization landscapes
of the high-dimensional problem. They allow to visualize the cost function around some given
solutions (the true global minimum) and some initial guess with a one-dimensional variation.
Firstly, we define:

α 7→ J(M1(α)), α ∈ [−2, 2],
with M1(α) = MOBJ + α(MIG −MOBJ).

(2.53)

By varying the parameter model using M1, we construct the cost function landscape around the
objective refractivity profile. Note thatM1 = MOBJ at α = 0 andM1 = MIG at α = 1. Secondly,
we define:

α 7→ J(M2(α)), α ∈ [−2, 2],
with M2(α) = MOBJ + α(MSTD −MOBJ).

(2.54)

where MSTD is the modified standard refractivity profile in the troposphere. It is the linear
refractivity profile with M(z = 0) = 330.0 M-unit which varies with the slope of 0.118 M-unit/m
in altitude. Similar to α 7→ J(M1(α)), by varying the parameter model using M2, we construct
the cost function landscape around the objective refractivity profile but in another direction.
The interest in using M1 and M2 is to see the landscape between a starting parameter and the
true objective parameter. Note that M2 = MOBJ at α = 0 and M2 = MSTD at α = 1. Finally,
we define:

α 7→ J(M3(α)), α ∈ [−1, 1],

with M3(α) = MIG + α ‖MMAX −MIG‖∞
∇mJ

‖∇m0J‖∞
,

(2.55)

where MMAX = 400 M-unit. The interval in which α varies is chosen such that the variation
scansMad thoroughly. The landscape using the parameter model M3 is constructed around the
initial guess in the direction of the gradient. The three landscapes are plotted and commented
below.

In Section 2.8.1 and 2.8.2, we have seen inaccurate inversion results although it is shown that
the gradient is computed accurately in the beginning of the iterations as shown in Section 2.7.3.1
and 2.7.3.2. The invertibility clearly depends on range and the type of cost function (e.g., whether
the phase is considered or not). Therefore we draw the directional cost function landscapes with
respect to range R ∈ {1, 5, 10, 30, 60} km for both cost functions (2.10) and (2.11).

Firstly, the landscape is computed for model M1 using (2.53) at different ranges for measure-
ments with and without phase and the landscapes are shown in Figure 2.12 and 2.13 respectively.
Comparison of the landscapes in Figure 2.12 and 2.13 indicates less nonconvexity for a given range
when the phase is removed from the data. For both cost functions, J(M1) resembles landscape of
a convex nearly quadratic function at R = 1 km. Increase of R decreases convexity and increases
number of local minima at different rates. The cost function with phase information appears to
be more sensitive to increase in R while the landscape without phase looks more easily convexi-
fiable with regularization methods in the interval α ∈ [0, 1], with wider attraction basin around
α = 0. Lastly, we note that the landscape is rather flat at R = 1 km without phase (Figure 2.13a)
but the quasiconvexity is maintained until R = 10 km in the interval α ∈ [0, 1] (Figure 2.13c)
unlike when the phase is included (Figure 2.12c). Let us now check if the comments made with
these landscapes are valid for other directions as well.
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Secondly, the landscape is computed for model M2 using (2.54) and presented in Figure 2.14
and 2.15. All the comments made for M1 are also valid for M2. However, the landscapes cannot
explain few questions such as why the inversion at R = 5 km fail with complex data, which
multimodal solutions appear with the removal of phase from data, why MINV is further from
MIG at long ranges with complex data although the attraction basins appear narrower than that
of phaseless data. When questioning the coherence between the landscapes and the inversion
results, attention must be paid to the dimension of the parameter model. There are infinitely
many 1-D line cuts in 151-D hypercube and indications of nonlinearity and ill-posedness can be
hidden at some other line cuts.

The analysis is enriched with the landscape drawn at the direction of the gradient according
to (2.55) as given in Figure 2.16 and 2.17. Note that MIG is located at α = 0 on this landscape.
The functional (2.9) has more local minima on this 1-D view with the inclusion of the phase
in data. Again, it is more difficult to invert at long ranges because the optimization landscape
becomes more nonconvex. In the next section, we expand our analysis with inversion tests by
using different initial guesses.

2.8.4 Results: impact of initial guess

When a nonlinear least squares problem is solved using gradient based methods, the standard
question is about whether there is local minima in the error functional topography of the ad-
missible parameter set. Until this section, the analysis has assumed that the optimization is
reasonably well done and the failure to find the global minimum is because of the local minima
in the error function topography. If this statement is true, one expects that increasingly-better
initial guesses improve the inversions progressively by diminishing the undesirable effects of non-
linearity and ill-posedness. In that context, the aim of this section is to investigate if we can
observe the predicted improvement with different initial guesses and if the conclusions made in
the previous section are reasonable for other initial guesses as well. This preliminary investigation
is limited to the use of phaseless data at R = 10 km.

In Figure 2.18, we present the inverted parameters in altitude for increasingly better initial
guesses. The inversion improves progressively when MIG is set closer to MOBJ progressively.
In Figure 2.18b, we observe essentially similar inversion result to that in Figure 2.11c but with
a shift towards MOBJ. This shift of MINV is towards MOBJ consistently with the shift of MIG
towardsMOBJ,MINV exhibits further self-regularization and the refractivity gradient information
is retrieved more smoothly. This numerical evidence not only give confidence about the stability
of the inversion but also supports the idea about the existence of multimodal solutions.

Next, we are motivated to investigate the existence of multimodal solutions because if so, we
can explore the search space more efficiently and we can exploit this knowledge when developing
the inversion technique. Among many possibilities, two ways of collecting the numerical evidence
about multimodality are considered. Firstly, if there is multimodality as far as the gradient of the
parameters is concerned, shifting the initial guess while preserving its synoptic structure would
change the synoptic structure of the inversion results negligibly. In Figure 2.19, we show that
such multimodality exists; synoptic structure (gradient information) ofMINV mainly depends on
the synoptic structure ofMIG andMOBJ pair. The difference of the inversion results is measured
using (2.56):

ε2 = ‖(MINV −mean{MINV})− (MINV,REF −mean{MINV,REF})‖
‖MINV,REF −mean{MINV,REF}‖

× 100, (2.56)
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Figure 2.18: Inversion at R = 10 km for three improved initial guesses.

where the difference is taken between the inversion result of an initial guess and the reference
inversion resultMINV,REF obtained for the initial guessMIG = 330 M-unit using Euclidean norm.
According to the measure (2.56), the results obtained for MIG = 290 M-unit and MIG = 370 M-
unit differs from the result obtained for MIG = 330 M-unit by 1.6% and 3.7%, respectively.

In another example in Figure 2.20, we show once more that the synoptic structure (gradient)
of the inversion result mostly depends on the synoptic structure of the objective parameter and
the initial guess. These observations might lead to important conclusions to help us to explore
the search space efficiently. Firstly, we know that local minima exist in the error functional
topography and solutions depend on the initial guess. Secondly, the radar coverage depends on
the vertical gradient information of the ambient refractivity (the synoptic structure) more than
what value the ambient refractivity has at each altitude point5. Then we can explore the search
space efficiently by considering only one initial guess from the family of the admissible initial
guesses with the same synoptic structure. Increasing or decreasing the values of refractivity on
the same initial guess profile by the same amount at all altitude points does not change the
synoptic structure of the inversion results and the predicted radar coverage. Based on that,
we explore the dependency of the objective parameter to a linear initial guess profile by only
changing the slope of the linear profile in Figure 2.21. Ducting conditions as an initial guess can
be a good initial guess to resolve parameter of a ducting condition but the guess should not be far
from the objective parameter (Figure 2.21b vs. Figure 2.21a). Upward refracting initial guesses
in Figure 2.21c and Figure 2.21d are not good initial guesses to invert the synoptic structure of
this objective ducting condition.

2.8.5 Results: noise impact and robustness test

It is necessary to show that the inversions are robust to noise (see 2.4.2 for details). The motiva-
tion is to see if the conclusions made without noise are reasonable in the presence of perturbations
on data. If our system is robust, it should be insensitive to small perturbations or precision er-
rors on data; this increases confidence in the inversion results. Robustness test is performed at
R = 10 km with different levels of noise τ on measurements according to (2.14).

5We will elaborate more on that aspect in Chapter 3.
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{290, 330, 370} M-unit. Difference between the inversions are ε2290 = 1.6%, ε2370 = 3.7% with
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Figure 2.20: Inversion at R = 10 km for different initial guesses with the same rate of increase
with altitude. Difference between the inversions are εMIG(0)=290 = 6%, εMIG(0)=370 = 4.7% with
respect to reference inversion result for MIG(0) = 330 M-unit.

In Figure 2.22, we present the inverted parameters in altitude for different noise level τ
at R = 10 km. The inversions naturally become more dispersed with the addition of noise on
measurement data. The mean of the inversions seems to followMINV|τ=0 which is in Figure 2.18c
but dispersion of the parameters grows with τ .

We change the initial guess and perform the same test in Figure 2.23. The inversion result
become more sensitive to noise as because the initial guess is placed further from the objective
parameter as compared to Figure 2.22.

The conclusion is that the inversion is resilient to higher level of perturbation on data if the
initial guess is better, in the sense that the gradient of MOBJ can be captured. The inversion
deviates progressively from the attraction basin of MINV|τ=0 as τ increases.
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Figure 2.21: Inversion at R = 10 km for four different initial guesses. Blue curve: MOBJ, red
dots: MINV, green dashed curve: MIG.
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Figure 2.22: Robustness at different noise level τ at R = 10 km for the trilinear initial guess.
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Figure 2.23: Robustness at different noise level τ at R = 10 km for the uniform initial guess.
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Figure 2.24: Inverted parameters from data with phase measured at different range R. Initial
guesses MIG comes from MINV obtained from phaseless data measured at the corresponding R,
which are displayed in Figure 2.11. (a) R = 5 km, (b) R = 10 km, (c) R = 30 km, (d) R = 60 km.

2.8.6 Results: a preliminary inversion strategy

In this section, we try to improve our inversion results coming from the inversion of phaseless
data by adding the phase content to the inversion and use phaseless data inversion results as the
initial guess. We will again work on the baseline inversion test setup described with the objective
and the initial guess parameters in Figure 2.4a.

We know that the solution of (2.10), which includes phase information in the cost function,
does not give good results for the range beyond 5 km as shown in Figure 2.9 and the results are
good only at 1 km in that same Figure. However, we can retrieve the synoptic structure (the
gradient information) of the objective parameter when we remove the phase information from
the data (i.e., by solving (2.11)) at 5 and 10 km as shown in Figure 2.11. However, the synoptic
structures are not retrieved without dispersion and shift from the objective parameter. We also
know about the existence of multimodal solutions on the error functional topography. Then, can
we improve the inversion results obtained from the inversion of phaseless data by using them as
initial guess of the problem (2.10)?

In other words, we incorporate the phase information at the second step of inversion and
expect some improvement on the results. The prediction with the phase removal can be used
as an initial guess of the full inverse problem with complex data type. In this section, we check
if the inversion results improve with such strategy and if yes, to what extent this strategy is
favorable.

The inversion results of this strategy is given in Figure 2.24. The results improve considerably
with the inclusion of the phase information to refine the results, at 5 and 10 km in Figure 2.24a
and 2.24b as compared to the direct inversion with full wave field data in Figure 2.9b and 2.9c.
We do not observe improvement at longer ranges in Figure 2.24c and Figure 2.24d. The reason
is probably that local minima of the two different error functional topographies of (2.10) and
(2.11) coincide at those ranges. Still, if the phase can be measured, this information has the
potential to be exploited for amelioration of the inversion results. In our example scenario, the
results got better than the case of phaseless data at 5 and 10 km ranges.

56



2.9 Conclusion

In this section we made theoretical analysis, validation and numerical experiments with plane
wave as the source. Those results should be considered as part of a preliminary analysis for vali-
dation and demonstration of the features of the problem. We will focus more on the problem and
increase the range of success beyond 10 km in Chapter 3 in more realistic setup with point source
and more complex objective parameter profiles. Nevertheless, the analyze and concepts which
are mentioned in this chapter will be recalled when developing the proper solution technique in
the next chapter.

This chapter presents our preliminary attempts to predict the ambient refractive index in
the troposphere. The goal is to provide real-time situational awareness for modern seaborne and
airborne electromagnetic emitters under anomalous propagation conditions. The adjoint method
properly addresses the high-dimensionality of the refractivity inversion for such modern detection
systems and it is the backbone method on which our inversion strategy will be built. For this
reason, we focused more on its validation in this Chapter, which is a classical compulsory step
during the development of the inversion algorithm. We still tried to reveal the difficulties in this
problem so as to cure them properly in the next study.

We attach importance to upgrade the forward model to tighten the control on inversion
accuracy for this ill-posed inverse problem in real-world scenarios. Despite being hypothetical for
the implications, we advocate the use of the wide-angle approximation of the parabolic equation
for adjoint-based refractivity inversions because the method is available at no additional cost
when compared to that of NAPE. In this paper, we show how to derive the adjoint WAPE, explain
how to construct the adjoint code, and validate the adjoint model by using a finite-difference
approach. Thanks to the validation of the gradient, we are sure that it is the ill-posedness of
the regarded inverse problem that leads to failure of inversion. We explain this failure with
nonconvexity of directional cost function landscapes and high-dimensionality of the problem.
Since the gradient-based method which we use is prone to be attracted to local minimum during
iterations, the increasing sensitivity to initial guess with range can be inferred from the cost
function landscape. This latter is seen to lose convexity with distance, as the problem contains
more local minima.

The parameter study shows the potential use of this method as a refractivity gradient retrieval
system. In this study, we have obtained acceptable results until around 10 km range using
phaseless data but it can be improved with the use of phase information in a suitable strategy.
We have also verified the validity of our assessments using different initial guesses. The ducting
initial conditions are found to work better as initial guesses for the regarded objective refractivity
profile. The proposed method is shown to be robust for small Gaussian perturbations in the
measurements.

More detailed analyses are necessary to assess the performance prediction quality of the
emitters. Nevertheless, it is a good sign to be able to retrieve the synoptic structure of the
objective parameter with our validated basic strategy. We have to note that the problem is
expectedly more ill-posed in real world scenarios due to measurement and modeling errors. Our
next step will be to investigate multiscaling strategies in Chapter 3 to deal with inversion at
long-distance and more realistic high-dimensional scenarios.
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Synthèse – Dans le Chapitre 2, les caractéristiques du problème ont été exposées et la vali-
dation a été effectuée en utilisant une source d’ondes quasi-planes pour éclairer l’atmosphère.
L’utilisation d’une source ponctuelle réaliste rend l’inversion de la réfractivité plus difficile. En
outre, les profils de réfractivité réalistes ne ressemblent pas au modèle trilinéaire simple utilisé
au Chapitre 2. De plus, les données réalistes sont rares et contiennent du bruit, et on s’attend
à ce qu’elles soient sans phase, sans compter les erreurs de modélisation théorique et numérique
dans la réalité. Pour ces raisons au moins, nous ne nous attendons pas à pouvoir récupérer la
structure synoptique du profil de réfractivité de donnés réelles aussi bien qu’à partir de données
synthétiques. Avant de tester l’algorithme sur des données réelles, et afin de garantir sa préci-
sion, nous devons vérifier que nous pouvons obtenir des résultats d’inversion parfaits dans des
scénarios en grande dimension en inversant des données synthétiques dans des conditions idéales.
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Dans ce chapitre, nous explorons les avantages de la combinaison de la méthode adjointe
avec la paramétrisation multi-échelle pour l’inversion de la réfractivité troposphérique. Notre
priorité est d’atténuer la difficulté de l’inversion. Nous voulons également améliorer la précision
de l’inversion dans le cas général c’est à dire sans prendre en compte, autant que possible, des
informations spécifiques liées au cas étudié. Nous avons appliqué l’approche multi-échelle aux
données ainsi qu’à la paramétrisation.

