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Classification in functional spaces using the BV norm

with applications to ophthalmologic images and air traffic complexity
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Mr MARÉCHAL Pierre, ISAE
Mr DELAHAYE Daniel, ENAC

Rapporteurs :
Mr DINH The Luc Université d’Avignon
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Abtract

In this thesis, we deal with two different problems using Total Variation con-
cept. The first problem concerns the classification of vasculitis in multiple sclerosis
fundus angiography, aiming to help ophthalmologists to diagnose such autoimmune
diseases. It also aims at determining potential angiography details in intermediate
uveitis in order to help diagnosing multiple sclerosis. The second problem aims at
developing new airspace congestion metric, which is an important index that is used
for improving Air Traffic Management (ATM) capacity.

In the first part of this thesis, we provide preliminary knowledge required to solve
the above-mentioned problems. First, we present an overview of the Total Variation
and express how it is used in our methods. Then, we present a tutorial on Support
Vector Machines (SVMs) which is a learning algorithm used for classification and
regression.

In the second part of this thesis, we first provide a review of methods for segmen-
tation and measurement of blood vessel in retinal image that is an important step
in our method. Then, we present our proposed method for classification of retinal
images. First, we detect the diseased region in the pathological images based on
the computation of BV norm at each point along the centerline of the blood vessels.
Then, to classify the images, we introduce a feature extraction strategy to generate
a set of feature vectors that represents the input image set for the SVMs. After
that, a standard SVM classifier is applied in order to classify the images.

Finally, in the third part of this thesis, we address two applications of TV in
the ATM domain. In the first application, based on the ideas developed in the
second part, we introduce a methodology to extract the main air traffic flows in the
airspace. Moreover, we develop a new airspace complexity indicator which can be
used to organize air traffic at macroscopic level. This indicator is then compared to
the regular density metric which is computed just by counting the number of aircraft
in the airspace sector. The second application is based on a dynamical system
model of air traffic. We propose a method for developing a new traffic complexity
metric by computing the local vectorial total variation norm of the relative deviation
vector field. Its aim is to reduce complexity. Three different traffic situations are
investigated to evaluate the fitness of the proposed method.

Key words: Machine learning, retinal image, BV norm, infinite space, trajec-
tory, main flows, complexity



Résumé

Dans cette thèse, nous traitons deux problèmes différents, en utilisant le concept
de variation totale. Le premier problème est la classification des vascularites dans
l’angiographie du fond d’oeil, et a pour but de faciliter le travail des ophtalmologistes
pour diagnostiquer ce type de maladies auto-immunes. Il vise aussi à identifier sur
les angiographies les éléments permettant de diagnostiquer la sclérose en plaques.
A partir de certains résultats du premier problème, un second problème a pu être
abordé, consistant à développer une nouvelle métrique de congestion d’espace aérien.
Cette métrique permet de quantifier la complexité de gestion du trafic aérien dans
une zone donnée et s’avère très utile dans les processus d’optimisation du système
de gestion du trafic aérien (Air Traffic Management, ATM).

Dans la première partie de cette thèse, nous introduisons les notions requises
pour résoudre ces deux problèmes. Tout d’abord nous présentons le principe de
variation totale, ainsi que la manière dont il est utilisé dans nos méthodes. Ensuite,
nous détaillons le fonctionnement des machines à vecteurs supports (Support Vector
Machines, SVM), qui sont des algorithmes d’apprentissage automatique utilisés pour
la classification et la régression.

Dans la deuxième partie de cette thèse, nous présentons d’abord un état de l’art
des méthodes de segmentation et de mesure des vaisseaux sanguins dans les im-
ages rétiniennes, étape importante de notre méthode. Ensuite, nous décrivons notre
méthode de classification des images rétiniennes. Pour commencer, nous détectons
les régions pathologiques dans les images des patients malades en nous basant sur
la norme BV calculée à chaque point le long de l’axe central des vaisseaux. En-
suite, pour classer les images, nous introduisons une stratégie d’extraction des car-
actéristiques pathologiques pour générer un ensemble de vecteurs de caractéristiques
pathologiques qui représente l’ensemble d’images d’origine pour le SVM. Les images
sont alors classées en utilisant des méthodes standard de classification par SVM.

Enfin, la troisième partie décrit deux applications de la variation totale dans le
domaine de l’ATM. Dans la première application, en partant des idées développées
dans la deuxième partie, nous introduisons une méthode d’extraction des flux prin-
cipaux d’avions de l’espace aérien. En nous basant sur les algorithmes utilisés dans
la deuxième partie, nous avons développé un indicateur de complexité de l’espace
aérien utilisable au niveau macroscopique. Cet indicateur est ensuite comparé à la
métrique de densité habituelle, qui consiste simplement à compter le nombre d’avions
dans un secteur de l’espace aérien. La seconde application se base sur un modèle
par systèmes dynamiques du trafic aérien. Nous proposons une nouvelle métrique
de complexité du trafic basée sur le calcul de la norme locale de variation totale
vectorielle de la déviation relative du champ de vecteurs. Le but est de réduire la
complexité. Trois scénarios de trafic différents sont étudiés pour évaluer la qualité
de la méthode proposée.

Mots clés: Apprentissage automatique, images rétiniennes, norme BV, espace
infini, trajectoire, flux principaux, complexité
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Introduction

The first part of the thesis presents the support vector machine and BV-norm
concept which have been used in our applications. The second part describes the
problem of classification of retinal image. To reach this goal, a vessel extraction
algorithm is presented for which BV-norm histogram have been computed. Based
on such histograms, a support vector machine algorithm has been used to classify
pathological cases and healthy cases. The third part of the thesis presents a new
airspace complexity metric which has been developed by using some techniques used
in the second part.

The classification of retinal image

Retinal diseases are causing alteration of the visual perception leading sometimes
to blindness. For this reason early detection and diagnosis of retinal pathologies are
very important. Using digital image processing techniques, retinal images may be
analyzed quickly and computer-assisted diagnosis systems may be developed in order
to help the ophthalmologists to make a diagnosis.

Intermediate and/or posterior uveitis could precede onset of multiple sclerosis
(MS) in 30-46 % of the patients [38]. The reported frequency of uveitis varies from
0.4% to 26.9% in multiple sclerosis patient [39]. But the prevalence of multiple scle-
rosis in patients with uveitis is 1-2%. Frequently it is difficult for an ophthalmologist
to diagnose MS when the patient starts with vasculitis. It takes many years (8-9
years) until neurological symptoms help to diagnose MS. It seems that the prognosis
of such uveitis is not so well known (visual acuity, disability). Our aim was first to
analyze the angiography of patients who started the disease by intermediate uveitis
and diagnosed as MS. With these results, we analyzed angiography of patients with
autoimmune intermediate uveitis presumed as MS.

The first contribution of the thesis is that we proposed a method using the BV
norm in order to classify vasculitis fundus angiography. Our method is aimed at
helping ophthalmologists for the diagnosis of such autoimmune diseases. In partic-
ular, it will help determining potential angiography details in intermediate uveitis
helping to diagnose multiple sclerosis.

Air traffic complexity

The second contribution of the thesis is the development of a new congestion
metric for airspace.
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When an aircraft travels between airports, a flight plan must be registered in
order to inform the relevant air navigation services. This plan contains all the
indicative elements needed to describe the planned flight, notably:

� departure time

� the first flight level1 requested for the cruise

� the planned route, described using a series of markers.

Airplanes usually used pre-established routes known as airways. These airways
take the form of tubular corridors with rectangular cross-sections, surrounding seg-
ments of straight lines; markers are located at the intersections of these lines. Col-
lision risks, known as conflicts, most often arise around these markers. At these
points, we define a horizontal distance, expressed in Nautical miles (NM) 2, the
horizontal separation, and a vertical distance, which is expressed in feet (ft) 3: the
vertical separation. We say that two aircraft are separated when the distance be-
tween their projections on a horizontal plane is higher than the standard horizontal
separation, OR when the distance between their projections in a vertical plane is
higher than the standard vertical separation.

Air traffic control consists of organizing the flow of traffic in order to ensure flight
security (in terms of managing collision risks) and of improving the capacity of the
route network used by aircraft.

Three different types of control may be identified based on the nature of the
traffic:

� aerodrome control: management of the taxiing, takeoff and landing phases

� approach control: management of traffic in the stage before landing or after
takeoff in the vicinity of an airport

� en route control: essentially concerns traffic during the cruise phase between
airports.

Currently, around 8000 movements take place each day on French territory, rep-
resenting a control workload which is too large for a single controller. The workload
is distributed by dividing the airspace into several sectors, each covered by a control
team. The number of sectors is thus determined by the capacity of a controller to
manage N aircraft simultaneously (in practice, the average appears to be from 10 to
15 aircraft; when this limit is reached, the sector is said to be saturated). A control
center brings together a set of sectors across a given geographical zone.

Air control organizations are responsible for the flow of traffic in their allocated
airspace. The service to users must provide perfect security, but also the best pos-
sible flow rate. Within each sector, controllers keep each airplane separate from the

1Flight level: altitude reading from an altimeter referred to an isobar surface 1013 mb (expressed
in hundreds of feet); thus, a difference of 5000 feet gives a FL of 50.

21NM=1852m or the length of a minute of an arc on a large terrestrial circle
31 ft = 0.3048m

2



rest of the traffic by issuing instructions to pilots. On a sector one controller en-
sures coordination with neighboring sectors and is responsible for the pre-detection
of conflicts. Another controller, the radar controller, monitors the traffic, ensures
conflict resolution and communicates with pilots.

Controllers are not solely responsible for maintaining traffic flow. En-route con-
trol forms part of a chain of successive filters of which each element attempts to
improve traffic flow. Each filter has different objectives and manages distinct spaces
and time frames. Broadly speaking, we may identify five levels of elements:

1. Long-term organization: the crudest filter. Its aim is not to avoid conflicts in
the strictest sense, but to organize traffic at macroscopic level in the medium
and long term (above 6 months). Examples of this include traffic orientation
schemes, measures taken by the flight schedule committee, inter-center agree-
ments or arrangements with the military allowing civil aviation to use their
airspace in order to manage the Friday afternoon peak.

2. Short-term organization: this is often known as pre-regulation. It consists of
organizing traffic for a day d the day before (d − 1) or the day before that
(d− 2). Relatively precise data is available in this case:

� known flight plans

� the control capacity of each center based on the workforce available on
the day d

� the maximum aircraft flow which may enter a sector in a given time,
known as the sector capacity

� data from previous weeks and years. Air traffic is relatively repetitive:
traffic for any given Monday will be very similar to the previous Monday;
the days before Christmas are similar to the same period the previous
year, etc. This allows us to predict where congestion will occur, the ca-
pacity needed to respond to the demand, or even more limiting measures
which need to be taken.

This filter does not only act at macroscopic level, organizing traffic flow based
on the available capacity, but also on each airplane, managing takeoff slots 4.
This filtering was carried out at national level across Europe until 1995, when
it was transferred to European level in order to improve coordination. Short-
term organization is now the responsibility of the CFMU 5.

3. Real-time regulation: this filter organizes different flows with regard to the
day’s events. It consists of adjustment measures which take account of events
from the day before, which may not be fully understood. Thus, transatlantic
traffic is not well known at d − 1 but much better information is available 3
to 6 hours before the arrival time. The fraction of available capacity reserved
for pre-regulation can then be adapted. Additional airplanes may be sent
into other sectors, or the number of non-transatlantic flights dealt with by the

4A takeoff slot is a time window during which the aircraft is authorized to take off
5Central Flow Management Unit

3



center may be increased if there are fewer transatlantic flights than initially
expected. In the same way, unused time slots (due to delays, technical incidents
etc.) may be re-allocated, or changes may be made to take account of weather
conditions (for example inaccessible terrain). This role is generally filled by
the FMP6 of each center.

4. Tactical: this is the last filter in the chain of air traffic control, and consists of
the action of a controller on their sector. The average time an airplane spends
in a sector is around fifteen minutes. The visibility of the controller is slightly
higher, as flight plans become available a few minutes before the aircraft enters
the sector.

Detection, and, moreover, resolution of conflicts are not automated. Con-
trollers are therefore trained to recognize types of conflicts and apply known
maneuvers in such cases. The controller can only prevent conflicts by altering
airplane trajectories.

In a control sector, the higher the number of aircraft, the more the control
workload increases (in a non-linear manner). A limit exists after which the
controllers in charge of a control sector are unable to accept additional aircraft,
obliging these new aircraft to travel around the sector, moving through less
charged neighboring sectors. In this case, the sector is said to be saturated.
This critical state should be avoided, as it provokes a cumulative overloading
phenomenon in preceding sectors which can back up as far as the departure
airport. The saturation threshold is very difficult to estimate, as it depends
on the geometry of routes traversing a sector, the geometry of the sector itself,
the distribution of aircraft along routes, the performances of the control team,
etc. One widely accepted threshold is fixed at 3 conflicts and 15 aircraft for a
given sector. This maximum load should not last for more than ten minutes
as it places the controllers under considerable stress, with the risk that they
will no longer be able to manage traffic in optimal safety conditions.

The control workload measurement is critical in many domains of ATM as
it is at the heart of optimization processes. Examples include the following
applications:

� Airspace comparison (US/Europe).

� Validation of future concepts (SESAR, NEXTGEN, etc.).

� Analysis of traffic control action modes (situation before and after con-
trol).

� Optimization of sectorization.

� Optimization of sector grouping and de-grouping (pre-tactical alert: an-
ticipation of an increase in congestion in a group of sectors in order to
carry out degrouping in an optimal manner).

� Optimization of traffic assignment.

6Flow Management Position
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� Determination of congestion pricing zones.

� Organic control assistance tools.

� Generation of 4D trajectories.

� Prediction of congested zones.

� etc.

Based on the work of the second part a new airspace complexity metric has been
developed and tested.
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Part I

Background
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Chapter 1

The Total Variation

The use of the Total Variation (TV) in image processing has become very popular
after celebrated paper by Rudin, Osher and Fatemi [17]. In their work, the total
variation is used as a regularization functional in a Tikhonov like model, and this
was shown to produce reconstructions of image with preserved edges.

By contrast, we use the total variation not for reconstruction purpose, but rather
for classification. Our images are given (so we never have to minimize the TV), and
we actually compute their total variation only to analyze their features. The reader
interested by the variational use of TV may read Appendix A, which outlines these
applications.

In this chapter, we define the TV and the BV norm, and we discuss their nu-
merical assessment in 2D images.

1.1 History of the BV norm

1.1.1 Basic definition

Total variation for functions of n ≥ 1 real variables is defined as follows.

Definition 1.1.1 Let Ω be an open subset of Rn. Given a function f belonging
to L1(Ω), the total variation of f in Ω is defined as

TV (f,Ω) = sup

{
−
∫

Ω

f(x)divφ(x)dx : φ ∈ C1
c (Ω,Rn),

∣∣φ(x)| ≤ 1 for x ∈ Ω

}
where C1

c (Ω,Rn) is the set of continuously differentiable vector functions of compact
support contained in Ω.

We can now define the space BV as

BV (Ω) :=

{
f ∈ L1(Ω)

∣∣∣∣∣TV (f,Ω) < +∞

}
.

Endowed with the norm ‖f‖ = ‖f‖L1 +TV (f), this space is complete and is proper
superset of W 1,1(Ω) [16].
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If f ∈ BV (Ω), the total variation TV (f) may be regarded as a measure, whose
value on an open set U ⊂ Ω is

TV (f, U) = sup

{
−
∫
U

f(x)divφ(x)dx : φ ∈ C1
c (U,Rn), |φ(x)| ≤ 1 for x ∈ U

}
.

The total variation of a differentiable function f can be expressed as an integral
involving the given function instead of as the supremum of the functionals of the
above definitions. More concretely, we have the following result.

Theorem 1.1 Given a C1 mapping f defined on a bounded open set Ω ⊆ Rn, the
total variation of f has the following expression

TV (f,Ω) =

∫
Ω

|∇f(x)| dx

where |.| denotes the L2-norm.

This result relates the total variation to a standard L2 norm when the mapping
is smooth enough. To prove it, let φ ∈ C1

c (U,Rn). Using integration by parts it
comes:

−
∫

Ω

divφ(x)f(x)dx =

∫
Ω

〈φ(x),∇f(x)〉dx

Since Ω is bounded, ∇f and φ are both square summable mappings. Since the
set of compactly supported continuous mappings is dense in L2(Ω) and using the
Cauchy-Schwartz inequality, it comes that:

sup
φ∈C1

c (U,Rn)

∫
Ω

〈φ(x),∇f(x)〉dx =

∫
Ω

|∇f(x)| dx.