Nous proposons certaines modifications des formulations standard basées sur les adjoints
obtenues au Chapitre 2 afin de réduire l’espace de recherche et l’espace de données dans notre
stratégie multi-échelle. Dans cette étude, nous utilisons une stratégie de raffinement progressif
dans la paramétrisation en synchronisation avec les données. À cette fin, la réduction de
l’espace de recherche peut être obtenue en appliquant simplement un opérateur de restriction
sur le gradient obtenu à l’aide du modèle adjoint standard, comme indiqué dans (3.9). La
réduction de l’espace de données peut être obtenue en modifiant la fonction de coût et la
condition initiale du problème adjoint comme décrit dans la Section 3.3.3.2. La validité de ces
modifications est démontrée en vérifiant la précision du gradient dans la Section 3.5 comme
cela est fait dans le Chapitre précédent.

Ensuite, nous essayons d’inverser des profils de réfractivité plus réalistes présentés dans la
Figure 3.6. Plusieurs profils sont inversés à partir de données sans phase mesurées à une distance
de 10 km de la source radar en utilisant la technique de paramétrisation multi-échelle décrite
dans la Section 3.6.1. Nous améliorons l’efficacité du processus d’inversion en restreignant
uniquement les perturbations sur le paramètre en appliquant (3.12). Pour certains profils que
nous étudions, nous sommes capables de récupérer la structure synoptique du profil à une
distance de 30 km. En incorporant la technique de réduction des données à la technique
multi-échelle appliquée sur le paramètre, certains cas qui n’étaient pas inversibles deviennent
inversibles à 30 et 40 km de distance.

3.1 Introduction

In Chapter 2, the features of the problem have been exposed and the validation has been per-
formed using a quasi-plane wave source to illuminate the atmosphere. Use of realistic point
source makes refractivity inversion more difficult. In addition, realistic refractivity profiles do
not resemble the simple trilinear model used in Chapter 2. Furthermore, realistic data are sparse
and contain noise and are expected to be phaseless. Finally, theoretical and numerical modeling
errors are expected in reality. For at least these reasons, we do not expect to be able to re-
cover the synoptic structure of the refractivity profile from real data as quality as from synthetic
data. Before testing our algorithm on real data and guarantee its accuracy, we have to check
we want to obtain perfect inversion results in high-dimensional scenarios with the inverse crime.
In this chapter, we would like to approach towards realistic scenarios step by step to reveal the
invertibility phenomenon and to justify the upgrades to the basic inversion technique described
in Chapter 2.

This chapter mainly shows the benefits of blending the adjoint method with multiscale
parametrization for tropospheric refractivity inversion. One motivation is to improve the ac-
curacy of inversion in the general case, which means without penalizing the problem with case-
specific a priori information as much as possible. Another motivation is to search the parameter
space more efficiently in order to accelerate the inversions. At the same time, we want to mitigate
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the nonlinearity of the inverse problem. In addition, we want to be able to invert any possible
vertical refractivity profile without being limited with our choice of the parametrization. These
points are clarified in appropriate sections with examples during the following analysis.

The main point of the multiscale parametrization technique (MPT) in our context is to make
the gradient-based optimization method give result as if it is a global one on a nonconvex opti-
mization topography [126]. Different from the mainstream global optimization methods, MPT
benefits from the analytical gradient which can be imported from the previous chapter, thereby
it is not only efficient but also free from tedious derivations. Secondly, MPT is independent of
the forward model, the parameter model and the measurement function. Thus, the technique
can be directly transferred to future clutter inversions. Additionally, this technique retrieves
the details of the refractivity distribution progressively from large to smaller scales by dividing
the original problem into subproblems solved in an order. Therefore, the computations can be
terminated at a desired resolution level in order to use the computing resources efficiently. These
aspects of the technique are highlighted in the case studies.

We have applied the multiscaling to data as well as in parametrization. We have called
the studied problem as Multiscale Adjoint-based Tomography (MAT) problem in the sense that
multiscale strategies are employed efficiently by manipulating the cost function and gradient
using the adjoint method, and the refractivity estimation problem is solved in the tomography
setup described in Chapter 2. The proposed formulation for multiscale adjoint tomography is
validated and is confronted to numerical tests like in Chapter 2, that is, mainly when the phase
is not measured.

We observe that the multiscale strategies mitigate the dependence on the initial guess (non-
linearity) and cures the curse of dimensionality (ill-posedness) and do that without requiring
additional penalty functions. Therefore the solutions are not biased towards a priori informa-
tion employed in the penalization of the cost function. But of course, we incorporate some
a priori knowledge with the choice of multiscale basis in our strategy. However, our a priori
knowledge is independent of the studied scenario. It is very general and it definitely does not
come from background information historical data or numerical weather prediction. We rely on
this assumption: the major refractivity structures in the propagation model govern the major
wave field structures in the data, and so does the minor details in the parameter to the mi-
nor details in the data. Incorporation of this knowledge in MPT is much different from many
mainstream methods of regularization used in RFC community. We do not penalize the results
with a background a priori refractivity model or measurements, do not impose regularity on
the variations in wave field etc. which depends on the quality of empirical knowledge about the
ambient conditions which we already do not know well in detail.

3.2 Background

The inverse problem is driven by the simulations of Parabolic Wave Equation (PWE). Initial RFC
techniques have required lots of PWE simulations, so their scope has been limited to the problems
with small parameter dimension [55]. Since the work [57], high-dimensional RFC problems are
solved efficiently using the adjoint state method. The adjoint-based RFC techniques have been
studied in the last decade commonly relying on regularization with penalty functions [61].

Let us recall that the inversion of refractive index in PWE is a complex nonlinear ill-posed
problem which contains many local minima in the error functional topography. Therefore, there
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are many candidate solutions from which the true solution should be distinguished because the
solution cannot be identified uniquely in most practical cases. In order to achieve this, it is
necessary to constraint the problem by incorporating additional a priori information to the
inversion process. Accordingly, regularization and space reduction techniques have been used in
RFC systems. The advantage of these technique is that the idea works and many non-physical
local minima can be avoided during gradient-based optimization iterations. On the other hand,
the success of these technique depends on a priori information. For example, performing a
principal component analysis and using the most dominant few eigenvectors to cure the curse
of dimensionality in RFC or RBT would work well if the training realizations are done in the
conditions comparable to the true ambient conditions that we try to invert. Otherwise, we might
lose accuracy in results. Another drawback is that we may not always have quality a priori
information to choose a regularization technique and construct a reduction basis so that we can
obtain results near the global minimum. Nevertheless, such techniques are used successfully in
RFC [62], [127]. But in this thesis, we do not have access to real world data and the experience
with real world scenarios, so we seek for a technique that can be justified for the general case
and that is applicable in all scenarios in our context.

Different from the previous work in our community, we are interested in exploring the advan-
tages of using multiscale strategies in refractivity inversion problems. This choice is motivated
by the contribution of multiscale strategies in recent progress in acoustic full-waveform inverse
problem in geophysics (e.g., [80]–[82], [124], [128]). The objective of this chapter is to investigate
the potential of multiscale strategies to mitigate the nonlinearity of the tomography problem,
prior to application of regularization techniques through penalization of the cost function [84],
[128]. The proposed techniques are validated numerically and the improvement is shown via the
application of the technique in a hierarchical refinement strategy during the inversion tests.

The problem is formulated in Section 3.3. The computational setup is described in Section 3.4.
The derivations of the techniques are validated in Section 3.5. The advantages and limitations
of the techniques are presented with inversion results in Section 3.6.

3.3 Modeling

We study the problem of inferring the atmosphere from wave field measurements obtained in
the bistatic configuration illustrated in Figure 3.1, which is called here the tomography problem.
The recipe to construct the adjoint algorithm from a given PWE algorithm has been explained
in Chapter 2. In this chapter, we focus on how to upgrade the standard adjoint-based algorithm
using MPT and how to build the proper multiscale strategy.

The idea of search space reduction is presented and the need for multiscaling is justified
with quantitative examples. The multiscale parametrization is introduced. We explain how to
make use of the standard adjoint solver to estimate the gradient with respect to the multiscale
parametrization. The presented MPT formulation appears independent of the problem and
therefore the technique is completely transferable to other problems like RFC. This is what
motivates continuing with the tomography problem since efforts are not wasted when passing to
the RFC. Later we extended reduction technique and the multiscale strategy to data.

In this section, we first remind what the standard RBT problem has been. Later, we explain
the search space reduction and data space reduction techniques, and show how we can make
use of the standard problem to obtain the subproblems with reductions. Then we explain how
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Figure 3.1: Scheme of the bistatic configuration. Initial field φ(z) propagates rightward in
horizontally stratified atmosphere, which is characterized with refractivity m(z). Our goal is to
retrieve m(z) from wave field measurements obtained with receiver array at distance R from the
known source.

to use the subproblems to solve the original problem in a hierarchy thanks to using multiscale
approaches.

3.3.1 Standard Adjoint-based Tomography

We are interested in the estimation of the refractivity coefficient m(z) of the wide-angle parabolic
wave equation given below [16], [106]:

∂ru+ j

[
k0(m(z)− 1) +

(√
k2

0 + ∂2
z − k0

)]
u = 0, (3.1a)

u(0, z) = φ(z), (3.1b)
u(r, 0) = 0. (3.1c)

Estimation from phaseless data When we do not have access to the phase of the complex
function u during measurements, the inverse problem is formulated as:

min
m∈Mad

J(m) = min
m∈Mad

1
2

∫ Z

0

∣∣∣|usimm (R, z)|2 − dobs
∣∣∣2 dz. (3.2)

where dobs is the synthetically generated measurement function. The gradient of the cost function
J(m) with respect to control parameter m is given as:

∇mJ = <
{
jk0

∫ R

0
wm(r, z)um(r, z) dr

}
. (3.3)

Here, the function wm(r, z) ∈ C is the solution of the following equation:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (3.4a)

wm(R, z) = 2
(
|um(R, z)|2 − |uobs(R, z)|2

)
um(R, z), (3.4b)

wm(r, 0) = 0. (3.4c)
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0

Figure 3.2: Discretized computational domain.

Estimation from complex data When we have access to the phase of the complex function
u during measurements, the inverse problem is formulated as:

min
m∈Mad

J(m) = min
m∈Mad

1
2

∫ Z

0
|um(R, z)− uobs(R, z)|2dz. (3.5)

In that case, wm in (3.3) becomes the solution of the following equation:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (3.6a)

wm(R, z) = um(R, z)− uobs(R, z), (3.6b)
wm(r, 0) = 0. (3.6c)

3.3.2 The Discretized Model

The variables presented in Section 3.3.1 are in functional form for simplicity. However in the
following, u, w, d and m are treated as finite dimensional vectors in a numerical method that
tackles the partial differential equations and the integrals. We are going to introduce their finite
representations so as to explain our multiscale techniques easier later. Our numerical domain is
illustrated in Figure 3.2. It extends from 0 to R and Z in the radial and the axial directions,
respectively. The domain is discretized using a structured mesh. The position (r, z) becomes
(rnr , znz ) in this domain, which are controlled by uniform mesh size and station number on the
grid. The position vector is expressed by the following relations.

rnr = nr ∆r, nr ∈ [0, Nr], (3.7a)
znz = nz ∆z, nz ∈ [0, Nz]. (3.7b)

Here, Nr and Nz are the number of grid nodes (computation stations) on the discretized domain
like in Chapter 2. Accordingly, u(r, z) ∈ C, w(r, z) ∈ C, m(z) ∈ R and ∇mJ(m) ∈ R becomes
of dimension u(rnr , znz ) ∈ CNr×Nz , w(rnr , znz ) ∈ CNr×Nz , m(znz ) ∈ RNz and ∇mJ(m) ∈ RNz ,
respectively. The finite dimensional representations are built on the punctual values computed
at grid nodes. One example is given for u in Figure 3.2.

Our goal is to solve (3.2) for m at the vertical resolution Nz of the mesh. This is a complex
high-dimensional problem even in the absence of modeling or measurement errors and noise as
we showed in Chapter 2. In the next section, we explain how to apply the space reduction
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techniques to reduce the complexity of (3.2), referring the works in [84], [128].

3.3.3 The Subspace Approaches

3.3.3.1 Search Space Reduction

Background We now explain the Search Space Reduction (SSR) adapting the generalized
descriptions in [128]–[131] to our context. Search space reduction means we allow the solutions
to be given by only the m that belongs to a certain subset of the admissible parameter set.
This is achieved by restricting the parameter model or restricting only the perturbations on the
parameter model. The goal is to obtain a model m which has desired features. Namely, the
restriction can be done so that the parameter models are regular, become restricted to contain
evaporation ducts or octo-linear profiles, for example. There are basically two ways to achieve
this: (1) reducing the parameter model dimension below Nz or (2) restricting the perturbations
applied to the parameter model kept at the dimension of Nz.

Method 1 Restriction of the parameter model is described in the following. In our context,
the model mp at iteration p belong to RNz . The model is restricted by making it lie in an
NL-dimensional subspace of RNz , with NL < NZ . Here, the vectors {ai}i=1,...,NL

span this new
finite dimensional subspace. The parameter model reads:

mp =
NL∑
i=1

qiai = A qp. (3.8)

In this case, the optimization is done on the new control parameter qp ∈ RNL in this reduced
subspace [128]. The reduction basis A = [a1, ..., aNL

] ∈ RNz×NL maps the new control parameters
to the physical system parameter m of dimension Nz in forward and adjoint model simulations.

Now the question is how to do the gradient-based optimization efficiently on q in this case.
Minimizing J(m) (3.2), which is now expressed as J(Aq) := J̃(q), with the new control parameter
q requires the gradient information with respect to q, not m. The gradient of the cost function
J̃(q) with respect to q, for this reduced parameter space, can be inherited from the ∇mJ(m) in
(3.3) using the chain rule:

J̃(q) := J(Aq) then ∇qJ̃(q) = AT ∇mJ(m). (3.9)

The term ∇qJ̃(q) ∈ RNL is called the reduced gradient in this thesis.

In sum, the additional work that we need to do so as to apply this search space reduction
technique is that we firstly construct the matrix that controls simulation parameter m via few
parameters in vector q according to our wish. When it comes to perform gradient-based opti-
mization, we feed the optimization method with q as the parameter vector and AT ∇mJ(m) as
the gradient vector.

Method 2 Restriction of the perturbation model is discussed in the following. In our context,
this means we perform the inversion at the dimension of Nz instead of NL and make the reduced
gradient of dimension NL belong to the image of A. To be more precise by mathematically
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speaking, we are talking about the parameter model mp at iteration p that is perturbed by m̃p

iteratively:
mp+1 = mp + m̃p. (3.10)

Here, the perturbation model reads:

m̃p =
NL∑
i=1

q̃iai = A q̃p. (3.11)

Just in case, we emphasize that the control parameter of the optimization is m; parameter q
does not appear here but it is going to be embedded in the perturbations. This is clarified in the
following.

The parametrizations are kept at the dimension of Nz and the reduction effect coming from
the basis A should be reflected on m̃p. This is achieved by mapping the reduced gradient with
the reduction basis.

If m̃p = A q̃p and q̃p ∝ AT ∇mJ(m) then m̃p ∝ AAT ∇mJ(m). (3.12)

In sum, the additional work that we need to do so as to apply this search space reduction
technique is to construct a reduction basis A and apply AAT on the gradient that we already
had obtained using the standard adjoint approach and feed the optimization method with this
new product as the gradient vector.

At this point, we remark that these two techniques that we develop for the tomographic
configuration is directly transferable to the RFC problem because the FM and AM remains
untouched; we only interact with the output of the adjoint-based algorithm: the gradient.

Search space reduction in refractivity inversion Subspace approaches are not new to
the refractivity inversion problem [47], [127], [132]. Typically, the studies in RFC community
have looked for a good choice of reduction basis A that appears in (3.8) to construct a proper
subspace so as to improve inversion performance. The aim has been to find a basis A such that the
refractivity is resolved with an acceptable agreement to the truth. One possibility to construct
such bases properly is to exploit accurate a priori knowledge about the atmospheric conditions
that we do not actually know and try to invert. For example, this a priori information can be
a global synoptic structure of the refractivity parameter variation in altitude at the geographic
location where the inversion system is tested. Statistical knowledge and numerical weather
prediction tools can be employed in the process of constructing such bases as well.

Empirical studies about the atmospheric conditions have assembled refractivity data around
the globe since the last century [11], [20], [133]–[141]. The investigations have revealed that the
downward refracting deviations (ducts) from the standard conditions are the ones which explain
the refractivity-driven anomalies in radar performance in our context. Those deviations could
be approximated with three primal vertical refractivity variation models: log-linear, bilinear and
trilinear model [55, p. 4]. Five-parameter models could be used for representing mixed type ducts
with more complex variations embedded in a vertical refractivity profile [47].

Thanks to empirical studies, one could analyze the pre-studied statistics of the region where
the measurement is collected and incorporate this a priori information in the construction of the
basis A when testing the inversion system in that region. For example, if evaporation duct is a
common occurrence in the region, the basis A could correspond to log-linear variations to approx-

66



imate the data with acceptable agreement [61]. If the atmospheric conditions are significantly
more complex than what the log-linear approximation could represent, more detailed information
could be incorporated to achieve better reductions using empirical orthogonal function, principal
component analysis or Karhunen-Loeve transform as explained in [47], [62], [127], [132]. Al-
though these reduction techniques improve the performance of the algorithm, these methods
either lack generality or include a lot of forward model simulations or there are assumptions
involved in the process [47], [132].

Our goals with SSR Here, we are looking for the possibility of building an inversion technique
which especially does not require case-specific local empirical a priori information. Instead, we
are looking for a technique which is more globally applicable wherever the system operates.
Namely, we want to justify the improved performance with the accuracy and robustness of the
algorithm independent of the acquired additional information which depends on location and
time. At the same time, the construction of the basis should be a fast and simple process.

In our context, a very general reduction basis which does not incorporate empirical knowledge
often cannot be trusted to provide accurate inversion because the results are restricted according
to this uninformed choice and probably inferior solutions are obtained due to not using the
best option. Nevertheless, the inversion result obtained with such a general basis can be useful
as an initial guess of another inversion problem where we invert for more detailed structure of
the atmosphere. In that context, it would be enough if the inversion could capture the global
structure of the atmosphere.

Choice of reduction basis We use piecewise linear function to construct the vectors that
spans the aforementioned subspace RNL and the control points are equally distributed in altitude.
There is not a specific reason that justifies this choice when compared to other options we had.
We choose this basis to begin with because it is an elementary basis and it is easy to construct and
manipulate. If necessary, the basis can be upgraded to a higher order or to Fourier’s sinus basis
or Haar’s basis and so on later. In the case of piecewise linear functions, A becomes the matrix
that performs linear interpolation in an interval, AT becomes the matrix that takes weighted
sum in an interval where the weight distribution is linear.

Reduction process The application of the reduction is illustrated on a numerical example.
Let us suppose that we apply reduction on the parameter model and we are going to do four-
parameter inversion to explain a given measurement data. Suppose that our initial guess is given
by the four dimensional vector q which is shown in Figure 3.3a. We obtain the parameter model
m ∈ RNz that is used in the forward and adjoint model simulations from m = Aq, as shown in
Figure 3.3b. After the simulations, the gradient is obtained at the dimension of Nz as shown in
Figure 3.3c. The restriction is achieved by using the relation (3.9) to obtain the gradient of the
four control parameters, as shown in Figure 3.3d.

Our results depend on the reduction basis. In what follows, we introduce multiscale optimiza-
tion strategy to mitigate the importance of finding the best reduction basis in order to represent
the ambient refractive index in our context. The discussions follow the ideas presented in [84],
[112] on multiscale parametrization.
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Figure 3.3: Example of reduced parametrization controlled by piecewise linear functions for
MOBJ in Figure 3.6a. (a) q(z), (b) m(z), (c) ∇mJ , (d) ∇qJ̃ .

Multiscale Approach Proper parametrization can improve the performance of inversion al-
gorithm drastically. The speed and accuracy of the inversion depends on the choice of reduction
basis. In practice, it is not easy to check the inversion results for multiple bases and to conclude
about which one gives the best possible result. The limitations on the inversion accuracy can be
weakened using multiscale parametrization techniques that are described in [80], [84].

Multiscale parametrization approach can be used for weakening this dependency on the reduc-
tion basis, by approaching from the reduction basis towards the punctual values in the forward
model simulations progressively. In this thesis, multiscaling with a hierarchical refinement strat-
egy is employed in the parametrization. The multiscale basis is constructed from the local bases
put together in a hierarchy, by organizing those subproblems in the order of increasing control
parameter vector dimension.

In practice, all we need is to organize the inverse RBT problems that uses the aforementioned
SSR technique with different parameter dimension NL such that the parameter dimension in-
creases as we move along the order. All NLs combined forms a sequence of numbers in increasing
order:

NL := {NL,i, i ∈ [1, imax), i ∈ N, NL,i < Nz} ∪ {Nz}. (3.13)

Starting from an initial guess we perform the inversion at the lowest NL at i = 1, and provide
the inversion result as the initial guess at the next level i = 2 by projecting the result with a
projection operator, which will be called H, from the the subspace at i = 1 to that at the next
level i = 2. The next scales inherit the inverted parameters at one previous scale as their initial
guesses the same way. In other words:

MIG,i+1 = H(MINV,i) (3.14)

where MINV,i is the inversion result in M-unit at the multiscale level i and MIG,i+1 is the (inher-
ited) initial guess at the next level.

With that strategy, we are effectively refining the parameter model. At the end we perform
the inversion for Nz number of parameter (the original baseline problem) using the inversion
result of the last reduction level as the initial guess. The algorithm is described in Workflow 1
and the multiscale inversion process is exemplified in Figure 3.4.
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Workflow 1: Multiscale Parametrization
1 # INPUT data dobs, initial guess parameter MIG, sequence of parameter dimension NL

2 # OUTPUT inverted parameter MINV, cost function J
3 # INITIALIZE cost function Jbest
4 FOR i = 1 to i = imax
5 CALL FunctionOptimize(dobs, H(MIG), NL,i); RETURN MINV, J
6 IF we apply parameter restriction AND J < Jbest
7 set Jbest = J and MIG = MINV
8 ELSEIF parameter restriction AND J > Jbest
9 MINV = MIG

10 ELSE
11 # we apply perturbation restriction or data reduction
12 set MIG = MINV
13 END IF
14 END FOR
15 CALL FunctionOptimize(dobs, H(MIG), Nz); RETURN MINV, J

Workflow 2: Optimization Algorithm FunctionOptimize
1 # INPUT data dobs, inherited initial guess parameter H(MIG), dimension of reduced

parameter NL,i

2 # OUTPUT inverted parameter MINV, cost function J
3 IF we apply parameter restriction
4 build A from NL,i; set qIG = H(MIG)
5 CALL FunctionBFGS(q, qIG, AT∇mJ); RETURN qINV, J
6 ELSEIF we apply perturbation restriction
7 build A from NL,i; set mIG = AH(MIG)
8 CALL FunctionBFGS(m, mIG, AAT∇mJ); RETURN mINV, J
9 ELSE

10 set mIG = H(MIG)
11 CALL FunctionBFGS(m, mIG, ∇mJ); RETURN mINV, J
12 END IF

In Figure 3.4 we show how this refinement is accomplished in an example scenario that we
will describe later in Section 3.4, where the initial guess parameter is shown by the green dashed
curve and the objective parameter in blue curve in Figure 3.4a. If we had adopted a subspace
approach that search for trilinear parameter model in this problem, the results look like what
is shown with red curve in Figure 3.4a. But in a multsicale strategy, we can use this inversion
result as the initial guess of the same problem where we increase the number of parameters to
invert this time. By doing that refinement in the parametrization successively, we finally arrive
at the problem where the parameter dimension is equal to Nz. So, the purpose of solving those
subproblems is to produce a initial guess for the next subproblem in the hierarchy. We hope that
the initial guess provided to the next scale is in the attraction basin of the global minimum of
the next problem in the hierarchy. At the end, we expect to provide a good initial guess to the
Nz-dimensional refractivity estimation problem without using any knowledge about what the
true ambient refractive condition is.
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Figure 3.4: A level-by-level demonstration of multiscale resolution using local bases in a hierarchy.
(Blue line: true (objective) parameter, red dotted-line: predicted (inverted) parameter, green
dashed-line: the initial guess (inherited from the previous level in the multiscale hierarchy)).

3.3.3.2 Data Space Reduction

The reduction can be done on measurement data as well as it is done on parametrization. Let
B be the operator that performs the reduction on data. Then the cost function reads:

min
m∈Mad

J(m) = min
m∈Mad

1
2

∥∥∥Bdsimm −Bdobs
∥∥∥2

L2(ΓR)
= min

m∈Mad

1
2

∫ Z

0

∣∣∣Bdsimm −Bdobs
∣∣∣2 dz. (3.15)

Then, its gradient reads:
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〈∇mJ, m̂〉Z =
∫ Z

0
<
{
B∗B(dsimm − dobs) · (dsimm )′· m̂ dz

}
. (3.16)

Then, it is sufficient to modify the adjoint initial condition in the adjoint models to implement
this technique. When phase is not measurable, the adjoint model (3.4) should be modified in
the driver of the adjoint initial condition:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (3.17a)

wm(R, z) = 2B∗B
(
|um(R, z)|2 − |uobs(R, z)|2

)
um(R, z), (3.17b)

wm(r, 0) = 0. (3.17c)

Similarly, when phase is measurable, the adjoint model (3.6) should be modified in the driver of
the adjoint initial condition:

∂rwm + j

[
k0(m− 1) +

(√
k2

0 + ∂2
z − k0

)]
wm = 0, (3.18a)

wm(R, z) = B∗B
(
um(R, z)− uobs(R, z)

)
, (3.18b)

wm(r, 0) = 0. (3.18c)

Choice of reduction basis Derivation is shown in a form where the functions are in their
continuous form. They are discretized for numerical modeling as described in Section 3.3.2. Ac-
cordingly, B is a matrix in practice. We use linear interpolation basis as done in the parametriza-
tion, so the case when B = AT and B∗ = BT = A is considered in this study. Matrix A is defined
with the choice of reduction basis in Section 3.3.3.1.

Multiscale approach We apply multiscale approach in the exact same way as we do in
parametrization. When data reduction is performed in a multiscale basis, it is used in syn-
chronization with the multiscale parametrization. How this is going to be achieved is going to
be discussed in the results section. In the baseline setup, one can suppose for the moment that
the dimensions of parameter and data vectors are kept the same during the multiscaling.

Our goals with DSR Data space reduction (DSR) is applied in the multiscale strategy be-
cause we assume that global structure in parameter model explain mostly the global structure of
the data. DSR is particularly relevant to the accurate inversions when low dimensional represen-
tations of parameter model with piecewise linear functions cannot explain the data in the least
square sense in the admissible parameter set. In addition to that, DSR brings convexification to
the error functional topography. Ideally, we expect to find the true ambient conditions (global
minimum) as a result of the convexification.

This convexification feature is illustrated in Figure 3.5. Here, optimization landscape is
obtained at R = 30 km for the objective and initial guess parameter given in Figure 3.6g using
the approach described with (2.53) in Chapter 2. The optimization landscape is as shown in
Figure 3.5c. Initial guess parameter is located at α = 1. We try to find the objective parameter
that is located at α = 0. Obviously, the iteration parameters would be trapped at the local
minima seen on the Figure if gradient-based optimization method is used (for one parameter
inversion). When we use data reduction withNL = 4, the optimization landscape gets convexified
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Figure 3.5: Convexification of the error functional topography in the multiscale approach. Data
dimensions: (a) 4, (b) 10, (c) 151.

as shown in Figure 3.5a. It can give more mobility to the optimization parameter to move inside
a wider attraction basin that is closer to the true solution. The local minimum obtained at that
level can be inherited as the initial guess of the next multiscale level in the following iterations,
which is finally going to provide a good initial guess for the final run where we invert Nz number
of parameters at each meter point in altitude. Like that, we can have more chance to retrieve a
result close to the true parameter.

3.4 Computational Setup

The details of the baseline computational setup is already presented in Section 2.7.1. The same
information is not repeated here. Instead, we present the differences from the baseline setup.

One difference from the baseline setup presented in Section 2.7.1 is that the initial con-
dition φ(z) which is this time produced by the complex-point source positioned at (rs, zs) =
(−100 m, 25 m). Therefore, the source profile resembles a more pointwise radar source as shown
in Figure 3.6h. This is different than the initial field which is in Chapter 2 which resembles more
to a quasi-plane wave. In order to be clear, we repeat that the source frequency is f = 2 GHz.
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Data is generated synthetically like in Chapter 2. This is achieved by executing a forward
model simulation for an objective refractivity distribution. The numerical settings of this sim-
ulation is the exact same as the simulations which are executed during the inversion process.
Then, a trace operator is applied at the range of interest R to collect the vector u(R, znz ) for
nz ∈ [0, Nz]. This means, we sample the measurements at each grid node in altitude at a certain
distance R from the radar. Then, we take the square of the vector elements to assign it to dobs
if we study the problem of phaseless data inversion, or keep it as it is if we study the problem of
inversion from measurements with phase.