1.1.2 Discretizations of the Total Variation of an image

The most commonly used version of discrete TV is

TV (u) =
N−1∑
i=1

M−1∑
j=1

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2∆x (1.1)

where u = (ui,j) is the discrete image and ∆x is the grid size.
In practice, let us consider that the domain Ω is square and define a regular N×N

grid of pixels, indexed as (i, j), for i = 1, 2, . . . , N , j = 1, 2, . . . , N . We represent
images as two-dimensional matrices of dimension N ×N , where ui,j represents the
value of the function u at pixel (i, j). We denote by X the Euclidean space RN×N .
Then, the image u is a vector in X. Let us introduce the discrete gradient of u ∈ X,
whose two components at each pixel (i, j) are defined as follows:

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N,

0 if i = N,
(1.2a)

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < N,

0 if j = N.
(1.2b)
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The discrete gradient operator

(∇u)i,j =
(
(∇u)1

i,j, (∇u)2
i,j

)
is a linear map from X to Y = X ×X.

The total variation of u then is defined by

TV (u) =
∑

1≤i,j≤N

|(∇u)i,j| , (1.3)

with |y| =
√
y2

1 + y2
2 for every y = (y1, y2) ∈ R2.

1.2 Vector total variation norm

In this section, we introduce the generalization of scalar total variation (TV)
to vector-valued functions u : Ω ⊂ Rn → Rm in such a way such that in the case
m = 1 both definitions coincide. Attempts to define total variation for vector-valued
functions fall into two classes. The first one is based on using the scalar TV on each
of the m components of the mapping and to aggregate the vector obtained that way
to end up with a single value. The second class is rooted in Riemann geometry [19].

In [35] Bresson and Chan introduced a vector TV definition belonging to the
first class. Their work is briefly presented below.

Let us consider a mapping u : Ω ⊂ Rn → Rm where Ω is a bounded open set.
The (component-wise) vector TV of u is defined as:

TV (u) = sup
p∈P

−
∫
Ω

< u,∇ · p > dx

 (1.4)

with P the unit ball in the space C1
c (Ω;Rm×n) endowed with the L2 (resp. L∞)

norm:

‖p‖2 =

(
m∑
i=1

|pi|2
)1/2

resp.
‖p‖∞ = sup

i=1...m
|pi|

Thus, the vector total variation norm (1.4) can be defined in two different ways,
depending on the which norm is selected. As in the scalar case, the supremum can
be expressed using an integral when the mapping u is of C1 class. When the L∞

norm is used, it comes:

TV (u) =
m∑
i=1

∫
Ω

|Dui|dx =
m∑
i=1

TV (ui), (1.5)

i.e the sum of the TV in each component. When the L2 is selected, the result is
modified as:

TV (u) =

∫
Ω

√√√√ m∑
i=1

|∇ui|2dx =

∫
Ω

‖∇u‖dx. (1.6)
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In this case, the vector TV will not reduce to a sum of component wise TVs, but
still has a very intuitive interpretation.

The approach based on Riemann geometry stems from the suggestion of Di Zenzo
[36] to consider a vector-valued image as a parameterized 2-dimensional Riemann
manifold in a nD-space. The metric tensor of this manifold is given by

gµν = (∂µu, ∂νu), µ, ν = 1, 2. (1.7)

Based on this framework, Sapiro [37] suggests a family of possible definitions for the
vectorial TV, which is of the form

TVSR :=

∫
Σ

f(λ+, λ−)ds, (1.8)

where λ± denote the largest and smallest eigenvalue of (gµν), respectively, and f is
a suitable scalar-valued function. TVSR is in general only defined for differentiable
functions, although dual formulations exist for special cases that allow extensions
to locally integrable functions.

A special case of the TVSR (1.8) is the choice f(λ+, λ−) =
√
λ+ + λ−, which

generalizes to the Frobenius norm of the derivative Du

TVF (u) :=

∫
Ω

‖Du(x)‖Fdx. (1.9)

It turns out that a convenient dual formulation can be found, so that total variation
of locally integrable mappings can be obtained:

TVF (u) = − sup
(ξ1,...,ξn)∈KF


n∑
i=1

∫
Ω

uidiv(ξi)dx

 (1.10)

with KF = C1
c (Ω,Rm×n).

In [19], Goldluecke et al. introduced a natural generalization of the total variation
to a vector-valued functions u : Ω → Rm, which concerns the geometry measure
theory. It is given by the integral

TVJ(u) :=

∫
Ω

J1udx, (1.11)

where Jacobian J1 is defined as the operator norm of ∇u.
The authors showed a result which relates the Jacobian to the singular values of

the σ1(Du), . . . , σm(Du) of the derivative matrix Du in case of differentiable u.

Proposition 1.2 For functions u ∈ C1(Ω,Rm), the vectorial total variation TVJ(u)
equals the integral over the largest singular value of the derivative matrix,

TVJ(u) =

∫
Ω

σ1(Du)dx. (1.12)

In particular, TVJ is equal to the standard total variation for real-valued functions.

Vectorial total variation is also used in image processing, such as denoising,
deblurring, super-resolution, inpainting, etc. The studies show that its use for image
processing leads to a significantly better restoration of color images, both visually
and quantitatively [19].
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1.3 The total variation as a classification criterion

In the preceding section, we present primarily on the total variation and some
of its application. In this section, we show how the total variation is used in our
algorithms and how we calculate it in our experiment. The application of the TV
in our method is different from the preceding methods. The calculation of the TV
allows us to create a criterion in image classification.

1.3.1 The reason for choosing the TV in our methods

To answer the question why do we chose the TV in our methods, let’s consider
the TV of two functions given in the image as follows.

(a) The function with many moves
up and down

(b) The function with fewer moves up
and down

Figure 1.1: The function in the figure (b) has a much smaller Total Variation than
it has in the figure (a).

Intuitively, the TV is sum of all the ”jumps” in the domain. The Figure 1.1
illustrates that if a function has more moves up and down, then its total variation
will be higher. It is natural to relate this to our problem. We deal with an eye
disease that is called Vasculitis in Multiple Sclerosis. We will describe it more detail
in the following chapters. The data include the retinal images. The essence of the
problem is that, intensity values of pixels that are at the diseased region have more
changes around the vessel. As a consequence of this, if we calculate the TV along the
vessel on the domain which is around each vessel segment, the abnormal region will
give the higher value. Figure 1.2 demonstrates the difference between the normal
vessel and the abnormal vessel.

So, the choice of total variation seems to be the best adapted to our problem.

1.3.2 Calculation of the TV in the thesis

To calculate the TV, at first, we need to extract vessels from the retinal image.
We also need to get the centerline of vessels. It guarantees that the domain where
we calculate the TV does not deviate from vessels. The calculation of the TV is
described as follows.

Let us denote u = (ui,j)i,j an image. Firstly, as it is shown in Section 1.1.2,
we compute at each pixel (i, j) two components of the discrete gradient (∇u)i,j =
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(a) An abnormal vessel of one retinal
image.

(b) An normal vessel of one retinal
image.

Figure 1.2: The image in figure (b) has a much smaller TV variation inside the
marked region than the one in Figure (a).

(
(∇u)1

i,j, (∇u)2
i,j

)
.

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N,

0 if i = N,

(∇u)2
i,j =

{
ui,j+1 − ui,j if j < N,

0 if j = N.

At each point P on the centerlines, the local total variation is given by

TVD(P ) =
∑

(i,j)∈I

|∇ui,j|

where I is the set of double indices corresponding to points in the disc of center P of
domain D. In the context, we call it the BV norm of image u at point P . Figure 1.3
explains us how the BV norm is calculated.

Figure 1.3: Computation of BV norm along the centerlines of one vessel
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Chapter 2

The classification by SVM

2.1 Introduction

The general machine learning algorithm rely on some kind of search procedure:
given a set of observations and a space of all possible hypotheses that might be
considered (the ”hypothesis space”), they look in this space for those hypotheses that
best fit the data (or are optimal with respect to some other quality criteria). There
are two classes of machine learning algorithms: supervised learning and unsupervised
learning. This depends on whether the data is labeled or unlabeled. If the labels are
given then the problem is one of supervised learning in that the true answer is known
for a given set of data. The problem is one of classification or is one of regression
which corresponds to the labels are categorical or real-valued, respectively. If the
labels are not given, the problem is one of unsupervised learning and the aim is to
characterize the structure of the data. The Support Vector Machines (SVMs) are
a supervised learning method that generate input-output mapping functions from
sets of labeled training data. From a set of labeled training data, SVMs generate
input-output mapping functions that can be either a classification function, i.e., the
category of the input data, or a regression function.

2.2 History

Support Vector Machines were introduced by Vladimir Vapnik and colleagues.
The publication of the first papers by Vapnik, Chervonenkis and co-workers in
1964/65 went largely unnoticed till 1992 [2]. This was due to a widespread belief in
the statistical and/or machine learning community that, despite being theoretically
appealing, SVMs are neither suitable nor relevant for practical applications. They
were taken seriously only when excellent results on practical learning benchmarks
were achieved in digit recognition, computer vision and text categorization. To-
day, SVMs show better results than (or comparable outcomes to) Neural Networks
(NNs) and other statistical models, on the most popular benchmark problems [2].
They have recently become an area of intense research owing to developments in the
techniques and theory coupled with extensions to regression and density estimation.

SVMs arose from statistical learning theory; the aim being to solve only the
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problem of interest without solving a more difficult problem as an intermediate
step. SVMs are based on the structural risk minimization principle, closely related
to regularization theory. This principle incorporates capacity control to prevent
overfitting and thus is a partial solution to the bias-variance trade-off dilemma [3].

Statistical Learning Theory

Assume that the training data to be generated i.i.d (independent and identically
distributed) from an unknown distribution P (x, y), the input points follow a proba-
bility distribution P (x) and the output associated with a point x is f(x). In fact, the
available data are generated in the presence of noise so the observed values will be
stochastic even if the underlying mechanism is deterministic. Thus, the distribution
P (x, y) can be written as

P (x, y) = P (x)Nσ(f(x)− y)

where Nσ is the distribution of noise, it is a Gaussian distribution with density
1√
2πσ

exp
(
− t2

2σ2

)
.

The tasks of supervised learning can be formulated as the minimization of a loss
function over a training set. The goal of estimation is to find a function that models
its input well: if it were applied to the training set, it should predict the values (or
class labels) associated with the samples in that set. The loss function quantifies
the amount by which the prediction deviates from the actual values. The traditional
loss functions are:

• L(f(x), y) = If(x) 6=y, where I is the indicator function: IA = 1 ⇔ A true (for
classification)

• L(f(x), y) = (f(x)− y)2 (for regression).

Value of the loss function is a random quantity because it depends on the outcome of
a random variable. Decision rule involve making a choice using an optimal criterion
based on the expected value of the loss function. The problem of supervised learning
then is to minimize the expected loss,

R(f) =

∫
L(f(x), y)dP (x, y) (2.1)

The expected loss of a function f is also called the risk.

Empirical Risk Minimization

As stated above, the learning problem is to find a function f , based on the
available training data {(x1, y1), (x2, y2), . . . , (xl, yl)}, such that f minimizes the risk
R(f). In practice, the expectation of the loss function cannot be computed since
the distribution P (x, y) is unknown, and so cannot evaluate (2.1). However, we can
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compute an approximation, called empirical risk, by averaging the loss function on
the training set

Remp(f) =
1

l

l∑
i=1

L(f(xi), yi).

A principled way to minimize true error is to upper bound in probability the true
error and minimize the upper bound. This is the approach of statistical learning
theory that lead to the formulation of the SVM [3]. We need to introduce the
key concept of VC dimension named after Vapnik and Chervonenkis, which is a
measure of complexity of a class F of functions. The SV machine creates a model
with minimized VC dimension and when the VC dimension of the model is low, the
expected probability of error is low as well. The method derived from VC theory is
following.

VC theory

Definition 2.2.1 (VC dimension, [6]) The VC dimension h of a class of functions F
is defined as the maximum number of points that can be learned exactly (shattered) by
a function of F ,

h = max
{
|X|, X ⊂ X , such that ∀b ∈ {−1, 1}|X|,∃f ∈ F/∀xi ∈ X, f(xi) = bi

}
.

Note that, if the VC dimension of a class of functions F is h, then there exists
at least one set of h points that can be shattered by F . This does not mean that
all samples of size h are shattered by F . Conversely, all samples S with cardinal-
ity |S| > h are no longer shattered by F . In order to show that the VC dimension
is at most h, one must show that no sample of size h+ 1 is shattered.

Now lets take a look at an example of how we might calculate the VC-Dimension.

Example 1 This example demonstrates that the VC dimension of the class of
separating hyperplanes in R2 is 3. Given 3 points in R2, then there are 23 = 8 ways
of assigning 3 points to two classes. As shown in Figure 2.1-(a) , all 8 possibilities
can be realized using separating hyperplanes, i.e. the function class can shatter 3
points. It is not possible to shatter 4 points in R2 by hyperplanes (see Figure 2.1-
(b)). Therefore, the maximum points in R2 that can be shattered by the function
class is 3, in other words, the VC dimension is 3.

The result in the Example 1 can be generalized by the following theorem.

Theorem 2.1 (VC dimension of hyperplanes) [10, 7] Let F be the set of hyperplanes
in Rn,

F = {x 7→ sign(w · x + b),w ∈ Rn, b ∈ R} .

The VC dimension of F is n+ 1.
Here, the term w · x is dot product in Hilbert space Rn. It can be defined as

follows:
Let w, x ∈ Rn and suppose that w = (w1, w2, . . . , wn), x = (x1, x2, . . . , xn), then

w · x = w1x1 + w2x2 + · · ·+ wnxn. (2.2)

15



(a) (b)

Figure 2.1: A linearly separable case and a non-linearly separable case.
(a) the class of separating hyperplanes can shatter set of 3 points in R2. (b) the
class of separating hyperplanes can not shatter set of 4 points in R2.

After having the concept of VC dimension, we now introduce the main theorem
in VC theory that provides the bounds on the test error.

Theorem 2.2 [5] Let F be a class of functions of VC dimension h. Then for any
distribution P and for any sample (xi, yi) 1 ≤ i ≤ l drawn from this distribution,
the following inequality holds true

P

{
sup
f∈F
|R(f)−Remp(f)| > ε

}
< 4 exp

{
h
(
1 + log

(
2l
h

))
−
(
ε− 1

l

)2
l
}
.

Note that, for infinite training data, the law of large number assures,

∀f,Remp(f) −−−→
l→∞

R(f).

However, in general, there is no guarantee for a solution based on the expected risk
minimization.

The following result about upper bound which leads to the idea of structural risk
minimization, is very important in learning theory.

Theorem 2.3 [6] Let F be a class of functions of VC dimension h, then for any
distribution P and for any sample (xi, yi), 1 ≤ i ≤ l drawn from this distribution,
with probability 1− η, the following inequality holds

∀f ∈ F , R(f) ≤ Remp(f) +

√(
h(log(2l/h) + 1)− log(η/4)

l

)
(2.3)

They called the right hand side of Eq (2.3) the ”risk bound”. The second term
on the right hand side is called the ”VC confidence”.

To separate correctly all training examples (permit Remp(f) get small value),
the machine will necessarily require a large VC dimension h. Therefore, the VC
confidence, which increases monotonically with h, will be large, and the bound (2.3)
will show that the small training error does not guarantee a small test error. (A
counterexample given by E. Levin, J.S. Denker [6] shows that VC dimension is
infinite but Remp = 0).

In [7] Christopher J.C. Burges noted some key points about the risk bounds as
follows.
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• It is independent of P (x, y). It assumes only that both the training data and
the test data are drawn independently according to some P (x, y).

• It is usually not possible to compute the left hand side.

• If we know h, we can easily compute the right hand side. Thus given several
different learning machines, and choosing a fixed, sufficiently small η, by then
taking that machine which minimizes the right hand side, we are choosing
that machine which gives the lowest upper bound on the actual risk. This
gives a principled method for choosing a learning machine for a given task,
and is the essential idea of structural risk minimization. Given a fixed family
of learning machines to choose from, to the extent that the bound is tight for
at least one of the machines, one will not be able to do better than this. To
the extent that the bound is not tight for any, the hope is that the right hand
side still gives useful information as to which learning machine minimizes the
actual risk. The bound not being tight for the whole chosen family of learning
machines gives critics a justifiable target at which to fire their complaints. At
present, for this case, we must rely on experiment to be the judge.

2.3 Basic approach

2.3.1 Linear separation and Non-linear separation

In the SVMs models, there are a linearly separable case and a non-linearly sep-
arable case. For the linearly separable case, the given training data is linearly
separable. A data set is linearly separable if they can be completely separated by
a hyperplane. The Theorem 2.1 shows one result concerning the linearly separable
case. This is the simplest of SVMs because it permits us to find easily the linear
classifier. Linear classifiers sometimes aren’t complex enough. Actually, real data
almost are non-linearly separable. The kernel functions are then introduced in order
to construct non-linear decision surfaces. We shall express this in Section 2.4. In
the last section of the chapter, for noisy data, when complete separation of the two
classes may not be desirable, slack variables are introduced to allow for training
errors.