In this chapter, we try to invert the objective refractivity profiles that are used for generating
the data of different ducting propagation conditions. Those conditions are characterized with
the true ambient parameters that vary only in altitude. They are denoted by MOBJ and are
plotted like in Figure 3.6. Let us now elaborate about those profiles. The objective parameter
in Figure 3.6a is inherited from the previous chapter to compare the inversion results with
our new source condition. Additionally, this parameter is studied in order to investigate the
invertibility when the wave field is guided through upward and downward refracting conditions
of equal strength due to such symmetry in z ∈ [0, 100] m. In Figure 3.6b periodic perturbations
are added on MOBJ of Figure 3.6a to obtain more realistic nonlinear parameter variation with
altitude, which is supposed to make the inversion more difficult than with MOBJ of Figure 3.6a
by disturbing the regularity of the observed wave field in Ω. For this reason, it would be difficult
to invert MOBJ accurately with the standard technique and we want to see how Multiscale
Parametrization Technique (MPT) performs in such a situation. In Figure 3.6c we are interested
in how the inversion would be affected if the perturbed duct of Figure 3.6b appears with a mixed
structure due to an evaporation ducting condition at sea level. In Figure 3.6d, an idealized
(linear) surface duct profile is modeled, which is going to cause stronger downward refraction than
with MOBJ of Figure 3.6a, hence higher level of inversion difficulty is expected. In Figure 3.6e,
a perturbation that resembles an evaporation duct is superposed on the surface based duct
of Figure 3.6d. In Figure 3.6f, periodic perturbations are added on MOBJ of Figure 3.6e, to
compare the inversion difficulty. In Figure 3.6g, a non-smooth perturbation is added on MOBJ
of Figure 3.6f in z ∈ [75, 100] m to see if our technique can preserve such local variations in the
inversion results.

3.5 Validation of the Gradient

In this section, we repeat the validation process that was executed previously in Chapter 2.
Our goal is to check the following two points. At the first step, we want to be sure that the
derivations that were proposed previously in Chapter 2 for the standard adjoint-based approach
are still valid for the scenario of Chapter 3 after the modifications in the setup. At the second
step, we want to be sure that the reduction in parameter and data is done correctly. These two
are going to be checked by comparing the gradients computed using finite differences (∇mJFD)
and the adjoint model (∇mJAM ).

The gradients of the first descent iteration ∇mJFD and ∇mJAM are computed numerically for
the objective-initial guess parameters pair given in Figure 3.6g. The validation is performed by
comparing ∇mJAM to ∇mJFD. If those two gradients match, the method passes the validation
test. The numerical setting is the baseline setup which is explained in Section 3.4. Here, ∇mJFD
is obtained using forward difference scheme for perturbation tolerance ε = 10−6. Range is
considered at four different values at R = {1, 10, 60, 100} km.
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Figure 3.6: The selected source profile and refractivity profiles for inversion. (a)-(g) Starting pa-
rameter of optimization (initial guess parameter)MIG and global minimum (objective parameter)
MOBJ. (h) initial source field amplitude |φ(z)|.

without SSR with SSR
with phase without phase with phase without phase

without DSR Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10
with DSR Figure 3.11 Figure 3.12 Figure 3.13 Figure 3.14

Table 3.1: Organization of the validation results.

The organization of the validation results are given in Table 3.1. Firstly, we study the case
when standard adjoint-based formulations are used for computing the gradient. This means
search space reduction (SSR) and data space reduction (DSR) are not applied. In Table 3.1,
the rows and columns corresponding to the results of that standard application are shown as
"without SSR" and "without DSR". Secondly, we study the case when the parameter reduction
and data reduction are applied separately and corresponding results are shown as "with SSR"
and "with DSR" in Table 3.1. Lastly, we study the case when the parameter reduction and
data reduction are applied at the same time. All these tests are performed when the phase is
measurable and not measurable. The results corresponding to these two measurement data type
are shown as "with phase" and "without phase" respectively.
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As stated also Chapter 2, the validations graph is plotted with respect to altitude. In fact,
what is shown in the graph is the gradient and it is a vector in which i-th element is the derivative
value with respect to the i-th element of the parameter vector. Therefore, normally, the gradient
should be presented with respect to parameter vector index. However, we project the derivative
value to the altitude at which i-th element is located and then present it in the plot, by connecting
the punctual values in altitude.

3.5.1 Standard adjoint-based tomography

Measurement with phase We validate adjoint-based computation of the gradient of opti-
mization problem (3.5), which is proposed for the case when the measurements contain phase.
The validation is done for the gradient at the first descent iteration at different receiver array
antenna positions in Figure 3.7. The gradient is computed using the formula (3.3) where the
adjoint function in this formula is given with the solution of (3.6). The computed gradient
is compared to the gradient estimated by using FD. The equations and implementations are
validated because the gradients computed with the two approaches match in Figure 3.7.
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Figure 3.7: Validation of the gradient for measurements with phase. FD: Finite Differences vs.
AM: Adjoint Model. (a) R = 1 km, (b) R = 10 km, (c) R = 60 km, (d) R = 100 km.
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Figure 3.8: Validation of the gradient for measurements without phase. FD: Finite Differences
vs. AM: Adjoint Model. (a) R = 1 km, (b) R = 10 km, (c) R = 60 km, (d) R = 100 km.
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Measurement without phase We validate adjoint-based computation of the gradient of
optimization problem (3.2). The validation result is presented in Figure 3.8. Note that, the
gradient is computed using the formula (3.3) where the adjoint function is the solution of (3.4).
The equations and implementations are validated because the gradients computed with the two
approaches match in Figure 3.8.

3.5.2 Search space reduction

In this section, finite difference approximation of the gradient is obtained by perturbing q, not
m.

Measurement with phase We validate adjoint-based computation of the gradient of opti-
mization problem (3.5), which is proposed for the case when the measurements contain phase.
The validation is done for the reduced gradient at the first descent iteration at different receiver
array antenna positions in Figure 3.9. The reduced gradient is computed with (3.9) using the
gradient of the Nz-dimensional optimization problem, where the latter is computed using the for-
mula (3.3), where the adjoint function in (3.3) is given with the solution of (3.6). The computed
gradient is compared to the gradient estimated by using FD. The equations and implementations
are validated because the gradients computed with the two approaches match in Figure 3.9.
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Figure 3.9: Validation of the gradient for measurements with phase and with application of
search space reduction. FD: Finite Differences vs. AM: Adjoint Model. (a) R = 1 km, (b)
R = 10 km, (c) R = 60 km, (d) R = 100 km.

Measurement without phase We validate adjoint-based computation of the gradient of
optimization problem (3.2). The validation result is presented in Figure 3.10. Note that, the
reduced gradient is computed with (3.9) in which the (unreduced) gradient is computed using
the formula (3.3) with the adjoint function being the solution of (3.4). The equations and
implementations are validated because the gradients computed with the two approaches match
in Figure 3.10.

76



1 0 1
q J

|| q J ||

0

50

100

150

Al
tit

ud
e 

(m
)

FD
AM

(a)

1 0 1
q J

|| q J ||

0

50

100

150

Al
tit

ud
e 

(m
)

FD
AM

(b)

1 0 1
q J

|| q J ||

0

50

100

150

Al
tit

ud
e 

(m
)

FD
AM

(c)

1 0 1
q J

|| q J ||

0

50

100

150

Al
tit

ud
e 

(m
)

FD
AM

(d)

Figure 3.10: Validation of the gradient for measurements without phase and with application
of search space reduction. FD: Finite Differences vs. AM: Adjoint Model. (a) R = 1 km, (b)
R = 10 km, (c) R = 60 km, (d) R = 100 km.

3.5.3 Data space reduction

Measurement with phase We validate adjoint-based computation of the gradient of opti-
mization problem (3.5), which is proposed for the case when the measurements contain phase.
In the case of data reduction, the cost function J in (3.5) is evaluated after applying a reduc-
tion operator B (a matrix) on data, so the new cost function is written in the form shown in
(3.15) (see Section 3.3.3.2). The gradient is computed using the formula (3.3) where the adjoint
function in this formula is given with the solution of (3.18). The computed gradient is com-
pared to the gradient estimated by using FD and presented in Figure 3.11. The equations and
implementations are validated because the gradients computed with the two approaches match.
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Figure 3.11: Validation of the gradient for measurements with phase and with application of data
space reduction. FD: Finite Differences vs. AM: Adjoint Model. (a) R = 1 km, (b) R = 10 km,
(c) R = 60 km, (d) R = 100 km.

77



Measurement without phase We validate adjoint-based computation of the gradient of
optimization problem (3.2), which is proposed for the case when the measurements do not contain
phase information. Data reduction is achieved following the procedure described in Section 3.3.3.2
the same as in the case of measurement with phase. The gradient is computed using (3.3) and
(3.17). The method is validated as shown in Figure 3.12.
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Figure 3.12: Validation of the gradient for measurements without phase and with application
of data space reduction. FD: Finite Differences vs. AM: Adjoint Model. (a) R = 1 km, (b)
R = 10 km, (c) R = 60 km, (d) R = 100 km.

3.5.4 Search and data space reduction

In this section, FD approximation of the gradient is obtained by perturbing q, not m.

Measurement with phase We validate adjoint-based computation of the gradient of opti-
mization problem (3.5), which is proposed for the case when the measurements contain phase.
The simultaneous application of the parameter and data reduction is validated in Figure 3.13.
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Figure 3.13: Validation of the gradient for measurements with phase and with application of
search and data space reduction. FD: Finite Differences vs. AM: Adjoint Model. (a) R = 1 km,
(b) R = 10 km, (c) R = 60 km, (d) R = 100 km.
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Measurement without phase We validate adjoint-based computation of the gradient of
optimization problem (3.2), which is proposed for the case when the measurements do not contain
phase information. The simultaneous application of the parameter and data reduction is validated
in Figure 3.14.
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Figure 3.14: Validation of the gradient for measurements without phase and with application of
search and data space reduction. FD: Finite Differences vs. AM: Adjoint Model. (a) R = 1 km,
(b) R = 10 km, (c) R = 60 km, (d) R = 100 km.

3.6 Study of the Inversion of Phaseless Data

We limit our scope of analysis to the inversion of synthetically generated measurement data which
does not include phase of the wave field. In this section, we first show that the use of point source
does not make the baseline 151-parameter inverse problem easier, so the case remains worth
analyzing and upgrading. Namely, we show the effect of reduction of parameter on stabilization
of the oscillations in inversion results. Secondly, we make the problem more difficult by adding
perturbations on the objective refractivity profile. This makes the profile more detailed and
realistic. Thanks to that, we are testing the performance of the algorithm in more realistic
scenarios which are more difficult to handle. We start our analysis at R=10 km and extent the
range of application progressively as the algorithm passes the tests successfully. Beyond a certain
level of profile complexity and range, plain use of subspace approach in parametrization does not
permit capturing the global refractivity variation reliably. We show examples of how to approach
accurately at those complex scenarios using multiscale strategies.

3.6.1 Search space reduction technique

3.6.1.1 Impact of parameter dimension at 10 km range

In this section, we investigate the impact of parameter vector dimension NL on inversion using
only a plain parameter reduction technique, without using multiscale strategies. For this purpose,
we choose R = 10 km and ∆r = 100 m with the objective parameterMOBJ shown in Figure 3.6a.
The reader is familiar with this scenario because the inversion of the synthetic data corresponding
to this objective parameter has been studied in Chapter 2. We know that in the numerical setup
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of Chapter 2 we were able to identify the synoptic structure (gradient) of the refractivity at many
altitude points in the inversion results when phase was removed from the data and a quasi-plane
wave was used as the source (see Figure 2.4b). In Chapter 3, we use a more realistic point source
as shown in Figure 3.6h. Different from the study in Chapter 2, we choose a downward refracting
initial guess with dM/dz = −0.118 M-unit/m. Now with these modifications, we verify if 151-
parameter inversion is still problematic and worth analyzing. Note that are interested in finding
the cases where 151-parameter inversion result does not look as good as that in Figure 2.9a so
that there is a point on working on them to improve the results.
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Figure 3.15: Inverted parameters for different NL: (a) 4, (b) 5, (c) 7, (d) 26, (e) 151.
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Figure 3.16: Inverted parameters for different NL when M(0) is known. NL: (a) 4, (b) 5, (c) 7,
(d) 26, (e) 151.

Firstly, we study the impact of dimensionality of the problem on inversion accuracy. Our goal
is to show whether the solution contains more oscillations with increasing parameter dimension,
if a good initial guess is not given (see Section 2.8.4). To show the effect of dimensionality, we
increase the parameter dimension NL in our subspace approach from 4 points to 151 in 5 steps.
Note that 4 is the least possible number of points that is necessary to describe the objective
parameter accurately. Also note that problem of 151 parameter inversion is the original problem
that we wanted to solve from Chapter 2. The test results show the inverted parameter MINV of
those 5 steps in Figure 3.15. We notice that the synoptic structure of the objective parameter
is retrieved at NL = 4 with an offset (leftward shift) that was observed throughout Chapter 2.
Qualitatively speaking, inferior solutions are obtained when NL = Nz and MINV oscillates more
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with NL. When NL = 151, that is, when parameter reduction is not effective, the solution does
not permit the identification of the synoptic structure of the objective parameter, unlike it was
before in Chapter 2 (cf. Figure 2.11c or Figure 2.21b). We conclude that using more realistic
point source might have made the inversions more oscillatory1.

Secondly, we want to see if the synoptic structure of MINV would change the results in
Figure 3.15 if we knew the refractivity only at the sea level. To study the improvement of
the inversion results with this additional knowledge, we impose M(0) = MOBJ(0) during the
optimization iterations. We are interested in studying this because we have observed that the
leftward shift of MINV from MOBJ is driven by ∇mJ near sea level during iterations. The test
results given in Figure 3.16 shows that the synoptic structure of the inversion results remained
essentially the same as it was before in Figure 3.15.

The conclusion is that the inversion problem is still difficult with point source at R = 10 km.
There are oscillations that needs to be stabilized in the 151-parameter inversion problem and
parameter reduction can potentially cure this issue. However the subspace should be spanned
with the good vectors that leads the iterations near the global minimum like in the case of Fig-
ure 3.16a. Otherwise, stable but inferior solutions can be obtained like in the case of Figure 3.16b.
More refinement can retrieve more detailed structure of the refractivity profile stably but the
advantage will be lost with further refinement as shown in Figure 3.16d.

3.6.1.2 Impact of objective profile at 10 km range

In this section, we study the inversion of objective parameters which are more complex than
the previously studied simple trilinear profile. We achieve this by adding perturbations on
the objective parameter profile which are built initially with piecewise logarithmic and linear
functions in altitude such as in Figure 3.6a and Figure 3.6e. After adding the perturbations, we
obtain more realistic refractivity variations such as given in Figure 3.6b and Figure 3.6g. We
call it more realistic because the refractivity variation in altitude is often not as much regular
as it is portrayed with MOBJ in Figure 3.16 in reality even if a major trilinear structure could
be identified; it oscillates in space around some mean value. The specificity of these perturbed
profiles is that resolution of their propagation conditions require solving the baseline inversion
problem at Nz = NL level because the true solution parameter is not included in the image of
reduction basis Im(A). In other words, we cannot find a subspace dimension NL :6= Nz that can
resolve the objective parameter with our choice of basis function, unlike in the case of Figure 3.16a
for instance.

We first try to invert the objective profile MOBJ given in Figure 3.6b which is obtained by
adding sinusoidal perturbations on the trilinear objective profile that was studied in Figure 3.15
and Figure 3.16. In order to see the effect of the complexity, we repeat the study that was done
to obtain the results given in Figure 3.15 for the aforementioned more complex objective profile
and compare the both. The inversion results are given in Figure 3.17. Inversion of this objective
profile gives regular but inaccurate results for low NL. More detailed but oscillating inaccurate
results are obtained for high NL. There exists a sweet spot in the refinement (see Figure 3.17d)
where a reasonable trade-off can be obtained between accuracy and precision (regularity).

1Additional tests were performed to reach this conclusion which are not presented here.
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Figure 3.17: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.

We change the objective profile to verify if these conclusions are valid for the inversion of other
ambient conditions. For that purpose, we mix evaporation and surface ducts in a number of ways
to obtain six different objective profiles in each Figure from Figure 3.18 to Figure 3.23 and repeat
the test that was done to obtain the results given in Figure 3.17. The good choice of NL depends
on the objective profile, so we find it difficult to propose a sweet spot in NL that generally allows
good inversion results in this setup. We observe that the quality of the approximation at low
value of NL worsens as the objective profile get more complex (see Figure 3.21a vs. Figure 3.22a
and Figure 3.21c vs. Figure 3.22c). We also observe that the low dimensional approach failed
to be representative of global structure of objective profile as the profile gets more complex (see
Figure 3.19b vs. Figure 3.20b). Also the performance of the refined approach is questionable. The
26-parameter approximation which used to give sufficiently good results in the previous steps of
analysis struggles to resolve the synoptic structure of the objective profile with increasing profile
complexity (see Figure 3.22d and Figure 3.23d). Clearly, quality resolution of the objective profile
at R = 10 km requires a bit knowledge of what kind of profile shape we are looking for in the
general case, even when the initial guess is near the objective profile. Such a priori knowledge
is what we try to avoid using in this work. Now we are going to look for other ways to remedy
this issue.
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Figure 3.18: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.
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Figure 3.19: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.
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Figure 3.20: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.
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Figure 3.21: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.
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Figure 3.22: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.
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Figure 3.23: Inverted parameters in different parameter subspaces characterized by NL. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151.

3.6.2 Multiscale strategies

In the previous section, we see that parameter reduction does not remedy the inversion diffi-
culty well. Neither the plain (standard) full-scale (i.e., 151-dimensional) adjoint-based inversion
method nor the search space reduction technique work well in general. When they seem to work,
it is either the initial guess is unrealistically close to the objective parameter, or it works only
at some dimensions depending on the objective profile, or sometimes it is by chance that the
objective parameter can be represented well at a particular dimension. Also note that there is
not measurement noise. Overall, we cannot propose a generic strategy to get good results with
a plain SSR as well.

The failure is partly due to the uninformed choice of reduction basis. Our goal in the beginning
was to solve the problem without incorporating case-specific a priori information. Let us see if
we can achieve that with Multiscale Parametrization Technique (MPT). If MPT works, we also
need to discover what the limits of MPT are in our ideal conditions. We will check the range
and objective profile complexity in particular, based on our experience from Section 3.6.1.2 and
Chapter 2.
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Our goal is to resolve the problem using the same uninformed choice of reduction basis. We
expect to obtain a method that is applicable for a wider range of scenarios, without the need to
invent a good reduction basis for each scenario.

3.6.2.1 Impact of multiscale parametrization at 10 km range

Here, our goal is to study the inversion of the objective profiles studied in Section 3.6.1.2 using
Multiscale Parametrization Technique (MPT). We provide a quick summary of MPT to help the
reader before describing what we present in order to show the results. The reader should visit
Section 3.3.3.1 for details and a worked example presented in Figure 3.4.

We begin with choosing an increasing sequence of NL up to Nz according to (3.13). Here,
in short, NL is given by NL = {NL,i} ∪ {Nz}. The subscript i in NL,i denotes the resolution
dimension (reduced parameter vector dimension) at the i-th level in the hierarchy. The inversion
routine is initialized at MIG at i = 1. Inversion result MINV obtained at level i is projected to
the NL,i+1 dimensional subspace to be the initial guess of the inversion routine at level i + 1.
The last element of the sequence is set equal to Nz so as to retrieve the inversion result at the
full-scale resolution.

Firstly, we check whether there would be an improvement if MPT is used instead of plain
Search Space Reduction (SSR). We verify this by repeating the analysis with MPT in a scenario
which was previously studied with SSR to obtain the results given in Figure 3.17. The MPT
strategy is built by combining the subspaces considered in Figure 3.17. This means we use the
"parameter restriction" (the classical search space reduction technique) option in the Workflow 1
titled "Multiscale Parametrization". This MPT is just one of the techniques that we use so we
distinguish it by labeling it as T-1 meaning Technique-One. The strategy is controlled by the
sequence NL. For this study it is given by:

T-1-S-1 : NL = {4, 5, 7, 26, 151} (3.19)

where the strategy is labeled as T-1-S-1 meaning the Strategy-One of the Technique-One.

The results obtained with T-1-S-1 are given in Figure 3.24. In this Figure, the inversion
results obtained at the five levels of (3.19) are given in order from Figure 3.24a to Figure 3.24e.
The final result obtained with T-1-S-1 is that indicated with MINV in Figure 3.24e. In this
result, the synoptic structure of the objective parameter seems resolved at many altitude points.
Qualitatively speaking, we notice a significant improvement in the inversion result in this Figure
obtained with MPT as compared to that in Figure 3.17 obtained with a plain SSR.

We know that most of the information about the propagation condition is contained in the
gradient information of the refractivity variation. Therefore, the quality of the result looks
satisfactory. Therefore, we add more content in the presentation of the inversion results. In
Figure 3.24f, we include the convergence history. In this Figure, we observe six order of magni-
tude of decrease in the cost function. The five intervals created by six vertical dashed lines in
Figure 3.24f are used for indicating the convergence history that is obtained in the five levels in
(3.19). We observe that cost function does not improve (decrease) at multiscale level i = 2 from
iteration number 11 to 32. Therefore, the best inversion result obtained at the end of i = 2 is the
result obtained at i = 1. For this reason, the initial guess at i = 3 (see MIG in Figure 3.24c) is
the inversion result obtained at i = 1 (seeMINV in Figure 3.24a), so the computational resources
are wasted at i = 2. We remark on this waste because we will cure it by upgrading the technique
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Figure 3.24: Inverted parameters at all multiscale levels in the hierarchy using T-1-S-1. (a)
NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e) NL = 151, (f) Convergence history.

and make the algorithm efficient.

We expand our analysis by presenting the contour plots of the wave field u. The goal is to
understand how close the estimated radar coverage diagram would be to the truth. To make
the comparison, we present the wave field uobs and usimm , which correspond to the objective and
inverted parameter respectively, in dBV/m using:

|u(r, z)|dB = 20 log10(|u(r, z)|) (3.20)

in Figure 3.25a and Figure 3.25b respectively. Their difference is presented using:

|Error(uobs, usimm )|dB = 10 log10(||uobs(r, z)|2 − |usimm (r, z)|2|) (3.21)

in Figure 3.25c. We observe that the true and predicted wave fields in Figure 3.25a and Fig-
ure 3.25b are very close. Although the texture of the wave field looks the same, we cannot
perceive if there is any shift in the radar lobes due to the shift of the inverted parameter from
the objective as shown in Figure 3.24e. For that reason, we check the difference of the wave
fields in Figure Figure 3.25c. Their difference at the receiver antenna position R = 10 km is low
around -25 dBV/m but the error exceeds that level in the airspace. In Figure 3.25c, we observe
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Figure 3.25: Comparison of true and predicted wave field. (a) True wave field, (b) Predicted
wave field. (c) Difference between true and predicted wave field (d) Isolines of true and predicted
wave field.

that the error increases with distance from the receiver antenna. The error seems to remain lower
than -5 dBV/m in this example. This error does not come from the aforementioned leftward
shift in MINV from MOBJ in the inversion results shown in Figure 3.24e. In order to check this,
we have shifted MINV manually on top of MOBJ such that ||MOBJ||∞− ||MINV||∞ becomes zero.
We measured the norm of the error in the entire airspace with:

εΩ =

∥∥∥|uobs(r, z)|2 − |usimm (r, z)|2
∥∥∥

2
‖|uobs(r, z)|2‖2

. (3.22)

The norm of the error in the entire airspace did not change, it remained identical until the 13-th
significant digit. Therefore, we concluded that the shift in the inversion result does not have a
prominent impact on the predicted radar coverage. What is important is to retrieve the synoptic
structure of MOBJ. However, it is not easy to say that two wave field textures are the same in
Figure 3.25a and in Figure 3.25b. In order to show that they are very close, we draw the isolines
of those contours at 5 dBV/m and -5dBV/m in Figure 3.25d.
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3.6.2.2 Impact of the objective profile at 10 km range

Secondly, we change the objective parameter to verify if the comments made in the previous
analysis are valid for other objective profiles as well. For that purpose, we try to invert some of
the objective profiles studied with SSR in Section 3.6.1.2. The inversion results using T-1-S-1 are
given in the same order as in Section 3.6.1.2 from Figure 3.26 to Figure 3.31. In these Figures,
we observe that 151-parameter inversion results contain less oscillations. In Figure 3.26 and Fig-
ure 3.27, we observe that the synoptic structure of the objective parameter is resolved accurately
without oscillations at many altitude points. In all the results from Figure 3.26 to Figure 3.31,
we observe that the upper and lower ends of the objective profile is resolved inaccurately, except
in Figure 3.27 at sea level. This means there is less difficulty in resolving the details in interior
part of the objective profile. Resolving the lower end of the objective profile accurately is impor-
tant in the real-world applications because that part can contain strong gradients in reality, so it
can diminish the accuracy of radar coverage predictions. The results in Figure 3.28 shows that
increasing complexity of the objective profile might make the inversion process divergent from
the admissible parameter set. The results in Figure 3.29a, Figure 3.30a and Figure 3.31a shows
that more complex profiles are inverted with more oscillations in parameter. This makes the cov-
erage predictions less accurate: see the increase of error levels from Figure 3.29e to Figure 3.31e
and difference between the isolines of the true and predicted wave fields from Figure 3.29f and
Figure 3.31f.

Some important conclusions of the analysis are as follows: (1) computational resources might
be wasted at some scales, (2) a good representation of data might not exist in a low dimensional
subspace in the admissible bounds, (3) resolution of the parameter near sea level might be
inaccurate. Although there are some other results that could be emphasized at the end of this
section, we restrict our focus on these drawbacks of our approach to keep the discussion short.
The three weaknesses which we labeled are going to lead us to improved techniques in the
following sections.
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Figure 3.26: Inversion results. (a) Inverted parameter, (b) Convergence history, (c) True wave
field, (d) Predicted wave field. (e) Difference between true and predicted wave field, (f) Isolines
of true and predicted wave field.
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Figure 3.27: Inversion results. (a) Inverted parameter, (b) Convergence history, (c) True wave
field, (d) Predicted wave field. (e) Difference between true and predicted wave field, (f) Isolines
of true and predicted wave field.
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Figure 3.28: Inverted parameters using multiscale hierarchy composed of different parameter
subspaces characterized by NL. (a) NL = 4, (b) NL = 5, (c) NL = 7, (d) NL = 26, (e)
NL = 151, (f) Convergence history, (g) True wavelfield, (h) Predicted wave field. (i) Difference
between true and predicted wave field.
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Figure 3.29: Inversion results. (a) Inverted parameter, (b) Convergence history, (c) True wave
field, (d) Predicted wave field. (e) Difference between true and predicted wave field, (f) Isolines
of true and predicted wave field.
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Figure 3.30: Inversion results. (a) Inverted parameter, (b) Convergence history, (c) True wave
field, (d) Predicted wave field. (e) Difference between true and predicted wave field, (f) Isolines
of true and predicted wave field.
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Figure 3.31: Inversion results. (a) Inverted parameter, (b) Convergence history, (c) True wave
field, (d) Predicted wave field. (e) Difference between true and predicted wave field, (f) Isolines
of true and predicted wave field.
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3.6.2.3 Impact of refinement strategy at 10 km range

In this section, we try to improve the inversion results obtained using T-1-S-1 by analyzing the
impact of the rate of increase in NL. In order to increase the chance of success, we choose a
proper rate of refinement in the strategy. For this purpose, we create the following refinement
strategies with the same technique to compare the results:

T-1-S-2 : NL := {NL,i = 3× 4i−1 + 1, NL,i < 151} ∪ {151} , (3.23a)
T-1-S-3 : NL := {NL,i = 3× 3i−1 + 1, NL,i < 151} ∪ {151} , (3.23b)
T-1-S-4 : NL := {NL,i = 3× 2i−1 + 1, NL,i < 151} ∪ {151} , (3.23c)
T-1-S-5 : NL := {NL,i = 3i+ 1, NL,i ≤ 40} ∪ {151}. (3.23d)

For instance, T-1-S-2 is characterized by NL = {4, 13, 49, 151}. Note that in the case of T-
1-S-2, the refinement is done the least progressively whereas it is done the most gradually in
T-1-S-5. However, we stop the refinement earlier in T-1-S-5 because there would be many levels
making the inversion very costly otherwise. We see the inversion results in Figure 3.32 for the
strategies described in (3.23). The coverage prediction error is given in Table 3.2. We observe that
prediction quality increases with a more progressive approach in refinement with one exception:
T-1-S-2 vs. T-1-S-3.
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Figure 3.32: Inversion for four different refinement strategies. (a) T-1-S-2, (b) T-1-S-3, (c)
T-1-S-4, (d) T-1-S-5.

T-1-S-2 T-1-S-3 T-1-S-4 T-1-S-5
εΩ 1.78% 1.97% 0.59% 0.27%

Table 3.2: Prediction error for T-1 for different strategies.