2.3.2 Maximal Margin Hyperplane

For a labeled training data {xi, yi}, i = 1, . . . , l, yi ∈ {−1, 1},xi ∈ Rn. Suppose
the data is linearly separable and two-class. (We can easily extend to k-class classi-
fication by constructing k two-class classifiers). We need to find a function in family
F of linear function fw,b(x) = w ·x+ b to perform separation. Recall that, if w 6= 0,
the equation fw,b(x) = 0 is that of an hyperplane in Rn. The decision functions are
then given by

sgn(w · x + b). (2.4)

The vector w ∈ Rn is termed the weight vector. The scalar b is termed the bias, it
specifies the shift.
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Since the data are linearly separable, there exist many hyperplanes which can
separate the training data (see Figure 2.2 -(a)). The SVM will find the optimal
separating hyperplane that has the largest margin. (Margin is the distance from the
nearest point to the hyperplane).

(a) (b)

Figure 2.2: Choosing the optimal separating hyperplane.
(a) Many hyperplanes correctly separate the training examples. (b) The optimal

separating hyperplane which has the largest margin is less sensitive to the noise in
the data.

It is based on two facts ([9], page 11). First, among all hyperplanes separating
the data, there exists a unique optimal hyperplane, distinguished by the maximum
margin of separation between any training point and the hyperplane. It is the
solution of

ρ = max
w,b

min
1≤i≤l
{‖x− xi‖|x ∈ Rn,w · x + b = 0}. (2.5)

Second, the capacity (as discussed in Section 2.2) of the class of separating hy-
perplanes decreases with increasing margin. Hence there are theoretical arguments
supporting the good generalization performance of the optimal hyperplane. Deriv-
ing from the structural risk minimization theory ([5], page 430), the maximal margin
minimizes the following error bound function:

R =
D2

ρ2
,

where D is the radius of the smallest sphere that contains training vectors. In
addition, it is computationally attractive, since we will show below that it can be
constructed by solving a quadratic programming problem for which efficient algo-
rithms exist.

Intuitively, the large margin brings safety for separation of a new data. We find
the optimal separating hyperplane, which locates in the ”middle” of two classes.
Furthermore, if we find the classifier that performs well over the training data, it is
clear that it will give a good classification for new data.
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We now return to the linear separation problem. We consider a pair (w, b)
satisfying the following constrains:

w · xi + b > 0 for yi = +1, (2.6)

w · xi + b < 0 for yi = −1. (2.7)

For such a pair, clearly w 6= 0. These can be combined into one set of inequalities:

∀i ∈ {1, . . . , l}, yi(w · xi + b) > 0. (2.8)

There is no loss of generality, we can scale the pair (w, b) so that

min
1≤i≤l

‖w · xi + b‖ = 1. (2.9)

The constrains (2.8) the become

∀i ∈ {1, . . . , l}, yi(w · xi + b) ≥ 1. (2.10)

Let x1,x2 be two training samples closest to the hyperplane from each side (y1 = +1,
y2 = −1), we have w · x1 + b = 1 and w · x2 + b = −1 (see Figure 2.3). Therefore,
the distances d1 (resp. d2) from x1 (resp. x2) to the hyperplane are given by

d1 =
|w · x1 + b|
‖w‖

=
1

‖w‖
, (2.11)

d2 =
|w · x2 + b|
‖w‖

=
1

‖w‖
. (2.12)

Hence, d1 = d2 = 1/‖w‖ and the margin is simply 2/‖w‖. Thus we can find the

Figure 2.3: The Optimal Separating Hyperplane and Support vectors

pair of hyperplanes which gives the maximum margin by minimizing ‖w‖2 subject
to constraints (2.10). The optimization is now a convex quadratic programming
(QP) problem:
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(P )

∣∣∣∣∣∣ min
w,b

1

2
‖w‖2

subject to yi (w · xi + b) ≥ 1, i = 1, . . . , l.

The problem (P ) is dealt with by solving its dual problem, derived from introducing
Lagrange multipliers αi ≥ 0 and a Lagrangian,

LP (w, b,α) =
1

2
‖w‖2 −

l∑
i=1

αi [yi (w · xi + b)− 1] . (2.13)

This problem can be solved either in a primal space (which is the space of parameters
w and b) or in a dual space (which is the space of Lagrange multipliers αi). But we
will switch to a Lagrangian formulation of the problem. There are two reasons for
doing this [7]. The first is that the constraints (2.9) will be replaced by constraints
on the Lagrange multipliers themselves, which will be much easier to handle. The
second is that in this reformulation of the problem, the training data will only
appear (in the actual training and test algorithms) in the form of dot products
between vectors. This is a crucial property which will allow us to generalize the
procedure to the nonlinear case (Section 2.4). We find the saddle point (w0, b0,α0)
because Lagrangian LP must be minimized with respect to w and b, and has to be
maximized with respect to non-negative αi. Here, the Karush-Kuhn-Tucker (KKT)
conditions are used for the optimum of a constrained function. (We will introduce
Karush-Kuhn-Tucker (KKT) conditions in the Appendix B). Since our problem is
a convex quadratic programming problem, the KKT conditions are necessary and
sufficient conditions for a maximum of (2.13). The KKT conditions are stated as
follows

� at the saddle point, derivatives of Lagrangian LP with respect to primal vari-
ables should vanish, which yields

∇LP (·, b,α)(w) = w−
l∑

i=1

αiyixi = 0

⇔ w =
l∑

i=1

αiyixi, (2.14)

∂

∂b
LP (w, ·,α)(b) = −

l∑
i=1

αiyi = 0

⇔
l∑

i=1

αiyi = 0. (2.15)

� at the saddle point the products between dual variables and constraints equals
zero (the KKT complementarity conditions) that mean the saddle point sat-
isfies

αi [yi (w · xi + b)− 1] = 0 i = 1, . . . , l. (2.16)
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Substituting equations (2.14) and (2.15) into (2.13), the primal Lagrangian L(w, b,α)
changes to dual variables Lagrangian LD(α)

LD(α) =
1

2
‖w‖2 −

l∑
i=1

αi [yi (w · xi + b)− 1]

=
1

2

(
l∑

i=1

αiyixi

)(
l∑

j=1

αjyjxj

)
+

l∑
i=1

αi −
l∑

i=1

αiyib

−
l∑

i=1

[
(αiyixi)

(
l∑

j=1

αjyjxj

)]

=
1

2

l∑
i,j=1

αiαjyiyjxi · xj +
l∑

i=1

αi −
l∑

i,j=1

αiαjyiyjxi · xj

=
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjxi · xj. (2.17)

Thus, instead of solving primal problem (P), we can solve following dual problem

(D)

∣∣∣∣∣∣∣∣∣∣∣
max

α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjxi · xj

subject to
l∑

i=1

αiyi = 0,

αi ≥ 0, i = 1, . . . , l.

We can express it in a matrix notation as follows:

(D)

∣∣∣∣∣∣∣
max

α
1>α− 1

2
α>Hα

subject to y>α = 0
α ≥ 0,

where α = [α1, α2, . . . , αl]
> , H denotes the Hessian matrix (Hij = yiyjxi · xj =

yiyjx
>
i xj) and 1 is the vector 1 = [1 1 . . . 1]>.

Suppose that α0 = [α0
1, . . . , α

0
l ]
>

is the solution of the dual problem (D), then
from Equation (2.14), we have the optimal weight vector

w0 =
l∑

i=1

α0
i yixi. (2.18)

Since α0
i ≥ 0, yi (w · xi + b) − 1 ≥ 0 for ∀i = 1, . . . , l and from Equation (2.16) it

follows that if α0
i > 0 with some i then yi (w · xi + b) = 1. It means the primal points

that correspond to this case are the closest points to the optimal hyperplane. These
points play a crucial role, since they are the only points needed in the expression of
the Optimal Separating Hyperplane. They are called support vectors to point out
the fact that they ”support” the expansion of w0.
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The parameter b0 can be obtained from Equation (2.16)

b0 = yi −w0 · xi (2.19)

for any support vector xi.
In practice, it is safer to average over all support vectors, as follows

b0 =
1

|I|
∑
I

(yi −w0 · xi) , (2.20)

where I = {i ∈ {1, · · · , l}|xi is a support vector}. The optimal weight vector w0, is
obtained in (2.18) as a linear combination of the training points and w0 (same as the
bias term b0) is calculated by using only the support vectors (SVs). All remaining
samples in the training set are irrelevant. This is important when the data set to
be classified are very large. The support vectors are generally just a small portion
of all training data (|I| � l).

Once having the Optimal Separating Hyperplane, the problem of classifying a
given test pattern x is determined by considering the sign of w0 · x + b0.

By using (2.18) the decision function can be written as

f(x) = sgn

(∑
I

α0
i yixi · x + b0

)
. (2.21)

2.4 The approach with kernel

2.4.1 Idea

A linear classifier may not be the most suitable hypothesis for the two classes.
If the training data is non-linearly separable, the linear classifiers presented in the
previous sections are no longer suitable. The SVM can be used to learn non-linear
decision functions by first mapping the data to some higher dimensional space and
then constructing a separating hyperplane in this space. So, instead of trying to fit
a non-linear model, one can map the problem from the input space to a new higher-
dimensional space by doing a non-linear transformation using suitably chosen basis
functions and then use a linear model in the new space. We call this new space the
feature space. The idea is illustrated in Figure 2.4.

In the feature space - which can be very high dimensional - the data points can
be separated linearly. An important advantage of the SVM is that it is not necessary
to implement this transformation and to determine the separating hyperplane in the
possibly very-high dimensional feature space. Instead, a kernel representation can
be used, where the solution is written as a weighted sum of the values of a certain
kernel function evaluated at the support vectors. This is explained below.

2.4.2 The learning algorithm for a nonlinear SV machine

In this part, we design the optimal separating hyperplane in a feature space.
We again consider labeled training data {xi, yi}, i = 1, . . . , l, yi ∈ {−1, 1},xi ∈ Rn.
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Figure 2.4: Input and feature spaces for the non-linearly separable case

This time, we suppose that, the data is non-linearly separable. We denote by Φ the
mapping from the input space to the feature space:

Φ : Rn −→ H
x 7−→ Φ(x).

Here, H is a Hilbert space (i.e. a complete vector space endowed with an inner
product, which may be a finite or infinite dimensional). The mapping Φ(x), which is
typically non-linear mapping, is chosen in advance. By performing such a mapping,
we hope that in some Hilbert space H, our learning algorithm will be able to linearly
separate images of x by applying the linear SVM formulation presented above.

There are two basic problems when mapping an input space into higher dimen-
sional feature space [2]:

� the choice of a mapping Φ(x), that should result in a rich class of decision
hypersurfaces,

� the calculation of the dot product Φ(xi) · Φ(xj), that can be computationally
very discouraging if the dimension of feature space is very large.

For simplicity of the exposition, we assume below that H is finite dimensional¡
However, one should keep in mind that the forthcoming theoretical developments
can easily be extended to the infinite dimensional case. The problem now is to
find the optimal hyperplane separating linearly the data {Φ(xi), yi}, i = 1, . . . , l,
yi ∈ {−1, 1}. The maximization of the margin in the feature space is stated as
follows:

(P )

∣∣∣∣∣∣ min
w,b

1

2
‖w‖2

subject to yi (w · Φ(xi) + b) ≥ 1, i = 1, . . . , l.

The Lagrangian for this problem is

LP (w, b,α) =
1

2
‖w‖2 −

l∑
i=1

αi [yi (w · Φ(xi) + b)− 1] . (2.22)
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Again, we consider a solution in a dual space as given below by using standard
conditions for an optimum of a constrained function

∇LP (·, b,α)(w) = w−
l∑

i=1

αiyiΦ(xi) = 0

⇔ w =
l∑

i=1

αiyiΦ(xi), (2.23)

∂

∂b
LP (w, ·,α)(b) = −

l∑
i=1

αiyi = 0

⇔
l∑

i=1

αiyi = 0, (2.24)

and the KKT complementarity conditions below:

αi [yi (w · Φ(xi) + b)− 1] = 0 i = 1, . . . , l. (2.25)

Similar to the previous section, we obtain the dual Lagrangian LD

LD(α) =
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjΦ(xi) · Φ(xj). (2.26)

and the dual problem for primal problem (P ) is written as

(D)

∣∣∣∣∣∣∣∣∣∣∣
max

α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjΦ(xi) · Φ(xj)

subject to
l∑

i=1

αiyi = 0,

αi ≥ 0, i = 1, . . . , l.

Instead of dealing in the Hilbert space H (which may have infinite dimension), we
solve the dual problem (D) in l-dimensional space. Suppose thatα∗ = [α∗1, α

∗
2, . . . , α

∗
l ]

is a solution of the dual problem (D), then

w =
l∑

i=1

α∗i yiΦ(xi), and b = yi −
l∑

j=1

α∗jyjΦ(xj) · Φ(xi),

for any i with α∗i 6= 0, that means, xi is a support vector.
The formula for decision function can be written in the form as follows

f(x) = sgn

(∑
I

α∗i yiΦ(xi) · Φ(x) + b

)
, (2.27)

where I = {i ∈ {1, · · · , l}|xi is a support vector}. It is a linear classifier in a feature
space. It will create a nonlinear separating hypersurface in the original input space.
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In some context, one call it the decision surface. Note that the input data appear
in the decision function (2.21) only in the form of dot products xi · x, and in the
decision function (2.27) only in the form of dot products Φ(xi) ·Φ(x) [3]. Since the
data only appear in dot products we require a computable function that gives the
value of the dot product in H without explicitly performing the mapping. Hence,
we introduce the so-called kernel function:

K(xi,xj) = Φ(xi) · Φ(xj). (2.28)

The kernel function allows us to construct an optimal separating hyperplane in
the space H without explicitly performing calculations in this space. Instead of
calculating dot products we will compute the value of K. Only K is needed in the
training algorithm and the mapping Φ is never explicitly used. This requires that
K be an easily computable function. The decision function (2.27) can be rewritten
as

f(x) = sgn

(∑
i∈I

α∗i yiK(xi,xj) + b0

)
, (2.29)

where the scale bias b0 is given by

b0 = yi −
l∑

j=1

α∗jyjK(xi,xj),

for any support vector xi.

Example 2 Suppose our input data lie in R2. Let x = (x1, x2) ∈ R2, the mapping
Φ maps x to feature space is given below

Φ : R2 −→ H
x 7−→ Φ(x) = (x2

1,
√

2x1x2, x
2
2).

With x′ = (x′1, x
′
2) then Φ(x′) = (x′21 ,

√
2x′1x

′
2, x
′2
2 ), the dot product in feature space:

Φ(x) · Φ(x′) = x2
1x
′2
1 + 2x1x2x

′
1x
′
2 + x2

2x
′2
2

= (x1x
′
1 + x2x

′
2)2

= (x · x′)2.

Therefore, we can calculate Φ(x) ·Φ(x′) without using the mapping Φ by using kernel
function K(x,x′) = (x · x′)2.

Example 3 For x = (x1, x2),x′ = (x′1, x
′
2) ∈ R2. Consider mapping

Φ : R2 −→ R5

x 7−→ Φ(x) = (1, x2
1,
√

2x1x2, x
2
2,
√

2x1,
√

2x2),

then

Φ(x) · Φ(x′) = (1, x2
1,
√

2x1x2, x
2
2,
√

2x1,
√

2x2) · (1, x′21 ,
√

2x′1x
′
2, x
′2
2 ,
√

2x′1,
√

2x′2)

= 1 + x2
1x
′2
1 + 2x1x2x

′
1x
′
2 + x2

2x
′2
2 + 2x1x

′
1 + 2x2x

′
2. (2.30)
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Choosing kernel function K(x,x′) = (1 + x · x′)2 we have,

K(x,x′) = (1 + x · x′)2

= (1 + x1x
′
1 + x2x

′
2)

2

= 1 + x2
1x
′2
1 + x2

2x
′2
2 + 2x1x

′
1 + 2x2x

′
2 + 2x1x2x

′
1x
′
2. (2.31)

Combining (2.30) with (2.31), we obtain

K(x,x′) = Φ(x) · Φ(x′),

hence, we can use kernel K(x,x′) = (1 + x · x′)2 to instead of inner product Φ(x) ·
Φ(x′) in R5.

The remaining problem is only now specification of the kernel function, the kernel
should be easy to compute, well-defined and span a sufficiently rich hypothesis space.
This will be presented in the next part.

2.4.3 Kernel

As mentioned above, we want to avoid the problems with the mapping Φ which
maps the input space to feature space. The high dimensionality of H- feature space
makes it very expensive in terms of both memory and time to represent the feature
vectors Φ(xi) corresponding to the training vectors xi. Moreover, it might be very
hard to find the transformation Φ that separates linearly the transformed data. We
will construct the kernel function K : X ×X −→ R, X ⊂ Rn for given training data
vectors in input space. It can be generally defined as follows:

Definition 2.4.1 A kernel is a symmetric function K : X ×X −→ R, X ⊂ R so that
for all xi and xj in X : K(xi, xj) = Φ(xi) ·Φ(xj) where Φ is a (non-linear) mapping from
the input space X into the Hilbert space H.

Some conditions are imposed on K so that all optimization results for the SVM
still hold. The kernel function K(x,x′) allow us to compute the value of the dot
product in feature space without having to explicitly compute the map Φ.

It can also be useful to remember that the way in which the kernel was applied in
designing an SVM can be utilized in all other algorithms that depend on the scalar
product (e.g., in principal component analysis or in the nearest neighbor procedure)
[2]. Any algorithm for vectorial data that can be expressed only in terms of dot
products between vectors can be performed implicitly in the feature space associated
with any kernel by replacing each dot product by a kernel evaluation.

Polynomial Kernel

Suppose we are given patterns x ∈ X ⊂ Rn where most information is contained
in the dth order products (so-called monomials) of entries xi of x

xi1 · xi2 · · · · · xid , (2.32)

where i1, i2, . . . , id ∈ {1, . . . , n}. Often, these monomials are referred to as product
features. These features form the basis of many practical algorithms; indeed, there
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is a whole field of pattern recognition research studying polynomial classifiers, which
is based on first extracting product features and then applying learning algorithms
to these features [9].

The following lemma is about polynomial approximation.

Lemma 2.4 Define Φ to map x ∈ Rn to the vector Φ(x) whose entries are all pos-
sible dth degree ordered products of the entries of x (Φ : Rn 7−→ Rnd

). Then the
corresponding kernel computing the dot product of vectors mapped by Φ is

K(x, x′) = Φ(x) · Φ(x′) = (x · x′)d . (2.33)

Proof. The inner product in RNH is given by

Φ(x) · Φ(x′) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

id=1

(xi1xi2 · · ·xid) · (x′i1x
′
i2
· · ·x′id)

=
n∑

i1=1

xi1x
′
i1

n∑
i2=1

xi2x
′
i2
· · ·

n∑
id=1

xidx
′
id

=

(
n∑
i=1

xix
′
i

)d

= (x · x′)d.

This result shows that, in the case of a monomial linearization function, it is not
necessary to explicitly map the vectors x and x′ to the nd dimensional linearization
space to calculate the dot product of the two vectors in this space. It is enough to
calculate the standard inner product in input space and take it to the power of d.

Every mapping Φ defines a kernel function via K(x,x′) = Φ(x) · Φ(x′), but
conversely, given a kernel K, which are the conditions for an implicit mapping to
exist? We address this question in the following paragraph.

Reproducing Kernel Hilbert Space

In this part, we will construct the feature space from a given kernel. We now
introduce some definitions as follows:

Definition 2.4.2 (Gram Matrix)Given a function K : X × X −→ R, X ⊂ Rn and
patterns x1, x2, . . . , xm ∈ X , the m×m matrix G with elements

Gij = K(xi, xj), (2.34)

is called the Gram matrix (or kernel matrix) of K with respect to x1, x2, . . . , xm.

Definition 2.4.3 A real m×m matrix M satisfying

〈c,Mc〉 =
m∑

i,j=1

cicjMij ≥ 0, (2.35)

for all c = (c1, c2, . . . , cm) ∈ Rm is called positive definite. If strict inequality holds in
(2.35) for every c 6= 0, then M is said to be strictly positive definite.
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Definition 2.4.4 A real and symmetric function K(·, ·), that is a function with the
property K(x, x′) = K(x′, x), is called a positive definite kernel (resp. strictly positive
definite kernel) if for all choices of m points the corresponding Gram matrix K is positive
definite (resp. strictly positive definite).

From now on, positive definite kernels will merely be called kernels.
With the definition of a positive definite kernel in mind, it is possible to con-

struct a vector space, an inner product, and a linearization function Φ such that the
kernel condition (2.28) is fulfilled. In [9], the authors constructed the feature space
corresponding to a given kernel as follows.

We first need to define a vector space. Denote RX the space of functions mapping
X into R, RX = {f : X −→ R}. Given a kernel K, define the reproducing kernel
feature map Φ : X −→ RX as:

Φ : X −→ RX

x 7−→ Φ(x) = K(·,x).

Consider the vector space:

HK = span {Φ(x) | x ∈ X} =

{
f =

l∑
i=1

αiK(·,xi)

∣∣∣∣∣ l ∈ N,xi ∈ X , αi ∈ R

}
(2.36)

For f =
l∑

i=1

αiK(·,xi) and g =
l′∑
j=1

βjK(·,x′j), the inner product of f and g is then

defined by

〈f, g〉 :=
l∑

i=1

l′∑
j=1

αiβjK(xi,x
′
j), (2.37)

where l, l′ ∈ N, αi, βj ∈ R and x1, . . . ,xl,x
′
1, . . . ,x

′
l′ ∈ X . We will show that (2.37)

is an inner product in HK . Indeed,

1. Symmetry:

〈f, g〉 =
l∑

i=1

l′∑
j=1

αiβjK(xi,x
′
j) =

l′∑
j=1

l∑
i=1

βjαiK(x′j,xi) = 〈g, f〉.

2. Bilinearity: Note that

〈f, g〉 =
l∑

i=1

l′∑
j=1

αiβjK(xi,x
′
j)

=
l∑

i=1

αi

(
l′∑
j=1

βjK(xi,x
′
j)

)

⇔ 〈f, g〉 =
l∑

i=1

αig(xi). (2.38)
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Similarly,

〈f, g〉 =
l∑

i=1

l′∑
j=1

αiβjK(xi,x
′
j)

=
l′∑
j=1

βj

(
l∑

i=1

αiK(xi,x
′
j)

)

⇔ 〈f, g〉 =
l′∑
j=1

βjf(x′j). (2.39)

Hence, with ∀α ∈ R, then αf =
l∑

i=1

ααiK(·,xi) and by combining with (2.38),

we have

〈αf, g〉 =
l∑

i=1

ααig(xi) = α

(
l∑

i=1

αig(xi)

)
= α〈f, g〉

In other words, for any f1, f2 ∈ HK , from Equation (2.39) we deduce

〈f1 + f2, g〉 =
l′∑
j=1

βj
(
f1(x′j) + f2(x′j)

)
=

l′∑
j=1

βjf1(x′j) +
l′∑
j=1

βjf2(x′j)

= 〈f1, g〉+ 〈f2, g〉.

3. Positive definiteness:

〈f, f〉 =
l∑
i,j

αiαjK(xi,xj) ≥ 0 with equality if and only if f ≡ 0.

From equations (2.38) and (2.39), we can see that the inner product which is
defined in (2.37), does not depend on the particular expansion of f and g (since the
particular expansions of f and g may not be unique). Therefore, the definition of
inner product in (2.37) is well-defined.

The only point remaining is completeness, the proof of this we can find in [9]
(Schölkopf and Smola, 2002)).

So, we showed that, feature space HK is a Hilbert space. Now, we define a
linearization function Φ(x) = K(·,x), it is a space of functions over X . Based on
the definition of inner product, we derive the formula below

〈Φ(x),Φ(x′)〉 = 〈K(·,x), K(·,x′)〉 = K(x,x′). (2.40)

In summary, deriving from a positive definite kernel, we have already constructed
a vector space, an inner product and a linearization function, such that the kernel
condition (2.28) holds.

The following theorem, due to Mercer, characterizes kernels.
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Theorem 2.5 (Mercer 1909) Let K(x,x′) be a continuous symmetric function in
L2(X 2). Then, there exists a mapping Φ and an expansion

K(x,x′) =
∞∑
i=1

Φi(x) · Φi(x
′) (2.41)

if and only if, for any compact subset C and g ∈ L2(C),∫∫
C×C

K(x,x′)g(x)g(x′)dxdx′ ≥ 0. (2.42)

To prove the Mercer’s theorem, the following results are used.

Theorem 2.6 (Parseval’s theorem) If {φn} is an orthonormal system of a Hilbert
space H, then, for all f ∈ H,

∑
n

〈f, φn〉2 ≤ ‖f‖2. Equality holds for all f ∈ H if and

only if {φn} is complete.

Definition 2.4.5 Let T : H → H be a linear operator on a Hilbert space H. It is said
to be self-adjoint if, for all f, g ∈ H, 〈Tf, g〉 = 〈f, Tg〉. It is said to be positive (resp.
strictly positive) if it is self-adjoint and, for all nontrivial f ∈ H, 〈Tf, f〉 ≥ 0 (resp.
〈Tf, f〉 > 0). It is called compact if T maps bounded subsets of H into precompact
subsets of H (precompact subset is a subset whose closure is compact).

Definition 2.4.6 (Hilbert-Schmidt operator) Let T : H → H be an operator
on a Hilbert space H. We say that T is a Hilbert-Schmidt operator if there exists an

orthonormal basis {en}∞n=1 such that
∞∑
n=1

‖Ten‖2 <∞.

Theorem 2.7 Hilbert-Schmidt operators are compact.

Theorem 2.8 (Spectral theorem) Let T be a compact self-adjoint linear operator
on a Hilbert space H. Then there exists in H an orthonormal basis {φi}i consisting
of eigenvectors of T . If λi is the eigenvalue corresponding to φi, then either the set
{λi} is finite or λi → 0 when n→∞. In addition, max

n≥1
|λn| = ‖T‖. If, in addition,

T is positive, then λi ≥ 0 for all i ≥ 1, and if T is strictly positive, the λn > 0 for
all i ≥ 1.

Let C be a fixed compact set. We introduce an integral operator which associates
to kernel K as follows.

[TKf ](x) =

∫
C

K(x,x′)f(x′)dx′ (2.43)

TK is a Hilbert-Schmidt operator, since kernel K ∈ L2(C×C). Since K is continuous
symmetric non-negative definite function, the operator TK satisfies properties below.

� TKf is continuous ∀f ∈ L2(C).

� The map K 7−→ TK is injective.

� TK is Hilbert-Schmidt thus compact, symmetric and non-negative definite.
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Now apply the spectral theorem for compact operators on Hilbert spaces to TK to
show the existence of an orthonormal basis {φi}i of L2(C) and of a sequence {λi}i
such that for all i ∈ N∗

λiφi(x) = [TKφi](x) =

∫
C

K(x,x′)φi(x
′)dx′.

Observe that since TK compact, λi −→ 0 and since TK non-negative, λi ≥ 0. If
λi 6= 0, the eigenfunction, φi(x), is a continuous function.

Theorem 2.9 Let K : C × C → R a continuous, symmetric, and positive semi-
definite kernel. Let TK be the corresponding operator via (2.43), and let λi be the ith
eigenvalue of TK, and φi the corresponding normal eigenfunction. Then {

√
λiφi :

λi > 0} form an orthonormal system in HK.
Here, HK is the Hilbert space defined in (2.36).

Proof of Mercer’s theorem [12]

Proof. “=⇒”: assuming (2.41) to hold. We will prove that kernel K(x,x′) satisfies
(2.42). Let

KN(x,x′) =
N∑
i=1

Φi(x) · Φi(x
′).

We have, KN(x,x′) converges uniformly to K(x,x′). This implies that, for all
g ∈ L2(C)∫∫

C×C

K(x,x′)g(x)g(x′)dxdx′ =

∫∫
C×C

lim
N→∞

KN(x,x′)g(x)g(x′)dxdx′

=

∫∫
C×C

lim
N→∞

N∑
i=1

Φi(x) · Φi(x
′)g(x)g(x′)dxdx′

= lim
N→∞

N∑
i=1

∫∫
C×C

Φi(x) · Φi(x
′)g(x)g(x′)dxdx′

= lim
N→∞

N∑
i=1

∫
C

Φi(x)g(x)dx

2

≥ 0.

This proves necessary condition.
“⇐=”: suppose kernel K(x,x′) is non-negative definite. Then there exists an

orthonormal basis {φi} of L2(C) consisting of eigenfunctions of TK . Let λi be the
ith eigenvalue of TK , and φi the corresponding normal eigenfunction. By Theorem
2.9, the sequence {

√
λiφi}i≥1 is an orthonormal system of HK . Let x ∈ X . The

Fourier coefficients of the function K(x, ·) ∈ HK with respect to this system are

〈λiφ,K(x, ·)〉K =
√
λiφi(x),
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where 〈·, ·〉K is defined by (2.37). Then, by Parseval’s theorem, we have∑
i≥1

λi|φi(x)|2 =
∑
i≥1

|
√
λiφi(x)|2

=
∑
i≥1

〈λiφ,K(x, ·)〉2K ≤ ‖K(x, ·)‖2
K = K(x,x) <∞. (2.44)

Now, by Cauchy-Schwarz inequality

N∑
i=1

λi|φi(x) · φi(x′)| ≤

(
N∑
i=1

λi|φi(x)|2
) 1

2
(

N∑
i=1

λi|φi(x′)|2
) 1

2

≤ max
z∈C

N∑
i=1

λi|φi(z)|2

≤ max
z∈C

K(z, z) <∞,

where the last inequality stem from (2.44). It follows that the series
∑
i≥1

φi(x)φi(x
′)

converges absolutely and uniformly to a kernel K0 on C × C.
Now we fix point x ∈ C. As a function in L2(C), K(x, ·) can be expanded into

the orthonormal basis {φi}i:

K(x, ·) =
∑
i≥1

〈K(x, ·), φi〉L2(C)φi(·)

=
∑
i≥1

TK(φi)(x)φ(·) =
∑
i≥1

λiφi(x)φi(·) = K0(x, ·).

Thus, as functions in L2(C), K(x, ·) = K0(x, ·). Since both are continuous functions
therefore they must be equal on C. It follows that for (x,x′) ∈ C × C,

K(x,x′) =
∞∑
i=1

λiφi(x) · φi(x′).

This implies that K(x,x′) corresponds to a dot product in `2, since K(x,x′) =
〈Φ(x),Φ(x′)〉 with

Φ : C −→ `2

x 7−→
(√

λiφi(x)
)
i

Properties of Kernels

Suppose K1, K2 are kernels on X , a > 0, f : X −→ R, φ : X −→ RN , and K3

is a kernel on RN . Then these are all kernel functions on X:

1. K(x,x′) = K1(x,x′) +K2(x,x′)
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2. K(x,x′) = aK1(x,x′)

3. K(x,x′) = K1(x,x′) ·K2(x,x′)

4. K(x,x′) = f(x) · f(x′)

5. K(x,x′) = K3

(
φ(x), φ(x′)

)
.

Mercer’s theorem tells us whether or not a prospective kernel is actually a dot
product in some space H, but it does not tell us how to construct Φ or even what H
is. However, we can explicitly construct below the mapping for some kernels.

The functions below are the most commonly used kernels:

� homogeneous polynomials: K(x,x′) = (xTx′)d, d ∈ N

� inhomogeneous polynomials: K(x,x′) = (βxTx′ + r)d, β, c > 0, d ∈ N

� radial basis functions (RBF): K(x,x′) = exp
(
−‖x−x

′‖2
2σ2

)
, β > 0.

� sigmoid: K(x,x′) = tanh(βxTx′ + r), β > 0.

Here, β, r, and d are kernel parameters.
We can show that, the feature space which associates with Gaussian kernel

K(x,x′) = exp
(
−‖x−x

′‖2
2σ2

)
is infinite dimensional. Indeed, we express the Gaus-

sian kernel as:

K(x,x′) = exp

(
−‖x− x’‖2

2σ2

)

= exp

(
−‖x‖

2

2σ2

)
exp

(
−‖x

′‖2

2σ2

)
exp

(
x · x′

σ2

)
. (2.45)

The first two factors depend on x and x′ separately. They are simply scalars based
on the magnitude of each instance respectively. Applying the Taylor expansion for
the third term around point 0, we have:

exp

(
x · x′

σ2

)
=
∞∑
k=0

1

k!

(
x · x′

σ2

)k
(2.46)

We now only focus on the term (x · x′)k. Call Φk the degree-k monomial feature
mapping corresponding to homogeneous polynomial kernel (x · x′)k, that is,

(x · x′)k = Φk(x) · Φk(x
′).

The lemma below gives the monomial feature mapping.

Lemma 2.10 [7, 8] For x,x′ ∈ Rn and k ∈ N, the feature mapping of the degree-k
monomial feature kernel function K(x,x′) = (x · x′)k can be defined as:

Φk : Rn −→ RNH with NH =

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
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Φj
k(x) =

√
k!∏n

i=1(αji )!

n∏
i=1

x
αj
i
i , (2.47)

where αj = (αj1, · · · , αjn) ∈ Nn runs over the set of all n-tuples in Nn such that

n∑
i=1

αji = k

Notice that we do not need to specify the order in which we take the αj, but
that this order needs to be used consistently.

Using the monomial feature mapping, the Gaussian kernel function (2.45) can
be equivalently transformed as:

K(x,x′) = exp

(
−‖x‖

2

2σ2

)
exp

(
−‖x

′‖2

2σ2

)(
∞∑
k=0

1

k!

(
x · x′

σ2

)k)

= exp

(
−‖x‖

2

2σ2

)
exp

(
−‖x

′‖2

2σ2

)(
∞∑
k=0

1√
k!σk

(Φk(x) · Φk(x
′))

1√
k!σk

)
.

Therefore, the infinite-dimensional feature mapping ΦG : Rn −→ `2 induced by the
Gaussian kernel function for an instance x can be defined as

ΦG(x) =

{
exp

(
−‖x‖

2

2σ2

)
1√
k!σk

Φk(x)

}∞
k=0

(2.48)

and K(x,x′) = ΦG(x) · ΦG(x′).

2.5 Soft Margin Hyperplane

Until now only perfect data separation was considered, that means the data is
noise-free. In practice such problems are very unlikely. In the case of noisy data,
forcing zero training error will lead to poor generalization. The data points even
can be linearly separated but the result is undesirable.