We now check if the objective profiles whose synoptic structure are not resolved well in Sec-
tion 3.6.2.1 could be retrieved using T-1-S-5. For this reason, we repeat the inversion test for the
objective profiles studied previously using T-1-S-1 in Figure 3.26, Figure 3.29, Figure 3.30 and
Figure 3.31. The results obtained using T-1-S-5 are given in Figure 3.33, Figure 3.34, Figure 3.35
and Figure 3.36 respectively. In these Figures, we observe an overall decrease of error in the accu-
racy of the coverage prediction. More progressive refinement seems to improve the results. There
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is a potential that some difficult problems could be solved better if more progressive refinement
can be afforded.
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Figure 3.33: Inversion results using T-1-S-5. (a) Parameters, (b) Convergence history, (c) Pre-
dicted wave field. (d) Difference between true and predicted wave field, (e) Isolines of true and
predicted wave field.
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Figure 3.34: Inversion results using T-1-S-5. (a) Parameters, (b) Convergence history, (c) Pre-
dicted wave field. (d) Difference between true and predicted wave field, (e) Isolines of true and
predicted wave field.
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Figure 3.35: Inversion results using T-1-S-5. (a) Parameters, (b) Convergence history, (c) Pre-
dicted wave field. (d) Difference between true and predicted wave field, (e) Isolines of true and
predicted wave field.
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Figure 3.36: Inversion results using T-1-S-5. (a) Parameters, (b) Convergence history, (c) Pre-
dicted wave field. (d) Difference between true and predicted wave field, (e) Isolines of true and
predicted wave field.
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3.6.2.4 Impact of initial guess at 10 km range

In this section, we want to see if the conclusions made in Section 3.6.2.3 are valid for other
objective and initial guess profiles. For that purpose, we apply T-1-S-5 to the objective profile
which has been studied previously in Figure 3.28 and Figure 3.30 using T-1-S-1. We choose
these two profiles because they were difficult to invert without progressive refinement, so their
dependence to the initial guess could be noticeable.

The inversion results obtained for four different initial guesses are given in Figure 3.37 and
Figure 3.38 respectively. Although we observe some dependence on the initial guess, the synoptic
structure of the objective profile is retrieved in the interior. However, the synoptic structure
depends more on the initial guess at the upper and lower boundaries. In addition, the isolines of
the wave field for the four inversions of the two objective profiles are presented in Figure 3.39 and
Figure 3.41 respectively. Similarly, the difference between the true and the predicted wave fields
are given in Figure 3.40 and Figure 3.42 respectively. The prediction quality does not depend
much on the initial guess for these test cases.
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Figure 3.37: Inversion for four different initial guesses.
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Figure 3.38: Inversion for four different initial guesses.
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Figure 3.39: Isolines of the true and the predicted wave field for four different initial guesses
presented in Figure 3.37 respectively.
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Figure 3.40: Difference between true and predicted wave field for four different initial guesses
presented in Figure 3.37 respectively.

101



0 5 10
Range (km)

0

25

50

75

100

125

150

Al
tit

ud
e 

(m
)

|uobs|=-5 dBV/m
|usim

m |=-5 dBV/m
|uobs|=5 dBV/m
|usim

m |=5 dBV/m

(a)

0 5 10
Range (km)

0

25

50

75

100

125

150

Al
tit

ud
e 

(m
)

|uobs|=-5 dBV/m
|usim

m |=-5 dBV/m
|uobs|=5 dBV/m
|usim

m |=5 dBV/m

(b)

0 5 10
Range (km)

0

25

50

75

100

125

150

Al
tit

ud
e 

(m
)

|uobs|=-5 dBV/m
|usim

m |=-5 dBV/m
|uobs|=5 dBV/m
|usim

m |=5 dBV/m

(c)

0 5 10
Range (km)

0

25

50

75

100

125

150

Al
tit

ud
e 

(m
)

|uobs|=-5 dBV/m
|usim

m |=-5 dBV/m
|uobs|=5 dBV/m
|usim

m |=5 dBV/m

(d)

Figure 3.41: Isolines of the true and the predicted wave field for four different initial guesses
presented in Figure 3.38 respectively.
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Figure 3.42: Difference between true and predicted wave field for four different initial guesses
presented in Figure 3.38 respectively.
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3.6.2.5 Preliminary results at 30 km range

In this section, we perform some inversion tests with the refinement strategies T-1-S-2, T-1-S-3,
T-1-S-4 and T-1-S-5, so as to conduct preliminary exploration for applications at longer ranges.
We study the objective profiles presented in Figure 3.6b and Figure 3.6c at R = 30 km. The
inverted parameters are given in Figure 3.43 and Figure 3.44 respectively. The corresponding
wave fields, difference from the true wave field and comparison of isolines are found in the
following.

We observe that it is more difficult to invert at R = 30 km these two refractivity profiles which
were relatively simple to study at R = 10 km. It is also difficult to reach general conclusions at
this configuration. However, there is a certain level of success in predicting the radar holes with
T-1 that can be inferred from Figure 3.49 and Figure 3.50. It is unclear why more progressive
refinement (T-1-S-4) does not give the best result in Figure 3.50. Results with other previously
studied objective profiles are not good (not shown here). It seems that we are around the limits
of what we can achieve with MPT with this linear interpolation basis.
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Figure 3.43: Inversion at R = 30 km. (a) T-1-S-2, (b) T-1-S-3, (c) T-1-S-4, (d) T-1-S-5.
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Figure 3.44: Inversion at R = 30 km. (a) T-1-S-2, (b) T-1-S-3, (c) T-1-S-4, (d) T-1-S-5.
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Figure 3.45: Wave field for the case studied in Figure 3.43 respectively, at R = 30 km (a) True
(b) T-1-S-2, (c) T-1-S-3, (d) T-1-S-4, (e) T-1-S-5.
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Figure 3.46: Wave field for the case studied in Figure 3.44 respectively, at R = 30 km (a) True
(b) T-1-S-2, (c) T-1-S-3, (d) T-1-S-4, (e) T-1-S-5.
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Figure 3.47: Difference between true and predicted wave field for the case studied in Figure 3.43
respectively, at R = 30 km (a) T-1-S-2, (b) T-1-S-3, (c) T-1-S-4, (d) T-1-S-5.
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Figure 3.48: Difference between true and predicted wave field Wave field for the case studied in
Figure 3.44 respectively, at R = 30 km (a) T-1-S-2, (b) T-1-S-3, (c) T-1-S-4, (d) T-1-S-5.
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Figure 3.49: Isolines of the true and the predicted wave field for the case studied in Figure 3.43
respectively, at R = 30 km (a) T-1-S-2, (b) T-1-S-3, (c) T-1-S-4, (d) T-1-S-5.
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Figure 3.50: Isolines of the true and the predicted wave field for the case studied in Figure 3.44
respectively, at R = 30 km (a) T-1-S-2, (b) T-1-S-3, (c) T-1-S-4, (d) T-1-S-5.
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3.6.2.6 Preliminary results with data reduction at 30 km range

Let us start this final results section with some remarks to explain how we got to this point of
"data reduction". The success of the inversion algorithm with strategy T-1-S-5 comes with a
high cost in terms of number of iterations. This is due to the projection of parameter from one
subspace to another between multiscale levels. We have tried to avoid it by using the "Method
2" described in Section 3.3.3.1 because such a projection, denoted with H, disappears effectively.
With the use of this method, the cost function was never increasing unlike, for example, in
Figure 3.33b and the optimization became very efficient. However, this method brought stability
issues to the inversion. To be more precise, the parameters started to contain more and more
oscillation as we refined the model. Those bad results are not presented here.

We think that this problem could be solved by upgrading the multiscale basis (to wavelets)
or the optimization strategy. In this thesis, we choose to keep the basis unchanged and upgrade
the optimization technique. In this study, we improve the optimization technique by using SSR
"Method 2" (perturbation restriction) and data space reduction (DSR) at the same time and
synchronizing the dimensions of the reductions. We label the SSR technique that uses "Method
2" as T-2. When T-2 is used with DSR, we label this as a new technique as T-3, in which
dimensions of the data subspaces are given with ND. In this preliminary study, we choose:

T-2-S-6 : NL := {NL,i = i+ 1, i < 10} ∪ {151} (3.24)

for T-2 and

T-3-S-6 : NL := {NL,i = i+ 1, i < 10} ∪ {151} (3.25a)
ND := {ND,i = i+ 1, i < 10} ∪ {151} (3.25b)

for T-3. The inversion results obtained with these techniques are given in Figure 3.51 with
wave field contours and isoline graphs in Figure 3.52 and Figure 3.53 respectively. We observe
that T-1-S-5, which is the most successful strategy until this point, cannot predict the ambient
refractivity well anymore in this complex scenario. The new technique T-2 has stability issues
but when used in synchronization with DSR, predictions improve significantly. In addition, we
have also tried synchronizing T-1 with DSR but T-1 has some accuracy issues when used with
DSR. These are preliminary results and T-3 technique is under development.
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Figure 3.51: Inversion at R = 30 km. (a) T-1-S-5, (b) T-2-S-6, (c) T-3-S-6.
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Figure 3.52: Wave field for the case studied in Figure 3.51 respectively, at R = 30 km (a) True,
(b) T-1-S-5, (c) T-2-S-6, (d) T-3-S-6.
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Figure 3.53: Isolines of the true and the predicted wave field for the case studied in Figure 3.51
respectively, at R = 30 km (a) T-1-S-5, (b) T-2-S-6, (c) T-3-S-6.

109



3.7 Conclusion

This chapter presents our attempts to solve the refractivity inversion problem in realistic source
and ambient refractive conditions from phaseless data measured in bistatic configuration. We
discover how the inversion results obtained using our plain adjoint-based inversion technique that
we presented in Chapter 2 would be affected by the fact that ambient refractivity profiles contain
perturbations in reality. Our goal is to discover the potential problems related to the inversion
of realistic profiles in ideal conditions and propose upgrades for our plain adjoint-based inversion
technique. In our perspective, if our technique cannot cope with resolving the perturbations
in refractivity profile in ideal scenarios where the modeling, measurement errors and noise are
eliminated, there is not a motivation to test it in real world. In addition, we would not be
confident to claim that we have a method that can retrieve details of ambient refractivity profile
point by point in altitude. Remember that in the beginning we chose the adjoint-based approach
so as to to retrieve details of the refractivity efficiently. If details are going to be omitted, then
there are already many techniques in the literature that accomplish this task.

We have observed that existence of perturbations in the refractivity destabilizes the regularity
of the inversion results in high-dimensional scenarios (Figure 3.15e vs Figure 3.17e). This effect is
potentially combined with higher level of dependency to the initial guess. Search space reduction
techniques can be used to obtain inversion results without oscillation as it is done in the literature.
However, we need to choose a good reduction basis based on the ambient conditions, which
constitutes a case-specific a priori information that may not be available. If such an information
is not exploited well, then inferior solutions can be obtained (see Figure 3.20c).

One way to handle these issues is to use a multiscale parametrization technique (MPT) that
refines the control parameter vector progressively. We choose basic piecewise linear functions
as our reduction basis to show the positive effect of MPT on inversions. For this purpose, we
performed numerical tests at R = 10 km. We have the impression that MPT can be used for
retrieving the details of the synoptic structure of the ambient refractivity profile in general.
Nevertheless, attention must be paid to the suitability of the refinement strategy so as to get the
best possible results. Namely, more progressive refinement increases the success of the inversion
results in general. Still, some very complex profiles may not be handled well. Here, the problem is
that stationary point may not be found in the admissible parameter set at low control parameter
dimension in some cases. We think that the issue is related to the representability of the data
in the least square sense. In the example of Figure 3.28, the data that belongs to complex
refractivity profile given in the Figure cannot be explained with only few control parameters in
the linear basis.

In the most general case, we have to assume that there is going to be the aforementioned
representability issues when applying MPT in real world applications as well. For this reason,
we incorporate Data Space Reduction (DSR) technique into the multiscale strategy. The idea
is that the global structure of the parameter profile must explain the global structure of the
data, not necessarily (including) its details, in the least square sense. Incorporating DSR with
the Search Space Reduction (SSR) in the multiscale strategy increased the quality of inversion
results noticeably only in some selected cases that we studied. DSR-related modules are currently
under development in this project. More testing is necessary to discover the benefits of extending
the multiscale approach from parameter reduction to data reduction and to have confidence in
the validity of conclusions in general.

The upgrades that we propose in this chapter are optimization strategies that treats the
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direct solver and the adjoint solver as black box. Namely, the upgrades are applied on the input
(adjoint initial condition) and output (the gradient) of the adjoint solver module and on the
cost function. Therefore, one needs to follow the instructions in Section 2.6 for adjoint code
derivation and the make the modifications on the adjoint initial conditions, the gradient and the
cost function as explained in Chapter 3, to derive our methods. These upgrades can be applied
for other parabolic wave equations the same way. In the case of RFC, SSR is applied the same
way as in RBT, whereas the modifications related to DSR should be applied on the forcing term
of the adjoint model instead of the adjoint initial conditions because the error is injected there
in the adjoint model (see [58]).

Using DSR with SSR in a multiscale hierarchy opens doors to many different inversion strate-
gies to discover, even with our very basic reduction basis. For example, refinement and coarsening
strategies can be executed in cycles with and without synchronization of reduction dimensions
in DSR and SSR. Also, windowing techniques can be applied in DSR and SSR after identifying
which part of data is most relevant to which part of parameter profile. Alternatively, adaptive
refinement and coarsening strategies can be used in DSR and SSR. Needless to say, replacement
of linear basis with multiscale Wavelet basis can be a good upgrade, for DSR in particular.
Apart from minimizing the reduced data after scale separations and reconstruction in multiscale
Wavelet basis, the optimization could be performed to minimize the misfit between Wavelet co-
efficients of some dominant modes that explain the simulated and measured data. If necessary
we can resort to use of more information in the inversion by penalization of the cost function,
measuring the phase and angle of arrival of radar beams, to solving multiple problems simulta-
neously for different radars and maybe even equip a single ship with several radars operating at
different frequencies. A combination of aforementioned possibilities should be explored to derive
a reliable and efficient inversion technique.

We would like to end the conclusions with some remarks on the optimization. The results
obtained using BFGS seems to be the best. We added another optimization technique (the
Conjugate Gradient Method of Polak-Ribière [142]) to reiterate over the prediction coming from
the BFGS and decrease the cost function further, we did not observe improvement on the quality
of results. Another point is that there seems to be a balance between the solution quality
and number of optimization parameter. In real-world applications, we might need to end the
refinement at a certain number of control parameter per meter and not be able to resolve the
details of the atmosphere at the resolution of the forward model simulations. It is important to
know how far the refinement should go under what ambient conditions.

Most importantly, the results presented in Chapter 3 are preliminary. The comments should
not be accepted without critical thinking. In particular, it is questionable whether the successful
application of MPT at R = 10 km is thanks to the fitness of the MPT or the problem is already so
simple when phase is omitted and it only needed any regularization method to be incorporated to
the standard adjoint-based problem in that configuration. In addition, comparison with different
penalization techniques is necessary as well as the need to discover different reduction basis and
strategies. However, from practical point of view, there is clearly some hope for application at 10-
30 km range. The potential difficulties are that, (1) we may not have a receiver at each altitude
point on the array antenna (studied in [57]), (2) array antenna can be shorter (studied in [4]) and
(3) robustness of the algorithm should be tested (studied in [3]). Additional measurement data
could improve the technique, for example, information such as angle of arrival of the beams or
multi-frequency data but how to use such additional information is also important as we showed
in Chapter 2.