We do not need to correctly classify the noisy data points. By allowing some
data points to be misclassified, we can get the larger margin solution (see Figure
2.5). We want to relax the constrains but only when necessary. This can be done
by replacing the training rule yi (w · xi + b) ≥ 1 by

yi (w · xi + b) ≥ 1− ξi (2.49)

with ξi ≥ 0. The variables ξi are called slack variables.
Thus, for an error to occur, the corresponding ξ must exceed unity, so

∑
i ξi is

an upper bound on the number of training errors. Hence a natural way to assign
an extra cost for errors is to change the objective function to be minimized from
‖w‖2/2 to ‖w‖2/2 +C

∑
i ξi, where C is a regularization parameter to be chosen by

the user, a larger C corresponds to assigning a higher penalty to errors, this leads to
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(a) (b)

Figure 2.5: The soft margin hyperplane should be used in the case of noisy data.
(a) data can be linearly separated but it gives a very narrow margin. (b) the large

margin solution violating some constrains is better.

small number of misclassifications, the bigger wTw and consequently to the smaller
margin and vice versa.

Now, the optimization problem which find the separating hyperplane for the
noisy data points can be stated as follows

(P )

∣∣∣∣∣∣∣∣∣∣∣
min
w,b,ξi

1

2
‖w‖2 + C

l∑
i=1

ξi

subject to yi (w · xi + b) ≥ 1− ξi,
ξi ≥ 0
i = 1, . . . , l.

(2.50)

The Lagrangian for this problem (2.50) can be written as

LP (w, b, ξ,α,β) =
1

2
‖w‖2 + C

l∑
i=1

ξi −
l∑

i=1

αi [yi (w · xi + b)− 1 + ξi]−
l∑

i=1

βiξi,

(2.51)

where αi, βi, i = 1, . . . , l are the Lagrange multipliers. The solution of this problem
is the saddle point of the Lagrangian given by minimizing LP with respect to w, ξ
and b, and maximizing with respect to α and β. Differentiating with respect to w,
b and ξ and setting the results equal to zero we obtain

∇LP (·, b,α)(w) = w−
l∑

i=1

αiyixi = 0

⇔ w =
l∑

i=1

αiyixi (2.52)

∂LP
∂b

= −
l∑

i=1

αiyi = 0

⇔
l∑

i=1

αiyi = 0, (2.53)
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∂LP
∂ξi

= C − αi − βi = 0

⇔ C = αi + βi (2.54)

and using the KKT complementarity conditions below,

αi [yi (w · xi + b)− 1 + ξi] = 0 i = 1, . . . , l, (2.55)

βiξi = 0 (2.56)

Note that Equation (2.54) combined with Equation (2.56) shows that ξi = 0 if
αi < C. Thus we can simply take any training point for which 0 < αi < C to use
Equation (2.55) (with ξi = 0) to compute b. Substituting (2.52), (2.53) and (2.54)
into (2.51) gives the following dual problem

LD =
l∑

i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjxi · xj (2.57)

We can establish soft-margin dual problem as

(D)

∣∣∣∣∣∣∣∣∣∣∣
max

α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjxi · xj

subject to
l∑

i=1

αiyi = 0,

0 ≤ αi ≤ C, i = 1, . . . , l.

(2.58)

The only difference from the separable case is that now the αi have an upper bound
of C. From these above conditions, we can conclude that non-zero (=active) slack
variables can only be obtained for α = C. The possible solutions for αi are as follows
(see Figure 2.6)

1. If αi = 0 and ξi = 0, data point is correctly classified.

2. If 0 < αi < C, then ξi = 0. Thus yi(w · xi + b) = 1 and data point xi is a
support vector.

3. If αi = C, then ξi ≥ 0. Data point xi is also a support vector. It lies on the
”wrong” side of the margin. For 0 ≤ ξi < 1, xi is still correctly classified. And
for ξi ≥ 1, then xi is misclassified.

Note that by setting C to infinity we can describe the ”hard” margin with the
formulate used for the soft margin.

As before, for α∗ = [α∗1, α
∗
2, . . . , α

∗
l ] is a solution of dual problem (D), then

w =
l∑

i=1

α∗i yixi,

and

b∗ = yi(1− ξi)−
l∑

j=1

α∗jyjxj · xi
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Figure 2.6: The Optimal Separating Hyperplane in the soft margin case.

for any α∗i 6= 0, in other way, xi is a support vector.
The formula for decision function as below

f(x) = sgn

(∑
I

α∗i yixi · x + b∗

)
, (2.59)

where I = {i ∈ {1, · · · , l}|xi is a support vector }.

2.6 Soft margin Surface

We can use the kernel approach for the soft margin completely similar to the one
for the ”hard” margin in the previous section. We obtain the results below:

The primal problem

(P )

∣∣∣∣∣∣∣∣∣
min
w,b,ξi

1

2
‖w‖2 + C

l∑
i=1

ξi

subject to yi (w · Φ(xi) + b) ≥ 1− ξi,
ξi ≥ 0 i = 1, . . . , l.

(2.60)

The Lagrangian for the primal problem (2.60) is

LP (w, b, ξ,α,β) =
1

2
‖w‖2 + C

l∑
i=1

ξi −
l∑

i=1

αi [yi (w · Φ(xi) + b)− 1 + ξi]−
l∑

i=1

βiξi.

(2.61)

The dual problem, in a matrix notation, reads

(D)

∣∣∣∣∣∣∣
max

α
α>1− 1

2
α>Qα

subject to α>y = 0,
0 ≤ αi ≤ C, i = 1, . . . , l,

(2.62)

where y = [y1, . . . , yl]
>, the matrix Q satisfies Qi,j = yiyjK(xi,xj) for kernel

K(xi,xj) = Φ(xi) · Φ(xj).
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With α∗ a solution of problem (D), the decision function is written as

f(x) = sgn

(∑
I

α∗i yiK(xi,x) + b∗

)
. (2.63)

where the bias term b∗ is defined by

b∗ = yi(1− ξi)−
l∑

j=1

α∗jyjK(xj,xi)

for any support vector xi corresponding to non-zero αi.
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Part II

Retinal image classification
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Chapter 3

Classification of retinal images
with the Vasculitis in Multiple
Sclerosis

In the recent past, many research groups have developed methodologies and
computer software for automated detection of retinal pathology. This is motivated
by the increase of eye diseases (due to aging of the population worldwide) and made
possible by the recent advance in computing power and image analysis.

Almost all of the studies focus on diabetic eye disease that is a complication from
diabetes. The researchers concentrated on this field because diabetes is a significant
and costly health problem in the Western world, and is growing in incidence at
almost epidemic levels. Current prevalence of diabetes in the United States is 6.3%
with greater prevalence in certain ethnic groups and socioeconomic classes [49][50].
Diabetic retinopathy is caused by increasing in blood sugar levels associated with
diabetes, a progressive degenerative disease of the retina that has an asymptomatic
stage that can start long before the onset of recognized diabetes. More recent
evidence suggests that 40% to 45% of the diabetic population have some stage of
diabetic retinopathy [51]. Diabetic retinopathy is divided into various stages and
there are techniques to detect or to classify it for each stage.

Besides, there are some other eye pathologies that can lead to blindness. For
instance, age-related macular degeneration, macular edema, glaucoma, etc. Herbert
F. Jelinek and Michael J. Cree summarized one table on eye pathologies (see Table
3.1) [52]. These diseases are related or not related to diabetes.

As far as we know, there does not exist any method to detect and classify vas-
culitis with multiple sclerosis. In this part, we propose one algorithm for detecting
and classifying this disease. The results from experiments show that the proposed
algorithm is quite effective.
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Table 3.1: List of Pathologies that Affect the Retina and the Possibility of Auto-
mated Detection Leading to Early Treatment

Retinal Pathology Screening Possible Auto-detection Possible Early Treatment Possible

Diabetic retinopathy Yes Yes

Refractive error in preschool children Yes Yes

Newborns for gonococcal eye disease (swab) Yes

Retinopathy of prematurity Yes Yes

Hydroxychloroquine medication

for retinophathy Yes Yes

Gluacoma Yes Yes

Age-related macular degeneration Yes Yes

Systemic atherosclerotic disease/

systemic hypertension Yes Yes

3.1 Problem description - the mathematical model

3.1.1 Patient population and data

Periphlebitis vasculitis and multiple sclerosis

Intermediate and posterior uveitis are the most frequent form of uveitis [40]. The
potential risk of developing neurological disease is 60% in 5 years when there is a
association of periphlebitis and optic neuropathy as 16% when there is only optic
neuropathy [41]. This association is reported in 28% of the cases which are near
the frequency of uveitis in Multiple Sclerosis (MS). Periphlebitis are histologically
constituted by inflammatory cells in the edge of the retinal veins. In experimental
autoimmune encephalopathy models, such periphlebitis were described in the area
adjacent to the demyelinated lesions [42]. The authors hypothetised that there is
an autoimmune reaction to a commune antigen [43].

Vasculitis

There are 3 types of vasculitis.
In the active form: vascular sheathing not well limited with irregular caliber of the
vessels. This sheathing is situated at a distance from the optic nerve. It persists
from few months to two years.
In the cicatricial form or venous sclerosis: the lesions are fixed, linear, distributed by
segments and situated in the medium and peripheral retina. Some have a variable
constriction of the vascular diameter.
In the third form, there is a reduction of the venous caliber.
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Intermediate uveitis and pars-planitis

Gross pathologic examination of the peripheral snow bank in parsplanitis shows
exudate deposited on the peripheral retina and parsplana. The histology reveals
a collapsed vitreous, blood vessels, fibroglia cells including fibrous astrocytes, and
scattered inflammatory cells. Peripheral veins show lymphocytic cuffing and infiltra-
tion. The vascular component of the snowbank is continuous with the retina [44].
Pars planitis is a primary peripheral perivascularitis and not a choroiditis. Once
begun, the process of vascular occlusion may lead to vitritis and snowbank forma-
tion and inflammation of the adjacent tissue area by breakdown of the blood-ocular
barrier [45][46].

Manifestation of the disease on the images

The term of vasculitis means that inflammation of blood vessels appears as an
obvious clinical manifestation. The ophthalmoscopic characteristic sign of a vasculi-
tis is the sheathing of blood vessels: the light is decreased, vessel walls are thickened
and they take on a yellowish-white. The histological analysis of the concerned blood
vessels shows, in the chronic phase, an accumulation of white cells, mainly lympho-
cytes. A partial restriction or complete blockage of the light of the blood vessel
can be observed. During the early phase of obstructive phenomena, a diffusion of
plasma and bleeding in the perivascular retinal tissue may occur. A vitreous hem-
orrhage may also be present as a sign associated. Retinal vasculitis may manifest
principally as a phlebit (inflammation of inner and outer walls of the concerned
vein), as periphlebitis (the outer wall of the vein is the main site of inflammation)
as a capillaritis (inflammation of the capillary bed) or as one combination of various
aforesaid suffering. Ocular vasculitis is a systemic disease or intraocular infection
as an isolated intraocular inflammation is infectious, but also appears as an isolated
manifestation primary intraocular. The sheathing of vessels is one of the earliest
signs of retinal vasculitis. It may be the only evidence that demonstrates a start
of an inflammatory process at the wall of vessels. The vessels are plotted with red
color. In the occurrence of sheating, those vessels have yellow-white edges and higher
brightness level. The following pictures illustrate the difference between normal im-
ages and abnormal images. In the Figure 3.1 (a), the sheathing is demonstrated by
red arrow whereas the Figure 3.1 (b), the diseased region occurs in the red circle.
The Figure 3.2 illustrates two normal retinal images.

Methods

Patients are registered at the Toulouse clinic ophthalmological and neurological
department between 2000 and 2011. All started showing only Uveitis. The test
group were 30 patients later diagnosed with MS and 5 patients with a presumed
SEP (uncompleted criterias). The SUN (Standardization of Uveitis Nomenclature)
classification was used for intermediate uveitis [47] and for neurological MS the
McDonald criteria 2001 revised 2005 was used [48]. A second control group of
patients with normal angiography was selected from patients with other autoimune
diseases (sarcöıdosis, Behcet’s syndrome , IBD (Inflammatory bowel disease). . . ).
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(a) A picture illustrating sheathing
of vessel edges, which is shown by

red arrows.

(b) One abnormal retinal image, the
diseased region occurs inside the red

circle.

Figure 3.1: Two pictures presenting the disease

(a) One normal image, the vessels
are dark

(b) One normal retinal image, the
background is dark.

Figure 3.2: Two pictures displaying normal retinal images

3.1.2 The mathematical model

In this section, we describe the mathematical model for the proposed problem.
Our data includes a set N = 49 retinal images, we denote S. Each image is presented
as a matrix of scalars (gray-scale image). We call such matrix representation uk =
(uk(i, j))i,j with 1 ≤ i ≤ Ik, 1 ≤ j ≤ Jk, Ik, Jk ∈ N∗. With each observation, our
expert associated it with one category to which it belongs. The response variable
yk of image uk takes values in the categorical domain {−1, 1}. If one example uk is
diseased image, we mark yk = 1, otherwise, it is marked by yk = −1. The data are
randomly separated into two sets: a training set, which is used for developing rules
for the classification of future observations, and a test set that is used for determining
the validity of the model. We use S1 and S2 to denote the training set and the test
set, respectively. The training set S1 includes 14 diseased images, and 10 normal
images. The test set S2 includes 13 diseased images and 12 normal images. The
training set {(u1, y1), (u2, y2), . . . , (ul, yl)} will allow for the future prediction of the
response variable y based on the observation of u only. Here, l = 24 is the number
of examples in the training set.

To classify, the most important task is the extraction of the features that are
used for classification. Feature extraction is the process of extracting significant
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information from an image. We would like to create a set of features which helps us
preserving or improving the discriminative ability of a classifier. To get features for
classification, we will find a mapping F , which can be written in the following form:

F : S −→ Rm

uk 7−→ xk = F (uk) ∈ Rm.

The feature extraction is described in Sections 3.3 and 3.4.
After extracting the features, the original sample now becomes: {(x1, y1), (x2, y2),

. . . , (xl, yl)} with xi ∈ Rm. Applying SVM theory, using the approach with kernel,
the remaining task now is that of solving the optimization problem

(P )

∣∣∣∣∣∣∣
min
w,b

1

2
‖w‖2

subject to yi (w · Φ(xi) + b) ≥ 1,
i = 1, . . . , l.

Here, Φ is the implicit mapping associated with the kernel function K, K(xi,xj) =
Φ(xi) · Φ(xj).

Then, the corresponding dual problem is

(D)

∣∣∣∣∣∣∣∣∣∣∣
max

α

l∑
i=1

αi −
1

2

l∑
i,j=1

αiαjyiyjΦ(xi) · Φ(xj)

subject to
l∑

i=1

αiyi = 0,

αi ≥ 0, i = 1, . . . , l.

Suppose that α∗ = [α∗1, α
∗
2, . . . , α

∗
l ] is a solution of the dual problem (D). Then,

the decision function can be written in the form

f(x) = sgn

(∑
i∈I

α∗i yiK(xi,x) + b0

)
. (3.1)

where I = {i ∈ {1, · · · , l}|xi is a support vector } and the scale bias b0 is given by

b0 = yi −
l∑

j=1

α∗jyjK(xi,xj)

for any support vector xi. So, based on the extracted features, a classifier has been
established, that can classify a new example as belonging to one of two classes.

Suppose that we need to verify an image u. At first, we extract the features by
using the mapping F . We get the feature vector x = F (u). And then, we compute
the output of a function f corresponding to an input x. If f(x) = 1 then, the
considered case is positive (there is the disease appearing on the image), otherwise,
it is negative.

Finally, the classifier was tested on the test set to evaluate the efficiency of the
proposed algorithm.
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3.2 Vessel network extraction

3.2.1 Introduction

Digital fundus imaging in ophthalmology plays important role in medical diag-
nosis of several pathologies like hypertension, diabetes, and cardiovascular disease.
Computer-aided image analysis of the eye fundus is highly desirable in many cases.
For example, the diagnosis of diabetic retinopathy, the leading cause of blindness in
the Western World, requires the screening of a large number of patients from spe-
cialized personnel and can be extremely facilitated with the adoption of automatic
tools.

One task of the utmost importance is the segmentation of the vasculature in
retinal fundus images. Several morphological features of retinal veins and arteries,
like diameter, length, branching angle, and tortuosity, have diagnostic relevance and
can be used for monitoring progression of diseases. Additionally, vessel segmenta-
tion is very important in an automatic screening for fundus images and vessels are
needed to be segmented and be removed from retinal images before automatically
detecting the dark lesions in retinal image is automatically detected. Retinal vessel
segmentation is important for the detection of numerous eye diseases. In particu-
lar, medical image segmentation extracts meaningful information and facilitate the
display of this information in a clinically relevant way. A crucial role for automated
information extraction in medical imaging usually involves the segmentation of re-
gions of the image in order to quantify volumes and areas of interest of biological
tissues for further diagnosis and localization of pathologies. The high accuracy of
vessel segmentation can reduce the positive error detection of other lesions such as
microaneurysms in a retinal image.

Manual segmentation of retinal blood vessels is a long and tedious task which
also requires training and skill. It is commonly accepted by the medical community
that automatic quantification of retinal vessels is the first step in the development
of a computer-assisted diagnostic system for ophthalmic disorders.

3.2.2 State of the art

A large number of methods for retinal vessel segmentation have been published.
In this section, we just briefly summarize state-of-the-art methods. A detail anal-
ysis exceeds the scope of this thesis. However, a more complete review of existing
methods for retinal blood vessel segmentation can be referenced at [74].

3.2.2.1 Matched Filter Approach

This algorithm was first proposed by Chaudhuri et al. [54]. It relies on a correla-
tion measure between the expected shape sought for and the measured signal. They
observed two interesting properties of the blood vessels in retinal images. First,
since the blood vessels usually have small curvatures, the anti parallel pairs may be
approximated by piecewise linear segments. Second, although the intensity profile
varies by a small amount from one vessel to another, it may be approximated by a
Gaussian Curve.
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To enhance retinal vasculature a 2D matched filter kernel was designed to con-
volve with the original fundus image. The kernel was rotated into either eight or
twelve orientations to fit into blood vessels of various configurations. The kernel is
designed to model a feature in the image at some unknown position and orienta-
tion, and the matched filter response (MFR) indicates the presence of the feature.
Chaudhuri et al. used f(x, y) = A (1− k exp(−d2/2σ2)), where d is the perpen-
dicular distance between the point (x, y) and the straight line passing through the
center of the blood vessel in a direction along its length, σ defines the spread of
the intensity profile, A is the gray-level intensity of the local background, and k is
a measure of reflectance of the blood vessel relative to its neighborhood. The filter
is applied at 12 orientations over 180 and the maximum response of these filters at
each location is selected as the vessel edge. The final set of vessel segments is then
obtained by applying a linear classifier algorithm. They assumed that all the blood
vessels in the image are of equal width 2σ.

In [75], the author proposed a method which extracts the features at each pixel
using line operators. The basic line operator is a line with length l centered at
considered pixel. At each pixel the average of image gray level along line operators
with 12 different orientations spanning 360 degrees are evaluated. The direction
for which line operator provides the maximum gray level is selected and the corre-
sponding gray level is denoted by L. The difference represents the line strength of
the pixel is given by S = L − N , where N is the average gray level in the square
window, centered on the pixel, with edge length equal to l. Lines of different lengths
have been considered but the best performance was obtained with l = 15 pixels.
The second feature of the line operator is evaluated using gray level of the pixel
neighborhood along the line perpendicular to the line operator of the first feature.
Its average gray level is denoted with L0. Its strength is obtained again subtracting
the average intensity in the square window, that is S0 = L0 − N . Finally, the fea-
ture vector which used for training a supervised classifier, is constructed as follow
x = [S;S0; I] where I is gray level of the pixel which is added to help reducing false
detection due to pathology or to the proximity of the optic disk.

Partial Gaussian kernels have also been utilized for vessel detection. In [76], the
amplitude-modified second order Gaussian filter was used as a kernel. It proves that
the vessel width can be measured in a linear relationship with the spreading factor of
the matched Gaussian filter when the magnitude coefficient of the Gaussian filter is
suitably assigned. The vessel width measurement not only provides the size of blood
vessel but it is also useful for optimizing the matched filter to improve the successful
rate of detection [74]. B. Zhang et al. [77] extended the classical matched filter
with the first-order derivative of the Gaussian (MF-FDOG) to exploit the property
that for a blood vessel in the retina. Their method uses a pair of filters, the zero-
mean Gaussian filter (MF) and the first-order derivative of the Gaussian (FDOG),
to detect the vessels. The methodology significantly reduces the false detections
produced by the original MF and detects many fine vessel that are missed by the
MF.

Additionally, there are some methods which are proposed to improve the original
method [78, 79]. The methodologies attain higher accuracy.

Matched filter approach is usually followed by some other image processing op-
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erations like thresholding, thinning process, etc. to detect vessel centerlines and
obtains the final vessel contours.

3.2.2.2 Tracking Methods

The tracking methods look for a continuous blood vessel fragment starting from
a point given either manually or automatically, depending on certain local informa-
tion. These methods normally try to get the path which best matches a vessel profile
model. Vessel tracking approaches start from an initial point, detect vessel center-
lines or boundaries by analyzing the pixels orthogonal to the tracking direction.
Sobel edge detectors, gradient operators and matched filters were used for finding
the vessel direction and boundary. Different methods are employed in determining
vessel contours or center lines. The main advantage of vessel tracking methods is
that they provide highly accurate vessel widths, and can provide information about
individual vessels that is usually unavailable using other methods. It can also give
information on vessel structure such as branching and connectivity.

I. Liu, Y. Sun introduced an adaptive tracking algorithm detecting vasculature
in retinal angiograms, where the local vessel trajectories are estimated after giving
an initial point within a vessel. This algorithm was based upon a recursive tracking
procedure. Matched filters were used for guiding the tracking of a single vessel and
the detection of side branches. The algorithm showed a good performance when it
was applied to angiograms of coronary and radial arteries but it requires the user
to specify vessel starting points.

Liang et al. [81] developed an algorithm to find the course of the vessel centerline
and measure the diameter and tortuosity of a single vessel segment. The tracking
algorithm is only based on vessel properties, under the constraint of a Gaussian mod-
eled vessel profile. The matched filter helps to ignore small branches at a bifurcation
point without any special handling, thus allowing the tracking process to follow one
major branch continuously. However, the algorithm needs manual intervention for
start and end points and definition of the tracking direction.

Delibasis et al. [82] presented an automatic model-base tracing algorithm for
vessel segmentation and diameter estimation. The algorithm is based on a novel
parametric model of a vessel that can assume arbitrarily complex shape and a sim-
ple measure of match that quantifies how well the vessel model matches a given
angiographic image. A vessel tracking algorithm is described that exploits the ge-
ometric model and discovers vessel bifurcation. The vessel tracking algorithm is
initialized automatically using multiple near-central axis vessel points. The vessel
tracking is derived by identifying the best matching strip with the vessel by using the
seed point, strip orientation, strip width and the measure of match (which quantifies
the similarity between the model and the given image). Following the termination
of vessel tracking, the algorithm actively seeks vessel bifurcation, without user inter-
vention. The vessel diameter is also recovered with the defined model using the strip
width parameter therefore assuming linear dependency between vessel diameter and
model width parameter.

There are some other tracking strategies [83, 84] which have been proposed to
obtain sequential contour tracking by incorporating the features, such as the vessel
central point and search direction detected from the previous step into the next
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step. However, one disadvantage of the vessel tracking approaches is that most of
them are not fully automatic and require user intervention for selecting start and
end points.

3.2.2.3 Morphological Processing

The mathematical morphology methods use the knowledge of vessel shape fea-
tures such as piecewise linear and connected. The term mathematical morphology is
used as a tool for extracting image components that are useful in the representation
and description of region shapes such as features, boundaries, skeletons and convex
hulls. Morphology operators apply structuring elements to images, and are typically
applied to binary images but can be extended to the gray-level images. The main
two morphological operators are Dilation and Erosion. Dilation expands objects
by a defined Structuring Element, filling holes, and connecting the disjoint regions.
Erosion shrinks the objects by a Structuring Element. The other two operations
are Closing, which is a dilation followed by an erosion, and Opening, i.e. an erosion
followed by a dilation. Two algorithms used in medical image segmentation and
related to mathematical morphology are top hat and watershed transformations.

Zana and Klein in [85] present a vessel segmentation algorithm from retinal
angiography images based on mathematical morphology and linear processing. A
unique feature of the algorithm is that it uses a geometric model of all possible
undesirable patterns that could be confused with vessels in order to separate vessels
from them. The strength of the algorithm comes from the combination of mathe-
matical morphology and differential operators in the segmentation process. It was
possible to select vessels using shape properties, connectivity, as well as differential
properties like curvature.

Mendonca and Campilho [86] utilized a Difference of Offset Gaussian (DoOG)
filter in combination with multiscale morphological reconstruction for retinal vascu-
lature extraction. The vessel centerlines are extracted by applying the DoOG filter
and the vessels are enhanced by applying a modified top hat operator with variable
size circular structuring elements aiming at enhancement of vessels with different
widths.

Y. Yang et al. [87] proposed an automatic hybrid method comprising of the
combination of mathematical morphology and a fuzzy clustering algorithm. The
blood vessels are enhanced and the background is removed with a morphological
top-hat operation then the vessels are extracted by fuzzy clustering.

Sun et al. [88] combined morphological multiscale enhancement, fuzzy filter and
watershed transformation for the extraction of the vascular tree in the angiogram.
The background is estimated by using non linear multiscale morphology opening op-
erators with a varying size of structuring element on each pixel and later subtracted
from the image for contrast normalization. The normalized angiogram is processed
by a combined fuzzy morphological operation with twelve linear structuring ele-
ments rotated every 15 deg between zero and 180 deg, with nine pixels length. The
vessel region is obtained by thresholding the filtered image followed by a thinning
operation to approximate the vessel centerlines. Finally, the vessel boundaries were
detected using watershed techniques with the obtained vessel centerline [74].

The fast discrete curvelet transform (FDCT) and multistructure mathematical
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morphology [89] is employed for vessel detection. FDCT is used for contrast en-
hancement and the edges of blood vessels are detected by applying a multistructure
morphological transformation. The false edges are removed by morphological open-
ing by reconstruction. An adaptive connected component analysis is performed for
length filtering of the detected vascular structures in order to obtain a complete
vascular tree.

3.2.2.4 Region Growing Approaches

Starting from some seed point, region growing techniques segment images by
incrementally recruiting pixels to a region based on some predefined criteria. Two
important segmentation criteria are value similarity and spatial proximity. It is
assumed that pixels that are close to each other and have similar intensity values
are likely to belong to the same object. The main disadvantage of a region growing
approach is that it often requires user-supplied seed points. Due to the variations in
image intensities and noise, region growing can result in holes and over-segmentation.
Thus, post-processing of the segmentation result is often necessary.

3.2.2.5 Multi-Scale Approaches

The width of a vessel decreases as it travels radially outward from the optic disk
and such a change in vessel caliber is a gradual one. The idea behind scale-space
representation for vascular extraction is to separate out information related to the
blood vessel having varying width at different scales. The main advantage of using
these approaches was their efficient processing speed. In these approaches larger
blood vessels were segmented from regions having low resolution and finer vessels
were segmented from regions having high resolution.

3.2.2.6 Pattern classification approaches

Supervised methods exploit some prior labeling information to decide whether
a pixel belongs to a vessel or not, while unsupervised methods perform the vessel
segmentation without any prior labeling knowledge.

In supervised methods, the rule for vessel extraction is learned by the algorithm
on the basis of a training set of manually processed and segmented reference images
often termed as the gold standard. This vascular structure in these ground truth or
gold standard images is precisely marked by an ophthalmologist.

Artificial neural networks have been extensively investigated for segmenting reti-
nal features such as the vasculature [90] making classifications based on statistical
probabilities rather than objective reasoning. These neural networks employ math-
ematical weights to decide the probability of input data belonging to a particular
output. This weighting system can be adjusted by training the network with data
of known output typically with a feedback mechanism to allow retraining.

Nekovei and Sun [91] describe an approach using a back-propagation network for
the detection of blood vessels in X-ray angiography. The method applies the neural
network directly to the angiogram pixels without prior feature detection. Since
angiograms are typically very large, the network is applied to a small sub-window
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which slides across the angiogram. The pixels of the sub-window are directly fed as
input to the network. Pre-labeled angiograms are used as the training set to set the
network’s weights. A modified version of the common delta-rule is to obtain these
weights.

Sinthanayothin et al. [92] preprocessed images with principal component analysis
(PCA) to reduce background noise by reducing the dimensionality of the data set
and then applied a neural network to identify the pathology. They reported a success
rate of 99.56% for the training data and 96.88% for the validation data, respectively,
with an overall sensitivity and specificity of 83.3% (standard deviation 16.8%) and
91% (standard deviation 5.2%), respectively.

Staal et al. [93] used KNN-classifier with 27-D feature vector based on ridges
information. Their method depends on extracting ridges in the image, forming
line elements from ridges, assigning each pixel to nearest line to partition image
into patches and computing features vector of each pixel based on its line and
patch attributes. The methodology is tested on the publically available STARE
[94] and Utrecht database obtained from a screening program in the Netherlands.
The method achieves an average accuracy of 0.9516 and an area under the ROC
curve of 0.9614 on the STARE data set.

Soares et al. [96] proposed a method which uses 2-D Gabor wavelet and super-
vised classification for retinal vessel segmentation. Each pixel is represented by a
feature vector composed of the pixel’s intensity and two-dimensional Gabor wavelet
transform responses taken at multiple scales. At each scale the maximum response
of Gabor wavelet over different orientations spanning from 0°to 179°at step of 10°is
calculated. Image pixels in this method are classified using Bayesian classifier. The
method achieves an average accuracy of 0.9466 and 0.9480 for DRIVE [95] and
STARE [94], respectively.

Salem et al [97] proposed a RAdius based Clustering ALgorithm (RACAL) which
uses a distance based principle to map the distributions of the image pixels. A partial
supervision strategy is combined with the clustering algorithm. The features used
are the green channel intensity, the local maxima of the gradient magnitude, and
the local maxima of the large eigenvalue calculated from Hessian matrix. The same
features are used with kNN and RACAL algorithms and later perform better for
the detection of small vessels. The methodology attains a specificity of 0.9750 and
sensitivity of 0.8215 on the STARE database.

Marin et al. [98] used 7-D feature vector consists of five features encode gray-
level variation between pixel and its surroundings plus other two features based
on Hu moment-invariants and their classifier was the neural network (NN). The
average accuracy, on the DRIVE database is 0.9452 for the STARE database 0.9526
respectively.

Remark 3.1 Vessel segmentation algorithms are the key components of automated
radiological diagnostic systems. Segmentation methods vary depending on the imag-
ing modality, application domain, method being automatic or semi-automatic, and
other specific factors. There is no single segmentation method that can extract vas-
culature from every medical image modality. It is difficult to confirm that which
method is effective than others. It depend on the aim of each problem. In our re-
search, we choose the method of the authors Bankhead P et al. [59] to get the center
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line of the vessels and the diameters. The authors present a novel algorithm for the
efficient detection and measurement of retinal vessels. Their algorithm is general
enough so it can be applied both low and high resolution fundus photographs and
fluoresce in angiograms upon the adjustment of only a few intuitive parameters.
The algorithm described is fully automated analysis the retinal vessel diameters. It
allows the fastest diameters computation all along the length of each vessel rather
than at specific points of interest.

3.2.3 The method using wavelets and edge location refine-
ment

In this section, we summarize the main steps of the method proposed by Bankhead
P et al. [98] to get the features of vessels.

3.2.3.1 Vessel segmentation by wavelet thresholding

The Isotropic Undecimated Wavelet Transform (IUWT) is a powerful, redundant
wavelet transform that has been used in astronomy [61] and biology [62] applica-
tions. It affords a particularly simple implementation that can be readily appreciated
without recourse to wavelet theory: at each iteration j, scaling coefficients cj are
computed by lowpass filtering, and wavelet coefficients wj by subtraction [63]. The
scaling coefficients preserve the mean of the original signal, whereas wavelet coeffi-
cients have a zero mean and encode information corresponding to different spatial
scales present within the signal. Applied to a signal c0 = f , subsequent scaling
coefficients are calculated by convolution with a filter h↑j.

cj+1 = cj ∗ h↑j

where h0 = [1, 4, 6, 4, 1]/16 is derived from the cubic B-spline, and h↑j is the upsam-
pled filter obtained by inserting 2j−1 zeros between each pair of adjacent coefficients
of h0. If the original signal f is multidimensional, the filtering can be applied separa-
bly along all dimensions. Wavelet coefficients are then simply the difference between
two adjacent sets of scaling coefficients, i.e.

wj+1 = cj − cj+1.

Reconstruction of the original signal from all wavelet coefficients and the final set
of scaling coefficients is straightforward, and requires only addition. After the com-
putation of n wavelet levels,

f = cn +
n∑
j=1

wj.

The set of wavelet coefficients generated at each iteration is referred to as a wavelet
level, and one may see that larger features (including vessels) are visible with im-
proved contrast on higher wavelet levels. Segmentation can then be carried out
very simply by adding the wavelet levels exhibiting the best contrast for vessels and
thresholding based upon a percentage of the highest (if applied to an angiogram)
or lowest (if applied to a fundus image) valued coefficients. The thresholds should
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be computed from pixels within the field of view (FOV) in order to ensure that the
dark pixels outside this do not contribute to the threshold chosen; if a FOV mask is
not available, one can normally be produced by simply applying a global threshold
to the image. This is best applied to the red channel of a color fundus photograph.