Data reduction could be used with parameter reduction but we are at the beginning of
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discovering this technique and more exploration is necessary to retrieve presentable results and
lay out its advantages and drawbacks. From the failed inversions, we have the impression that if
we added some basic Tikhonov regularization to DSR, we could be talking very positive about
the DSR. Alternatively, if the inversions stop at a resolution level earlier than the full-resolution
(i.e., at NL = Nz), the results are acceptable for describing the general structure of the ambient
parameter distribution.

Another point to discuss is that if there is any point in going further in the direction of RBT.
Our initial goal was to have a simple toy problem that we can work on easily before working on
RFC, for validating our techniques especially. However, if there is light for practical application
in RBT, the algorithm is ready to be tested in real world after developing the projection technique
for injecting the real-world measurements into the numerical mesh. In this case, it would be a
good idea to upgrade the reduction basis or at least incorporate adaptive refinement strategy to
the inversion routine.

All these points and more like stationarity checks at the end of inversion, incorporating
multistart optimization strategies, obtaining a good initial guess from derivative-free optimization
techniques at low parameter dimensions in the beginning and merging the multiscale technique
with penalization techniques are left for the future studies.
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In this chapter, we first present a summary of the content chapter by chapter and then
elaborate on some important findings.

4.1 Overview

The important points of the content of Chapter 1, Chapter 2 and Chapter 3 are presented below.

4.1.1 Chapter 1

Naval radar systems operate near sea level by emitting radio waves through the atmosphere.
The propagation of the radio waves depends on radio refractive index distribution in the airspace
around the radar. Some refractive index distributions can cause the propagation path of radar
beam to deviate significantly from what is normally expected and they are called anomalous or
nonstandard refractive conditions. Those conditions can give rise to anomalies in radar system
performance such as the emergence of blind zones in the airspace. It is essential to know the
ambient refractivity accurately to predict radar performance so as to have situational awareness
about the performance of radar system.

Refractivity distribution in the atmosphere is unpredictable a priori. It is also impractical to
measure the atmospheric refractivity distribution in the spatial extent of the radar platform in
sufficient detail in real time for the entire operation duration. A technique called Refractivity-
From-Clutter (RFC) is proposed to invert the refractivity from clutter measurements taken by
the radar. The idea is to exploit the echo of the radar emission that comes back to the ship
from wavy sea surface. Since this echo is due to the radio waves which have propagated in the
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airspace, then this echo must contain the traces of the ambient refractivity distribution and we
should be able to retrieve them.

The difficulty of RFC is that the refractivity m (distributed system parameter) and the
received signal power PR (observable clutter data) are related nonlinearly through a partial
differential equation. Inversion of refractivity from clutter data constitutes a nonlinear ill-posed
problem which is already difficult to solve in theory even if the forward model is known at the
level of perfection. The problem is that, firstly, we cannot expect the clutter data to come with
the additional information, such as meteorological conditions, sea radar cross section model and
the auxiliary techniques that is necessary to model it well in a particular case, and secondly,
we do not know what inversion technique is suited the best for this particular scenario. Apart
from that, we do not know what the consequences of deviating from the perfection are in those
aspects in terms of solution quality. For example, we do not know up to what resolution level
the refractivity can be retrieved depending on the suitability of the approximations. Thirdly, the
inversion problem is very complex even in ideal conditions if the parameter model is represented
with a high-dimensional vector in the numerical model as required for modern systems operating
at high frequencies with precision [57], [58].

Apart from the aforementioned points, we make the following two essential observations. (1)
It is almost customary to choose the Wide-Angle Parabolic Equation of Thomson and Chapman
(WAPE-TC) as the forward model in RFC community because it is the most accurate WAPE
on which efficient split-step numerical technique is applicable. However, Narrow-Angle Parabolic
Equation (NAPE), which has the same computational cost as WAPE-TC, is used instead when
it comes to adjoint-based RFC systems that can retrieve the details of the refractivity efficiently.
(2) The problem is so complex that successful high-dimensional applications actually incorporate
case-specific a priori information in this or that way. Such a priori information might not be
available in real world operations in all conditions. In today’s knowledge, we have to incorporate a
priori information into the solution of the inverse problem but what that information specifically
is and how it is incorporated matter. For example, how are we going to take into account the
climate change or manipulation if the a priori information comes from an artificial intelligence
system that is fed with the historical data of the geophysical location collected over the decades?
The background knowledge can lead to inferior solutions as much as it could guide us towards
the truth. We choose to work with WAPE-TC for high-dimensional adjoint-based inversions and
try to rely on data and physics as much as possible to explore the possibility of avoiding such
background knowledge.

Therefore, we first try to understand what the possibilities are in ideal conditions if the
forward model is known perfectly. To approximate to the reality and reduce the possible modeling
errors, we choose the WAPE-TC as the forward model as we said before. Deriving an adjoint
model for WAPE-TC is not as straightforward as it is for NAPE and other WAPEs that are used
in the acoustics community because it has a square root operator with an argument that changes
sign. For this reason, it is necessary to make some assumptions and then check if they are valid.
For the validation purposes, we modify our problem from RFC to bistatic configuration. Our
initial plan is to develop the technique and knowledge for the derivation and development of
some multiscale strategies that we saw in the geophysical data inversion community, and then
transfer our knowledge to RFC systems.
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4.1.2 Chapter 2

In order to perform the basic inversion task efficiently, the inverse problem is formulated as
a simulation driven nonlinear least squares optimization problem where the difference between
the measured and simulated data on u is minimized over refractivity parameter m. Depending
on whether the phase of the complex field u is measurable or not, we formulate two different
cost functions to minimize. We derive two different adjoint models for the two cost functions
with some assumptions. The derivations are checked by comparing the gradient computed using
adjoint model to that obtained using a finite differences scheme. A quasi plane wave is used as
the source.

The inversion tests show that it is easy to invert the refractivity from measurements in the
first few kilometers in range in general. The use of measurements with phase allows us to compute
the parameter accurately near the radar whereas the removal of the phase information allows
us to identify only the synoptic structure of the refractivity at longer ranges. Removal of the
phase also reduces the complexity of the error functional topography. This allows retrieval of
multimodal solutions for different initial guesses up to a certain distance from the radar. We also
show that the inversion accuracy could potentially be improved in an inversion strategy where
inversion without phase information could be improved by incorporating the phase information
at the second step of inversion.

4.1.3 Chapter 3

In Chapter 2, the features of the problem have been exposed and the validation has been per-
formed using a trilinear objective parameter profile and quasi-plane wave source to illuminate
the atmosphere. Use of realistic point source makes refractivity inversion more difficult. In ad-
dition, realistic refractivity profiles do not resemble the simple trilinear model used in Chapter
2. Furthermore, realistic data are sparse and contain noise and are expected to be phaseless.
Not to mention, theoretical and numerical modeling errors are expected in reality. For at least
these reasons, we do not expect to benefit from the refractivity gradient retrieval capability of
the basic adjoint-based inversion technique in bistatic configuration in practice as simply as it
is portrayed in Chapter 2. To build the confidence before testing the algorithm in real world,
we want to obtain perfect inversion results in high-dimensional scenarios by inverting synthetic
data in ideal conditions.

In Chapter 3, we show the difficulty that comes from the point source and perturbations
on the objective refractivity profile. The main difficulty is that inverted parameters contain
more oscillation which usually does not permit identification of the synoptic structure of the
objective profile. We tackle this problem using Search Space Reduction (SSR) and Data Space
Reduction (DSR) techniques in a multiscale strategy. The idea is to have regular perturbations
on the parameter model and to convexify the error functional topography with SSR and DSR
respectively. This mitigates the difficulty of inversion and helps us explore what we can achieve
without penalizing with case-specific a priori information in the background.

Some modifications are proposed to the standard adjoint-based formulations obtained in
Chapter 2 in order to achieve SSR and DSR in our multiscale strategy. We validate the gradient
under these modifications, like it is done before in Chapter 2. Using different strategies of
progressive refinement in the parametrization, we show the advantage of multiscale method
at 10 km. More progressive refinement strategies improve the solution quality in the studied
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scenarios, at the expense of increasing computational cost. We cannot propose an efficient
strategy that improves the solution quality and decrease the computational cost in general.
There seems to be a computational cost to pay in order to retrieve quality results without using
empirical background knowledge.

The main advantages of SSR and DSR are the following in our context. Using SSR in our
multiscale strategy effectively regularizes the solution. We assume that, in some (simple) cases,
we expect that the solutions obtained during the refinement are good initial guesses for the
next more refined subproblems. Finally we obtain a good initial guess for the original full-
scale problem, in which the parameter is resolved at the dimension of numerical mesh of the
propagation model, and that is almost impractical to obtain from derivative-free methods due to
the dimension of the problem. However, for the studied cases the problem becomes so complex
at around 30 km that inversions start badly from the very beginning. Predictions at the first
multiscale levels do not represent the global structure of the true parameter and inversions do
not go well in general. At that point, we incorporate DSR to the multiscale strategy. We assume
that global structure of the data is related to the global structure of the parameter mainly. This
gives us improved predictions at low dimensions in general and improves the results. For DSR, we
do not have the final results to make general conclusions as we are still developing the technique
and more testing is necessary to show the advantages and the limitations of the technique.

4.2 Discussion

4.2.1 Chapter 1

We have started our introduction by presenting the relation between the atmospheric radio
refractive index and bending of the radar energy and its effect in radar coverage with an example.
We have also mentioned that the refractive index changes dynamically in the lower troposphere
and it is not possible to know its distribution accurately at the desired precision so as to estimate
the radar coverage at desired accuracy. In the second step we explained that the refraction effects
are not specific to our problem. In the third step we explained the relation between received
signal power at the radar and radio wave propagation in the troposphere. In the fourth step, we
presented the physical model (i.e., the forward model, the propagation model, state equation)
that can account for refraction effects in radio wave propagation. In the next steps, we explained
why measuring the ambient refractivity is so difficult in our context and why it is more convenient
to invert it from radio frequency data the way we do in the thesis. We lastly presented some
criteria that our inversion technique should be able to meet and our plan to reach the capabilities.

All these steps that we mentioned serves to prepare the reader for the following questions
and conclusions reached in the beginning of the thesis that we should be critical of. Firstly, we
limit our goal in this thesis and state it clearly. Our goal is to predict ambient refractivity so
as to predict the radar coverage in the airspace. When viewed from this aspect, radar coverage
is proportional to the received signal strength (PR) per unit target radar cross section (σ) as
function of position in space. The quantity PR/σ is proportional to the electromagnetic wave
field amplitude |E|. The latter is proportional to the reduced wave field amplitude |u| which
depends on refractivity m. However, the state function that depends on m in the propagation
model is u ∈ C. This means that perhaps we do not necessarily have to find the true refractivity
to explain only the amplitude of the state function (with some negligible error) that explains the
radar coverage?
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The second step is about where to get some inspiration from to solve our problem. Numerous
methods and strategies are developed to tackle inverse problems that are also applicable to our
problem. Although there is not a general technique that can tackle all inverse problems well, we
guess that the method and strategy that suits to the features of our particular problem is prob-
ably already developed somewhere in that rich literature of inverse problems. Enlarging scope
with more generic concepts like inversion of distributed system parameter in partial differential
equations gives us chance to discover relevant and innovative ideas. Also for the refraction is
related to waves, we check if successful applications to get inspiration from exist, outside the
RFC, in other wave propagation communities.

We find the problem of underwater acoustic sound speed inversion problem in ocean acoustics
and acoustic full-waveform inverse problem in geophysics similar to ours. Different forward
models which are close to ours are studied in ocean acoustics, and a very high-dimensional
inverse problem is solved successfully in geophysics. By taking into consideration also the work
done in our community and the requirements of our ideal inversion technique, we decided that
the adjoint approach would be the right way to take for building our RFC system to invert
refractivity parameter from clutter data. When it came to choose the forward model and the
scenario, we have made the following discussions about the previous work.

• The right way of modeling of clutter from refractive effects depends on the scenario. Study-
ing this problem requires expertise on closure of forward model depending on the scenario.
There are PhD’s dedicated to how to model one parameter in the relation (for example, sea
radar cross section). Beside of the standard difficulties of solving this nonlinear ill-posed
problem, some deviations of refractivity from the standard conditions are theoretically non-
invertible due to the flow of the radar energy in the airspace. Although we are not sure
if these were the reason, the pioneers of the application of adjoint method on RFC were
motivated to study a bistatic configuration, which we call RBT in this thesis, to develop
their techniques in the beginning.

• The inverse problem is already so much complex to the extent that the adjoint-based
techniques which are potentially capable of handling millions of parameters efficiently are
used for inverting around 25 parameters in the successful real-world applications, and even
that is made possible by incorporating case-specific a priori information.

• When the inversion fails, it is difficult to understand the reason and propose the correct
remedies that can lead to successful high-dimensional applications. For example, we do not
understand if there is a theoretical or numerical conclusion about up to what resolution
the refractivity can be retrieved per application or if the mathematical propositions break
in the numerical model (unexpectedly) at some point strangely and what role the forward
model plays in this, in particular.

• The inversion can fail when inverting high-dimensional parameter from synthetically gener-
ated data coming from the forward model of the inversion routine. It means that failure is
a possibility even if no modeling, measurement error and noise exists. Then, even in ideal
conditions, there are some issues related to the invertibility and/or problem complexity.

• We are not able to deduce how the modeling errors coming from uninformed choices would
degrade the inversion quality in real world applications.

• Due to the inevitable trade-off between the inversion accuracy and speed of computations,
grid dependency element is usually omitted in the studies. Consequences of this is not
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studied from the inverse problem point of view in the literature1 although the problem is
an ill-posed problem.

We concluded that (1) we should use at least theoretically the most accurate propagation
model that we could afford for modeling the propagation so that we can tighten our control on
the inversion accuracy and have more confidence in our results before testing the ideas in real
world. (2) In addition, we need to start from a very simple example and increase the difficulty
of inversion step by step. (3) We should also first deal with the most basic element of inversion
complexity that comes from the parabolic equation when the state function is known perfectly
in some part of the domain. This corresponds to working in the scenario just one step ahead of
having a total command on the physical modeling at the level of perfection.

At this point, we have to emphasize that the improvement of the adjoint-based inversion
technique with WAPE-TC instead of NAPE is hypothetical. The improvement is suggested from
forward modeling point of view and we should be critical of that. The argument is that if forward
model approximates to the truth better in the forward problem, then it is reasonable to expect
some improvement in the inverse problem as well. To the best of our knowledge, there is not a
study in the literature which discuss the influence of choice between NAPE and WAPE-TC on
the inversion quality in the context of RFC. Still, some theoretical improvement is expected not
only for seaborne but also for airborne and spaceborne emitters2.