The choice of wavelet levels and thresholds do not typically need to be changed
for similar images; indeed, in all cases for fundus images (both low and high resolu-
tion) they set the threshold to identify the lowest 20% of coefficients as vessels, and
varied only the choice of wavelet levels if the image sizes were different. Because
the percentage of vessel pixels within the FOV is more typically around 12-14% (as
determined using manually segmented images), the thresholded image is to be over-
segmented (i.e. many non-vessel pixels have been misclassified as vessels). However,
the majority of the vasculature is represented by one large connected structure in
the binary image, whereas misclassified pixels tend to be clustered to form isolated
objects. These small objects can be removed simply based upon their area, either
in terms of pixels or a proportion of the image size. Similarly, small holes present
within thresholded regions can be filled in. Most remaining erroneous detections are
removed during later processing steps.

3.2.3.2 Centerline computation

The next step is to apply a morphological thinning algorithm [64]. Thinning
iteratively removes exterior pixels from the detected vessels, finally resulting in a
new binary image containing connected lines of ’on’ pixels running along the vessel
centers. The number of ’on’ neighbors for each of these pixels is counted: end pix-
els (< 2 neighbors) are identified, and branch pixels (> 2 neighbors) are removed.
The removal of branches divides the vascular tree into individual vessel segments in
preparation for later analysis. This is useful because diameters are not well-defined
at branches or bifurcation are not directly comparable with those measured after-
wards, as less blood will flow through the vessel afterwards and there will be a drop
in pressure.
The elimination of as many uninteresting centerlines as possible at this stage helps
to improve the speed of the later processing steps. To this end, centerlines are first
cleaned up by removing short segments (< 10 pixels). Because any of these short
segments that contained end pixels were likely to be spurs, which often occur as an
unwanted side-effect of thinning, their corresponding branch pixels are replaced to
avoid causing the main vessel to which they were connected being erroneously sub-
divided. A coarse estimate of vessel diameters is then calculated using the distance
transform of the inverted binary segmented image. This gives the Euclidean distance
of every ”vessel” pixel from the closest non-vessel pixel, and therefore doubling the
maximum value of the distance transform along the thinned centerlines provides an
estimated diameter of every vessel segment at its widest point.

3.2.3.3 Centerline refinement using spline fitting

The orientation of a vessel segment at any point could be estimated directly from
its centerline, but discrete pixel coordinates are not well suited for the computation
of angles. A least-squares cubic spline (in piecewise polynomial form) is therefore
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fitted to each centerline to combine some smoothing with the ability to evaluate
accurate derivatives (and hence vessel orientations) at any location. A parametric
spline curve is required, with appropriate parameterization essential to obtain a
smooth centerline. For this, the centripetal scheme was used, which was described
by Lee [65].

Adjusting the spacing of the breaks between polynomial pieces in the spline can
give some control over a preference for smoothness or the ability to follow complex
shapes. The precise break spacing can vary because the vessel segment is divided
into polynomial pieces of equal length and the segment length is unlikely to be an
exact multiple of the polynomial piece length. If the number of data points is very
low, a single cubic polynomial is fit to the centerline instead.

3.2.3.4 Vessel edge identification

The measurement of diameters requires the location of edge points, but these
have no single ”natural” definition within the image space. Vessel profiles in fundus
and fluorescein angiography images resemble Gaussian functions, and edges have
previously been defined in a variety of ways, including using gradients or model
fitting [66]. One of the main complications encountered when trying to develop a
general vessel diameter measurement strategy is the possible presence of the ’central
light reflex’ [67], which is seen as a ’dip’ or ’hill’ approximately in the center of the
vessel profile, and which is more likely to be found in higher resolution images and
wider vessels. Its origins are unclear, although it is thought to emanate from the
column of densely packed erythrocytes moving through the retinal microvasculature
[68]. The marked enhancement of the light reflex may be of clinical interest; for
example, it appears to be associated with hypertension, although further investi-
gation and a more objective quantification of changes are needed [68]. That some
vessel measurement algorithms have misidentified the light reflex as the vessel edges
has been reported as problematic [66, 69], and explicit strategies for dealing with
this issue are required to ensure that any measurement is sufficiently robust [66],
[70]-[72].

Here, they define an edge as occurring at a local gradient maximum (the rising
edge) or minimum (the falling edge), as identified to sub-pixel accuracy using the
zero-crossing of the second derivative. They have adopted a four-step method to
identify these edges for each vessel:

1. Estimate the average vessel width from the binary profiles. The sum of ’vessel’
pixels in each profile is computed, and the median of these sums is taken as
the provisional width.

2. Compute an average of all the vessel profile (omitting pixels previously iden-
tified as belonging to other vessels or outside the FOV), and identify the loca-
tions of the maximum and minimum gradient to the left and right of the center
respectively, bounded to a search region of one estimated diameter from the
center. These locations give the column in the vessel profile images at which
edges are predicted to fall. The distance between the two columns also gives
a more refined and robust estimate of mean vessel width, largely independent
of the threshold used for the initial segmentation.
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3. Apply an anisotropic Gaussian filter to the vessel profiles image to reduce noise,
and then calculate a discrete estimate of the second derivative perpendicular
to the vessel by finite differences.

4. Identify locations where the sign of the pixels in each filtered profile changes,
and categorize these based upon the direction of the sign change into potential
left and right vessel edges. Using connected components labeling, link the
possible edges into distinct trails. Remove trails that never come within 1/3 of
an estimated vessel diameter from the corresponding predicted edge columns.
The final edges are then the zero-crossings belonging to the longest remaining
trails to each side of the vessel center, and the diameter is simply the Euclidean
distance between these edges.

In the ideal case, a single trail of suitable zero-crossings will exist to the left and
right of the vessel center and edge identification is straightforward. The additional
tests are intended to produce reasonable results whenever the edge may be broken,
while avoiding misclassifying zero-crossings due to the central light reflex or other
image features. The smoothing in the third step deals with the sensitivity to noise
of computing approximations of derivatives applied to discrete data. The horizontal
and vertical sigma values σH and σV of the Gaussian filter are calculated by the
scaling the square root of the estimated widths w produced by the previous step,
and therefore more smoothing is applied to vessels with lager diameters. They
used σH =

√
0.1w and σV =

√
2w for all images although scaling parameters may

be adjusted according to image noise. Because this smoothing is applied to the
stacked image profiles rather than the original image, the filter is effectively oriented
parallel to the vessel at each point. This ensures that most blurring occurs within
or alongside the vessel - rather than in all directions, which might have otherwise
affected edges or merged vessels with neighboring structures.

3.2.4 The results on real data

We applied the algorithm to our data to get the features of vessels. The results
have shown that the algorithm can effectively extract almost all vessels from the
image. It is also shown that the algorithm can be used to measure the diameter
of vessels with quite high precision. Some examples of segmentation are shown in
Figures 3.3 and 3.4.
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(a) Original image (b) Segmented image with
centerlines.

(c) Segmented image with edges.

Figure 3.3: The segmentation of a healthy fundus image

(a) Original image (b) Segmented image with
centerlines.

(c) Segmented image with edges.

Figure 3.4: The segmentation of a pathological fundus image
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However, the segmentation is not always good. In some cases, the algorithm
gives out results with some mistakes. Figure 3.5 shows the segmentation of one
abnormal image. There are some mistakes occurring on the result. This may be one
of the causes affecting to the final results in the classification process.

(a) Original image (b) Segmented image with
centerlines.

(c) Segmented image with edges.

Figure 3.5: The segmentation for one abnormal image, which shows some mistakes.

3.3 BV norm computation with a histogram

As mentioned above, the total variation has been introduced in Image Processing
first by Rudin, Osher and Fatemi [60], as a regularizing criterion for solving inverse
problems. It has been proven to be quite efficient for regularizing images without
smoothing the boundaries of the objects.

In our method, the total variation is used for measuring the change of image
intensity. This method can be used because image is blurred in the same place of
the blood vessel if the disease occurs (see Figure 3.1). We calculate BV norm at
each point on centerlines in circle area or in rectangular area.

3.3.1 Computation of BV norm along centerline

After applying the algorithm, we have the full information about the vessels. In
the next step, at each point P on centerline, we calculate the corresponding BV
norm.
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We assume for simplicity that the image u is squared with size N ×N . We note
X := RN×N endowed with the usual inner product and the associated euclidean
norm

〈u, v〉X :=
∑

1≤i,j≤N

ui,jvi,j, ‖u‖X :=

√ ∑
1≤i,j≤N

u2
i,j.

As presented in the Section 1.3.2, to define the discrete total variation, we first
introduce the notation of the discrete gradient of the numerical image.

With an numerical image u ∈ X, the discrete gradient of u is ∇u ∈ X2 defined
by

(∇u)i,j =
(
(∇u)1

i,j, (∇u)2
i,j

)
where

(∇u)1
i,j =

{
ui+1,j − ui,j if i < N

0 if i = N
and (∇u)2

i,j =

{
ui,j+1 − ui,j if j < N

0 if j = N
.

In our strategy, we calculate the total variation on two different domains (circle
and rectangle), which is described in Figure 3.6 and in Figure 3.7 is the following.

Figure 3.6: BV norm computation on circle domain

Figure 3.7: BV norm computation on rectangular domain

In the case of circular domain, at each point P on the centerlines, the total
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variation is given by

J(P ) =
∑

(i,j)∈I

|(∇u)i,j| , (3.2)

where I is the set of double indices corresponding to points in the disc of center P
and radius R. We will choose R ≥ r, where r is the radius of blood vessel at P .
In the case of rectangular domain, the total variation is given by

J(P ) =
∑

(i,j)∈D

|(∇u)i,j| (3.3)

where D is set of double indices corresponding to point in the rectangle with center
P , and width w ≥ 2r. The domain D is chosen to follow the direction of the vessel
(see Figure 3.7).

3.3.2 Using the BV norm to detect the diseased region

After computing BV norms at each point of the vessel centerlines, we normalize
them via dividing by the area on which the BV norm is calculated. To display the
results with color map, we choose the range of colors including [Cyan; Green; Blue;
Yellow; Pink; Orange; Magenta; Red; Maroon]. This range is ordered from light to
dark. The inflamed vessels branches then appear with darker color (see Figure 3.8
(a) and Figure 3.8 (b), diseased vessels are indicated by a red circle).

(a) (b)

Figure 3.8: The examples show the using BV norm to detect the diseased region.

In the following section, we construct histograms, which show the difference
between diseased images and normal images.

3.3.3 Histogram Construction

From the experimental results by color map on diseased images in the previous
section, we create histograms on both of the diseased images and non-diseased im-
ages. The range [minBV norm,maxBV norm], is divided equally into nb intervals, and
then we count points on centerlines corresponding to BV norms in each interval.
The number of points in each interval is normalized by dividing by the total points
of centerlines. Those histogram will be used for classification between diseased cases
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and non diseased cases. The next pictures (see Figure 3.9) are histograms which
present the difference between diseased images and normal images. In histograms
of normal case, the proportion of BV-norm which corresponds to the higher value
is small, whereas the one in histograms of diseased case is bigger. We shall use the
simple observation to classify the data set.

(a) (b)

(c) (d)

Figure 3.9: The histograms on the left correspond to healthy fundus image, while
the histograms on the right correspond to pathological fundus image.

3.4 The classification algorithm

In this section, we present our experiments. All steps are described by means of
a diagram in detail in Figure 3.10.

3.4.1 Generation of the training and the testing file for clas-
sification

In the first step, we construct training and testing data sets with manually
labeled marks. We collect a total of 49 images. We get all images from Toulouse
clinic department of ophthalmology and neurology. The pathological images are
marked by our expert. After that we divide randomly it into two sets, one set for
training and one set for testing. The training set contains 24 images and the test
set contains 25 images.
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Figure 3.10: Diagram describing the different steps of the proposed method

When we have the data, we use the method proposed in Section 3.2.3. All
pictures are processed by using the Bankhead algorithm to get characteristics of
vessels (centerlines, radius, angles, . . . ). The results are stored in files (*.dat).

With each image, we compute the BV norm along the centerlines with various
sizes of regions. BV norms at each point of the vessel centerlines are normalized
by dividing by the area on which they were calculated. After that, we divide BV
norm range [minBV norm,maxBV norm] into nb intervals, where nb is considered as a
parameter. Points on centerlines corresponding to BV norm in each interval are
counted and then are normalized by dividing the total points of centerlines. Now,
from one image u, we create a vector x ∈ Rnb, where, the ith entries xi of x is the
percentage of points corresponding to BV norm in the ith interval.

The output consists of two files (test file and training file). Each line on the
output file is target yu and nb features of the image u.

3.4.2 Using SVM to classify the samples

We used two parameters in this experiment: ∆r and nb where ∆r, nb ∈ N. If
the radius of a vessel at the considered point is r, then r + ∆r is the radius of
the domain on which the BV norm is calculated. The number of intervals between
the minimum and the maximum values of the BV norm is represented by nb. The
value of ∆r ranges between 0 and 3. With one value of ∆r and nb, we construct a
pair of files: the training file and the test file. The training file serves as the input
in the SVM procedure, and the output is the separating hypersurface. By using
such a tool, we are able to separate healthy from pathological cases in the test file.
Once the hypersurface has been computed, a new sample xi can be easily classified as
healthy or pathological. This feature is called generalization in the machine learning
community.
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Figure 3.11: A separating hyperplane in the feature space may correspond to a non-
linear boundary in the input space. The figure shows the classification boundary in a
two-dimensional input space as well as the accompanying soft margins. The middle
line is the decision surface; the outer lines precisely meet the constraint (where, the
constraint in problem (P ) becomes an equality with ξi = 0).

We used the libsvm (v 3.12) [73] library from Chih-Chung Chang and Chih-Jen
Lin for classifying images. In this tool, we chose various parameters for the options
to get the best result.

An important choice in the adoption of the support vector framework for prob-
lems such as these is that of the kernel K. In the experiments, we tried 4 commonly
used kernels: linear, inhomogeneous polynomial, radial basis function (Gaussian ker-
nel) and sigmoid. The results show that, using inhomogeneous polynomial kernel
and Gaussian kernel gives out better results.

Scaling data before applying SVM is quite important. The main advantage of
scaling is to avoid attributes with large numerical ranges to dominate over those
with smaller numerical ranges. Another advantage is to avoid numerical difficulties
during the computation. However, in our study it does not improve significantly
the results since, for every image u, the corresponding feature vector x has entries
in interval [0, 1].

By changing various parameters, the algorithm achieved accuracy of 84% (21/25).
The best result was achieved with ∆r = 1. We also tested the influence of the pa-
rameter nb and we got better results when nb was in the range of 20 to 55.

3.5 Conclusion and perspectives

In this part, we have presented a method for the classification of retinal images.
We have tested 49 images and the result we got is 84% of good classification. This
is not perfect but quite acceptable, and the misclassification can easily be explained
by experimental errors. For example, images sometime have light artifact or bad
resolution. Furthermore, the segmentation for abnormal images has not been very
good in some cases. In the experiments, we calculated the BV norm on different
domains (circular and rectangular) but it is not clear which case will give the best
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results. In the future, we hope to receive more pictures for testing and we expect that
we can establish a complete data set which will be public. A larger data set would
also allow us to evaluate the efficiency of the proposed algorithm more precisely.
The complete database of this disease can be used for future research. Finally, it
would also be interesting to explore alternative characteristics (to the BV norm)
with the hope of improving image classification, as well as the classification of other
diseases such as exudate, drusen, cotton wool spots, etc.
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Part III

Air traffic complexity metric
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In this part, we focus on the theme of air transport. Specifically, we introduce a
new method for extracting the main flows of the air traffic. After that, we propose
one method that calculates a complexity indicator for the air traffic.
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Chapter 4

Air traffic complexity

4.1 Introduction

The operational capacity of a control sector is currently measured by the max-
imum number of aircraft able to traverse the sector in a given time period. This
measurement does not take account of the orientation of traffic and considers geo-
metrically structured and disordered traffic in the same manner. Thus, in certain
situations, a controller may continue to accept traffic even if operational capacity has
been exceeded (structured traffic); in other situations, controllers may be obliged to
refuse additional traffic even though operational capacity has not yet been reached
(disordered traffic). Thus, a measurement in terms of the number of aircraft per
unit of time constitutes an insufficient metric for the representation of the difficulty
level associated with a particular traffic situation.

In the context of operational control, the ideal would be to find a metric which
precisely measures the level of mental effort needed to manage a set of aircraft.
Without going quite so far, it is possible to find complexity metrics which go beyond
a simple measurement of the number of aircraft. We shall begin by clarifying two
essential notions for use in the rest of this chapter:

� Control workload: measurement of the difficulty for the traffic control sys-
tem of treating a situation. This system may be a human operator or an auto-
matic process. In the context of operational control, this workload is linked to
the cognitive process of traffic situation management (conflict prediction and
resolution, trajectory monitoring, etc.).

� Traffic complexity: intrinsic measurement of the complexity associated with
a traffic situation. This measurement is independent of the system in charge
of the traffic and is solely dependent on the geometry of trajectories. It is
linked to sensitivity to initial conditions and to the interdependency of con-
flicts. Incertitude with respect to positions and speeds increases the difficulty
of predicting future trajectories. In certain situations, this incertitude regard-
ing future positions can increase exponentially, making the system extremely
complex in that it is virtually impossible to reliably extrapolate a future situa-
tion. When a future conflict is detected, a resolution process is launched which,
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in certain situations, may generate new conflicts. This inter-dependency be-
tween conflicts is linked to the level of mixing between trajectories.