We have to be critical of the choice of tomographic setup in this thesis. This change is made
for scientific purposes for the moment, as explained throughout the thesis. In military operation
environment, it is not easy to find a receiver antenna at a desired distance from the ship unless
the ship operate as a group with others. Therefore, RBT should be seen as part of a system
where data coming from different sources are analyzed with different inversion techniques, with
its extension to RFC for instance. However, the advantage of RBT is that, in short time, we are
able to propose a technique that is ready to be tested on the group of ship in real world.

In Chapter 1, we have also discussed that inverting the details of refractivity distribution ac-
curately becomes important as the frequency of the source increases. We have given a motivating
example by comparing the propagation at f = 2 GHz to f = 10 GHz. In fact, our intention has
been to study our inverse problem at frequencies as high as 10 GHz and compare our results to
that obtained in [57] at 8 GHz in bistatic configuration using regularization methods. However,
we have encountered inversion difficulties throughout this thesis in high-dimensional scenarios
and those difficulties prevented us from increasing the frequency of the source above 2 GHz in
long range applications in practice. On the other hand, we were able to study the inversion of
some realistic complex refractivity distributions in altitude.

We also mentioned some techniques that are used in successful applications of adjoint-based
methods found in the literature and how to benefit from these techniques. Firstly, we mentioned
the importance of validating the gradient computed using the adjoint-based method each time
the method is modified. Validation of the gradient increased our confidence in our derivations.
Also, we were able to focus on the optimization part when the inversion fails because we did not
have doubt about the validity adjoint-based techniques that we developed throughout the thesis.

1Our initial tests indicated that the modeling is done in numerical setups where the modeling have mesh-
dependency from inverse problem perspective. We mean that the gradient used in the inversion depends on the
mesh size when we make the choices similar to those in the literature. Its impact on the inversion results might
be noteworthy to study.

2It could be interesting to use WAPE-TC in radio occultation problem because in free space the form of
WAPE-TC matches with the one-way equation.
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Secondly, we mentioned the benefits of using multiscale strategies in mitigating the inversion
difficulty. We made our planning according to these points and other conclusions which can be
found in Chapter 1.

We also need to be critical of the assumptions made on the medium properties. We assume
that the refractivity does not vary with range, there is not atmospheric attenuation, and the
phenomena carries azimuthal symmetry features. Normally this is not the case.

4.2.2 Chapter 2

In the following sections, we use the acronym WAPE to refer to WAPE-TC because it is the only
WAPE that we consider in the following.

In Chapter 2, our main goal is to derive and validate the adjoint model of WAPE for RBT.
We derive the adjoint model for two different least squares problems: (1) when the measurements
include the phase and amplitude of the wave field, (2) when only the amplitude is measurable.
The derivation has two main steps: (1) We differentiate the cost function, (2) we write the vari-
ational form of the Tangent Linear Model (TLM) of WAPE. The difficulty occurs in the second
step when writing the variational form because we need to identify the adjoint of the square
root propagation operator whose argument changes sign along the spectrum of the argument.
When writing the variational form and deriving the adjoint model, we exploit the following three
observations: (1) the numerical mesh acts as a filter effectively on the spectrum, (2) the sign
change coincides with the separation of the propagating and evanescent modes in the numerical
solution, (3) the argument is positive in the case of propagating modes which are interesting
from application point of view and in that context we can assume self-adjointness for its square
root according to an already existing theorem in functional analysis [114]. The derivations are
verified by checking the gradient that is computed with the adjoint-based approach.

Our second goal is to observe how the lack of phase in radar measurements could impact
on the inversion quality. For this purpose, we perform a numerical experiment where the syn-
thetically generated data is used as measurement. Removal of phase is an important lack of
information which is likely to happen also in RFC. Many more refractivity solutions could be-
come indistinguishable from the truth when inversion is done from phaseless data. We observe
in the inversion results that removal of phase makes the inversions challenging from the point
of view of retrieving the true refractivity parameter indeed. However, this lack of knowledge
brings an advantage to the retrieval of synoptic structure of the true parameter. The inversion
results are very accurate when phase is measurable but also when the measurements are taken
in the first few km from the radar. On the other hand, the inversions could retrieve the synop-
tic structure of the true parameter profile (the gradient information) with some oscillation that
allows identification of the global profile shape and with a certain offset from the truth up to
further distances from the radar when phase information is removed from the measurements.
This scenario also has some interesting multimodality features portrayed in Chapter 2, which
are explained with the convexification of the error functional topography and partly with the
propagation theory. Lastly, we studied an improved inversion strategy where phase information
is incorporated to the optimization process at the end of inversion of phaseless data to re-run
the optimization and get better results. The inversion quality have increased for some cases with
the decrease of oscillations in solution.

Note that the validation and the inversion tests are executed using synthetically generated
data, the excitation source is a quasi-plane wave and the objective (true) refractivity parameter
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has a simple trilinear structure. Apart from these points, we should also be critical of that the
receiver antenna extends from the sea level to the altitude of interest and it has one receiver at
each altitude point when interpreting the results.

4.2.3 Chapter 3

We start Chapter 3 by explaining what we mean by case-specific a priori information and why
we want to avoid using it as much as possible. We recall the standard adjoint-based formulations
that are obtained in Chapter 2, introduce search and data space reduction techniques (SSR and
DSR) and explain how to upgrade the standard formulations to benefit from SSR and DSR.
Using realistic point source and parameter profiles that contain perturbations, we validate the
implementation of the proposed methods. We demonstrate the motivation to use SSR and DSR
in a multiscale hierarchy to achieve good inversion results when inverting synthetically generated
data.

We need to be critical of the language that we use when talking about the use of a priori
information especially. When solving this inverse problem, we see that in some way we have to use
a priori information in the inversion process. Traces of the a priori information appears in the
initial guess, optimization bounds, and the optimization technique, continuity of the refractivity
profile or at somewhere else in the process but it is always there in a way. When we say we try to
avoid the use of a priori information, it is the case-specific a priori information that is used to
explain a specific instance of data and that depends on empirical or historical knowledge whose
validity is restricted to a specific geophysical location at a specific time or other conditions and
we try to emphasize it throughout Chapter 3. What the a priori information is and how it is
used is important because it can also lead to inferior solutions as much as it can help to solve
the problem well. Availability and reliability of such information are also two other aspects that
matter.

We explore the benefits of multiscale strategies. We first study different refractivity profiles
at 10 km range using multiscale parametrization technique (MPT), meaning SSR is used in a
multiscale hierarchy. The multiscale basis is constructed from local piecewise linear functions
with different control parameter dimensions. The results show that inversion become easy with
MPT at 10 km. There are a number of factors to consider when interpreting these results. (1)
The problem complexity should be thought as function of true parameter complexity and range
of propagation. For example, inversion can remain easy if the receiver antenna is put further
from the radar and true refractivity profile becomes less complex. Also, inversion of some very
complex refractivity profiles can be found as very difficult even in short range applications. (2)
Achievement of unrealistically good inversion results from synthetically generated data might
equally indicate that the short-range application in our context is already simple and we just
discovered it properly with MPT and perhaps it is not really a big achievement. (3) We achieved
these results using a very simple reduction basis, so there is a lot of room for improvement not
only to improve the quality of the results but also the efficiency of the inversion with better
reduction bases like wavelet bases. (4) Noise robustness tests should be performed3.

More complex profiles need more progressive refinement if we want to predict the radar cov-
erage more successfully. Inversion at longer ranges can be achieved at around 30 km with MPT

3In fact, we performed some basic tests using Additive White Gaussian Noise and saw that the inversion results
had some robustness, but what is really interesting at this point is to have a realistic noise model and try to mimic
the conditions in real-world applications.
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depending on the true profile complexity and the inversions can become very costly from com-
putational point of view. It seems that there is a computational cost to pay with more iterations
for not exploiting case-specific a priori information if we want good inversion results. MPT
reaches its own limits in our studied cases. We maintain the inversion success by upgrading it
with "SSR Method 2" described in the Chapter which should work in synchronization with the
DSR dimensions in the refinement strategy. The presented successful results are not representa-
tive of generic performance and more testing is necessary to explore what can be achieved with
this optimization strategy. This method is under development at the time of redaction of this
manuscript.

Also note that we use a reduction basis which is primitive when compared to wavelet basis
that is commonly used in the geophysical data inversion. We are not at a position to defend
our choice over the option of wavelets; we only wanted to see if it is really necessary to use
an advanced technique where the scale separations are probably done better than we do in our
most basic multiscale technique. In fact, we have had the idea of using adaptive refinement
and coarsening strategies that are easy to implement in our technique and it remains a way to
explore.

4.3 Future Work

There are multiple directions to follow after this work. These directions can be grouped into
five categories according to the theme: assumptions, applications, optimization, multiscaling and
regularization.

Assumptions The validity of the model can be extended. The main assumptions that we
would like to mention here is as follows: range-dependency of the refractivity, atmospheric at-
tenuation, 3D propagation. It would be interesting to see the performance of the inversion
algorithm for retrieving the range-dependent refractivity field. We believe that this could be the
next step in RBT to test it in real world. It should be easy to account for the range dependency
by dropping the integral in the gradient formulation:

∇mJ = <
{
jk0wm(r, z)um(r, z)

}
. (4.1)

Perhaps it would be interesting to consider the atmospheric attenuation by considering complex
refractivity this time m ∈ C and perturbations m̂ ∈ C in the tangent linear model and follow
the process in Chapter 2, which should yield a gradient vector with also a complex part this
time. 3D effects could be taken into account by considering, for instance, the 3D wide-angle
parabolic equation in [97, Equation C.31] and an adjoint model can be derived similar to the 2D
case by exploiting the self-adjointness of the square root propagation operator

√
k2

0 + ∂2
y + ∂2

z in
this equation when its argument is positive.

Applications It is important to decide if it is interesting to continue on RBT or to switch
to RFC configuration. Since the validation of the assumptions in the adjoint model derivation
is done easily in RBT, there is not much interest in continuing in this direction if there is not
motivation to create RBT application and test the ideas in real world. If RBT is the direction,
then it is necessary to check the resolution level that we can ideally achieve with fewer receivers
and shorter array antenna and how to do the data projection from physical domain to the
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numerical domain. Robustness tests should be executed as well.

In the case of RFC, the left-hand side of the adjoint parabolic equation remains unchanged,
so there is not theoretical work related to the square root propagation operator that should be
performed again. However, we still recommend to run some validation tests to check if the new
right-hand side is implemented properly in the algorithm. Another interesting point about RFC
could be to check the dependency of the inversion results on different clutter models so as to
see if the models support accurate high-dimensional inversions. Also, the influence of the mesh
could be studied for both RFC and RBT.

Optimization There are many capabilities that could be developed from optimization point
of view. Starting from the most basic one, we could impose a convergence criterion on the
cost function, norm of the gradient or relative change in parameter model perturbations. The
problem that prevented us from imposing such a condition is that the optimization topography
is irregular and sometimes the cost function can remain flat before a significant decrease. We
have had some cases which could be accomplished if an earlier termination is not given by a
convergence criterion when a plateau is met in the convergence history. In a multiscale strategy,
the consequences of premature termination like that has been very much significant according
to our experience. Today the algorithm ends the optimization when the cost function cannot be
decreased in the computed descent direction.

Multiscaling In real world scenarios it can be interesting to upgrade the multiscale basis with
a wavelet basis or at least apply adaptive refinement and coarsening strategies if the basis is going
to be kept unchanged. Other options are listed in detail in the conclusion section of the Chapter
3. The most important ones, in our view, are to enrich the data with phase measurements, use
radars operating at different frequencies and applying the windowing techniques on the data in
a multiscale strategy during the inversions.

Regularization A Tikhonov type regularization could be combined with the multiscale meth-
ods. In real world applications, we can also exploit the fact that the atmosphere evolves slowly
in time. In that case, a generalized Tikhonov type regularization with the inversion result ob-
tained at the previous time step can help us to improve the solution quality and efficiency. In a
similar way, when information is known on the refractivity, it could be used for penalizing the
cost function.
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Appendix A

Remarks on the eigenvalue problem

The eigenvalue problem of operator ∂2
z is given below:

− ∂2
zu = λu, z ∈ [0, Z] (A.1a)

u(0) = u(Z) = 0 (A.1b)

Exact analytical solution

For k ∈ N the eigenfunctions are given by:

uk(z) = sin kπz
Z

, (A.2)

and the eigenvalues are given by:

λk =
(
kπ

Z

)2
. (A.3)

The eigenvalue sequence tends to +∞.

Remark: If we replace −∂2
z by ∂2

z , the eigenvalues are negative and tend to −∞.

Numerical solution

Finite difference method (equivalent to Finite Element Method with first-order polynomial func-
tions and regular mesh)

− ∂2
zu ' −

uk+1 − 2uk + uk−1
∆z2 = λu (A.4)

leads to the linear system:

1
∆z2



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0

0 . . . . . . . . . . . . ...
... . . . . . . . . . . . . 0
... . . . −1 2 −1
0 · · · · · · 0 −1 2





u1

u2
...
...
...
uN


= λ



u1

u2
...
...
...
uN


(A.5)
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with Z = (N + 1)∆z and u(0) = u(Z) = 0 the boundary conditions. The eigenvalues of this
matrix are "well-known":

λk = 4
∆z2 sin2

(
kπ

2(N + 1)

)
, 1 ≤ k ≤ N. (A.6)

The eigenvectors up to a multiplicative constant are:

V (k) of componenets V
(k)
i = sin2

(
i

kπ

(N + 1)

)
. (A.7)

The greatest eigenvalue is:

λmax = λN = 4
∆z2 sin2

(
Nπ

2(N + 1)

)
. (A.8)

if N >> 1 then λmax ' 4/∆z2.

Remark: The exact eigenvalue of order N is (Nπ/Z)2 and as Z = (N + 1)∆z, it is
(Nπ/(N + 1)∆z)2 ' π2/∆z2, which is the same order of magnitude in ∆z.

Conclusion

k2
0 + ∂2

z is positive if λmax(∂2
z ) + k2

0 ≥ 0. With the Finite Difference scheme we write:

− 4
∆z2 +

(2π
λ0

)2
≥ 0 (A.9)

and we obtain:
∆z ≥ λ0

π
. (A.10)

Remark: In addition, the descriptions made in the thesis dissertation of Thomas Bonna-
font [97], from whom we inherit the forward model, shows that the maximum eigenvalue as-
sociated with the operator ∂2

z in the spectral transforms is 4/∆z2, which leads to the same
conclusion as (A.10). We have tested the condition empirically and verified that it is ∆z ≥ λ0

π

for the split-step wavelet technique that we used throughout this thesis.

Remark: The analysis is done to show the relation between the wavelength λ0 and the mesh
step size ∆z that makes the argument of the square root positive. The main point is that ∆z
and λ0 are related to each other up to a multiplicative constant C such that ∆z ≥ Cλ0 where
C depends on the solution method. Note that C = 1

2 for the exact solution and C = 1
π for the

numerical solution that we considered, provided that u(Z) = 0.
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