Research into air traffic complexity metrics has attracted considerable attention
in recent years, particularly in the United States and in Europe. The first projects
were launched in Germany in the 1970s, and since then the subject has continued
to develop. Currently, NASA, MIT and Georgia Tech are involved in work on the
subject within the framework of the NextGen project. In Europe, the DSNA, the
DLR and the NLR are involved in similar activities linked to SESAR.

4.2 State of the Art-air traffic complexity

The airspace complexity is related with both the structure of the traffic and
the geometry of the airspace. Many works have focused on this problem in order
to exhibit an efficient measure of airspace congestion. In this section, we review
some air traffic complexity metrics which have been proposed in the literature. The
paper [99] presents a summary of the main complexity metrics which have been
developed in some previous related works.

(1) Aircraft Density: Observation of the positions of airplanes in a volume of
airspace allows us to determine a level of aggregation known as density which
is used to characterize the geographical distribution of aircraft. Density is
used to identify spatial zones with high levels of aggregation in relation to
their volume. Thus, for a constant number of airplanes in a sector, density is
used to distinguish whether these aircraft are distributed homogeneously or in
the form of clusters.

(2) Dynamic density: Laudeman et al. from NASA [108] have developed a metric
called “Dynamic Density” which is based on the flow characteristics of the
airspace. The “Dynamic Density” is a weighted sum of the traffic density
(number of aircraft), the number of heading changes (>15 degrees), the number
of speed changes (>0.02 Mach), the number of altitude changes (>750 ft), the
number of aircraft with 3-D Euclidean distance between 0-25 nautical miles,
the number of conflicts predicted in 25-40 nautical miles. The parameters
of the sums have been adjusted by showing different situations of traffic to
several controllers. Finally, B.Sridhar from NASA [101], has developed a model
to predict the evolution of the metric in the near future. Efforts to define
“Dynamic Density” have identified the importance of a wide range of potential
complexity factors, including structural considerations.

(3) Interval Complexity: Interval Complexity developed by P. Flener et al. [102]
estimates controller workload in a given sector. For a given sector s and a given
time interval [m, ...,m+ kL], interval complexity is computed by averaging
instantaneous complexities of s for the k+1 time samples m+iL, for 0 ≤ i ≤ k.
Instantaneous complexity of sector s at time m is a normalized weighted sum
of the following terms:

C(s,m) = (w1Nsec + w2Ncd + w3Nnsb) · Snorm
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where Nsec is the number of flights in s at m; Ncd is the number of non-level
(climbing or descending) flights in s at m; Nnsb is number of aircraft that fly
close to the border of the sector; Snorm is a sector normalization constant.
The parameters Nsec and Nnsb require special attention and procedures to be
followed by the ATC.

(4) Fractal Dimension: Fractal dimension is thought to be an aggregate metric for
measuring the geometrical complexity of a traffic pattern, which evaluates the
number of degrees of freedom used in a given airspace. It has been proposed by
S. Mondoloni and D, Liang in [103]. The fractal dimension is a ratio providing
a statistical index of complexity comparing how detail in a pattern (strictly
speaking, a fractal pattern) changes with the scale at which it is measured. The
block count approach is used to compute the fractal dimension of a geometrical
entity. In this approach, the entire volume is subdivided into a collection of
blocks with dimension d and the number of blocks contained in this entity is
counted (N). The fractal dimension D0 is then given by :

D0 = lim
d→0

logN

log d

The authors show a relation between fractal dimension and conflict rate (num-
ber of conflicts per hour for a given aircraft). A higher fractal dimension
indicates a higher degrees of freedom in the airspace. This information is
independent of sector and does not scale with traffic volume.

(5) Input-Output Approach: In [104] and [105], it is demonstrated that, air traf-
fic complexity can be measured by the control activity require to avoid the
occurrence of conflicts along some reference time horizon when an additional
aircraft enters the traffic. Based on a conflict free situation, a new aircraft in
included for which some maneuvers of the former aircraft are required. Based
on the number of maneuver and their associated extension, a complexity met-
ric can be introduced. A complexity map can also be derived from such a
metric. This approach is highly dependent on the kind of algorithm used to
solve conflicts.

(6) Intrinsic Complexity Metrics: Intrinsic complexity metrics were introduced
with the purpose of capturing the level of disorder as well the organization
of a set of aircraft trajectories. In [106], two approaches have been proposed,
both based on the measurements of the aircraft velocities and positions. The
first one describes an air traffic complexity indicator based on the structure
and the geometry of the traffic.

The second approach is based on the dynamic system theory used to models air
traffic. Based on positions and speeds of aircraft, a regression of the non-linear
dynamic system is carried out using the least squares method. This model is
used to build a regular field which is perfectly fitted to the observations. Using
this model, we can then apply Lyapunov’s exponent theory in order to quantify
the local level of organization of the vector field. The principle of Lyapunov
exponents consists of measuring the sensitivity of the reconstituted vector
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field to initial conditions. When an exponent has a high value, it shows a
high sensitivity to initial conditions. The future situation is thus very difficult
to predict in the zone of calculation of this exponent. On the other hand, a
Lyapunov exponent with a low value shows a well-organized situation which
is easy to predict. The map of the Lyapunov exponents allows us to identify
zones of the airspace where traffic is well organized (requires little monitoring)
and zones of disordered traffic. In organized zones, the relative distances
between aircraft remain stable over time, giving a stable situation with no
modifications in the near future. More details about such complexity metric
can be found in [99, 107].

The next section presents a new approach for air traffic complexity metric based
on image processing.

4.3 An image processing approach for air traffic

complexity metric

4.3.1 Introduction

As for previous metrics, the objective of the our metric is to measure the level
of complexity of given traffic situation. Our approach is based on the notion of
dominant trajectory also called major flow or main flow. In [109], the definition of
major flow is given as follow :

When radar tracks are observed over a long period of time in a dense area,
it is very easy to identify major flows connecting major airports. The expression
“major flows ”is often used but never rigorously defined. Based on an exact trajectory
distance and a learning classifier, it is possible to answer the following questions:
Given a set of observed trajectories, can we split it into “similar ”trajectory classes?
If yes, classes with highest number of elements will rigorously define the major flows.
Given those classes and a new trajectory, can we tell if it belongs to a major flow
and which one? The principle of the major flows definition is to use shape space
to represent trajectory shapes as points and to use a shape distance (the shape of a
trajectory is the path followed by an aircraft, that is the projection in the 3D space
of its 4D trajectory. The speed on the path has no impact).

In order to successfully plan and accommodate the increased number of flights,
one must be able to identify major flows in the airspace. In [110, 111], Histon, J.M.
et al. indicated the importance of the standard flows crossing a sector. They also
showed that complex sectors have many entry points and exit points with many
interacting flows. The major flows and their interactions constitute the basis for
air traffic controllers to build their abstraction of a sector. In the study [112], the
authors consider that sector capacity should be based on the geometric distribution
of major flows in sectors. A list of flow features is then used to describe traffic
flow patterns. Based on such features, they proposed a method to compute the
sector capacity. The method avoids measuring controller’s workload directly and
predefining controller’s workload threshold. In [113], major flows are used to study
the impact of severe weather. Although analyzing aircraft trajectories is a vital
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component of such tools, individual flights scale can either be prohibitively expensive
due to the large number of operations, or inappropriate for macroscopic features or
trends in big airspace. Hence, it is usual that analysis tools include algorithms
that capture and aggregate flights behavior while preserving an appropriate level of
fidelity [114].

There are several algorithms used to extract the major flows in a set of tra-
jectories. Some algorithms use traditional data reduction methods (e.g. Principal
Component Analysis (PCA)) with clustering methods (e.g. k-means). In [115], Eck-
stein used PCA and k-means to build a flight taxonomy. Then, Gariel et al. have
improved this method by increasing data dimensionality (by adding heading, angular
position, etc.) and have used the DBSCAN clustering algorithm. The advantage of
this algorithm is that it does not require a-priori selection of cluster size and features
outlier identification. Marzouli et al. [116] also used PCA and DBSCAN to identify
flows, from which a mathematical graph (network) was created. Recently, Enriquez
and Kurcz [114] proposed another approach based on spectral clustering to identify
flows in terminal and en-route airspaces. In [117], Enriquez extended this method
to identify flows by including the temporal dimension. Based on the project called
FromDaDy (which stands for FROM DAta to DisplaY), Marzouli et al. [116] have
developed a visualization tool which is used to display and extract specific recorded
trajectories. A two step algorithm is proposed. The first step uses KDEEB algo-
rithm (which stand for Kernel Density Estimation-based Edge Bundling) to bundle
the trajectories into a less cluttered graph. Once this step is implemented, a given
graph drawing is transformed into a density map using kernel density estimation.
The second step collects flows through a succession of brushing, picking, dropping
algorithms.

In this sections, we proposed a different approach which is based on image pro-
cessing.

4.3.2 Trajectory reconstruction

Before presenting our complexity metric, a brief introduction of trajectory re-
construction is given, which is the first step of our algorithm. This will enable the
building of density matrix.

Many interpolation methods have been presented in order to reconstruct trajec-
tory. Delahaye et al. [109] have introduced a survey of several reduction models for
trajectories.

Given a set of way points (x0, y0), (x1, y1), . . . , (xn, yn), with a = x0 < x1 < x2 <
· · · < xn = b., the purpose of interpolation is to construct a shape within the interval
[a, b].

The following method aims at solving such problem :

Straight line Segments

One of the easiest way to design trajectory is to use way points connected by
straight lines (see Figure 4.1). This easy principle ensures continuity for the trajec-
tory but not for its derivatives. If one want to approximate trajectory with many
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shape turns, one have to increase the number of way points in order to reduce the
error between the model of the real trajectory.

WP1

WP2

WP3

WP4

Figure 4.1: Trajectory defined by four way points connected by straight lines.

In order to improve concept Lagrange interpolation process adjust a polynomial
function to a given set of way points.

Lagrange interpolation

Given n + 1 real numbers yi,0 ≤ i ≤ n, and n + 1 distinct real numbers x0 <
x1 < ... < xn, Lagrange polynomial [120] of degree n (Ln(x)) associated with {xi}
and {yi} is a polynomial of degree n solving the interpolation problem :

Ln(xi) = yi, 0 ≤ i ≤ n (4.1)

Ln(x) =
n∑
i=0

yi.li(x) (4.2)

where

li(x) =
∏
j 6=i

(x− xj)
(xi − xj)

(4.3)

Figure 4.2: Ln(x) is represented by the black curve. The others curves are the
polynomials li(x).

An example of Lagrange interpolation is given on Figure 4.2 for which four points
are interpolated by the black curve which represents L4(x). The four polynomial
functions {l0(x), l1(x), l2(x), l3(x)} are also given by the red, blue, green and yellow
curves.

When derivatives have also to be interpolated, Hermite interpolation has to be
used.
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Hermite interpolation

Hermite interpolation [121] generalizes Lagrange interpolation by fitting a poly-
nomial (H(x)) to a function f that not only interpolates f at each knot but also
interpolates a given number of consecutive derivatives of f at each knot. This means
that the first derivative of the polynomial H(x) have to fit the first derivatives of
the function f(x) : [

∂jH(x)

∂xj

]
x=xi

=

[
∂jf(x)

∂xj

]
x=xi

(4.4)

for all j = 0, 1, ...,m and i = 1, 2, ..., k
This means that n(m+ 1) values

(x0, y0), (x1, y1), . . . , (xn−1, yn−1),
(x0, y

′
0), (x1, y

′
1), . . . , (xn−1, y

′
n−1),

...
...

...

(x0, y
(m)
0 ), (x1, y

(m)
1 ), . . . , (xn−1, y

(m)
n−1)

(4.5)

must be known, rather than just the first n values required for Lagrange interpola-
tion. The resulting polynomial may have degree at most n(m+ 1)− 1, whereas the
Lagrange polynomial has maximum degree n− 1.

These interpolation polynomials seem attractive but they both induce oscilla-
tions between interpolation points (Runge ’s phenomenon). Runge’s phenomenon is
a problem of oscillation at the edges of an interval that occurs when using polyno-
mial interpolation with polynomials of high degree (which is the case for Lagrange
and Hermite interpolation). An example of such Runge’s phenomenon is given on
Figure 4.3 for which Lagrange interpolation has been used.

Figure 4.3: Lagrange interpolation result for a set of aligned points.

We can conclude that interpolation with high degree polynomial is risky. In
order to avoid this drawback of high degree polynomial interpolation one must use
piecewise interpolation.

Piecewise linear interpolation

This is the simplest piecewise interpolation method.
Given n+1 real numbers yi,0 ≤ i ≤ n, and n+1 distinct real numbers x0 < x1 <

... < xn, we consider the n linear curves lini(x) = aix+ bi on the intervals [xi, xi+1]
for i = 0, ...n− 1 (lini(x) represent linear functions for which ai is the slope and bi
a constant).

Each li(x) has to connect two points (xi, yi), (xi+1, yi+1)

yi = aixi + bixi and yi+1 = aixi+1 + bixi+1 (4.6)
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In order to associate a piecewise formulation of this interpolation method, the
following “tent” functions are defined :

ψi(x) =


x−xi−1

xi−xi−1
if x ∈ [xi−1, xi]

xi+1−x
xi+1−xi if x ∈ [xi, xi+1]

0 elsewhere

(4.7)

Then,

f(x) =
n∑
i=0

yi.ψi(x). (4.8)

An example of such a linear piecewise interpolation is given on Figure 4.4

x0 xi xi+1xi−1 xn

Figure 4.4: Piecewise linear interpolation.

The derivative of the resulting curve is not continuous. In order to fix this
drawback, one can use piecewise quadratic interpolation.

Piecewise Quadratic Interpolation

We consider the n quadratic curves ψi(x) = qi(x) = aix
2+bix+ci on the intervals

[xi, xi+1] for i = 0, ...n− 1. Each qi(x) has to connect two points (xi, yi),(xi+1, yi+1);
⇒ yi = aix

2
i + bixi + ci and yi+1 = aix

2
i+1 + bixi+1 + ci. Furthermore, on each point,

the derivative of the previous quadratic has to be equal to the derivative of the
next one; ⇒ 2ai + bi = 2ai−1 + bi−1. For the first segment the term 2ai−1 + bi−1 is
arbitrarily chosen (this will affects the rest of the curve). An example of piecewise
quadratic interpolation is given on Figure 4.5.

x0 xi xi+1xi−1 xn

Initial slope

Figure 4.5: Piecewise quadratic interpolation. The shape of the entire curve depend
of the choice of the initial slope. Between two points, a quadratic polynomial is
fitted.
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The main drawback of piecewise quadratic interpolation is linked to the effect
induced on the curve by moving on point. As a matter of fact moving one point
may totally change the shape of the interpolating curve. The piecewise cubic inter-
polation avoid this drawback.

Piecewise cubic interpolation

This interpolation is also called Hermite cubic interpolation [122]. For this in-
terpolation :

ψi(x) = Ci(x) = aix
3 + bix

2 + cix+ di (4.9)

and we have the following constraints :

Ci(xi) = yi Ci(xi+1) = yi+1 (4.10)

C ′i(xi) = y′i =
yi+1 − yi−1

xi+1 − xi−1

C ′i(xi+1) = y′i+1 = yi+2−yi
xi+2−xi (4.11)

An example of piecewise cubic interpolation is given on Figure 4.6.

xi xi+1xi−1

iy
yi−1

yi+1

yi+2

xi+2

h

slope in i
slope in i+1

Figure 4.6: Piecewise cubic interpolation. The derivative at point xi is given by
line joining the point (xi−1, yi−1) and (xi+1, yi+1). Between two points, a cubic
polynomial is fitted. The term h represents the distance two consecutive points.

Moving a point do not affect all the curve which is the main advantage of this
interpolation. The resulting curve is C1 but not C2 (the second derivative is not
continuous). The curvature radius of a curve may be expressed by the following
expression :

R =
1 +

(
df(x)
dx

) 3
2∣∣∣(d2f(x)

dx2

)∣∣∣ (4.12)

The piecewise cubic interpolation do not insure that trajectory curvature is contin-
uous which is not adapted for aircraft trajectory mainly in TMA 1 areas and cubic
spline interpolation has to be used.

Cubic Spline Interpolation

This method has been developed by General Motor in 1964 [123]. For this
piecewise interpolation ψi(x) = Si(x) with the following constraints :

1TMA : “Terminal Maneuvering Area”
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Si(xi) = yi Si(xi+1) = yi+1

S
′
i(xi) = S

′
i−1(xi+1) S

′
i(xi+1) = S

′
i+1(xi+1)

S
′′
i (xi) = S

′′
i−1(xi+1) S

′′
i (xi+1) = S

′′
i+1(xi+1)

(4.13)

One can show that Si(x) for x ∈ [xi, xi+1] is given by :

Si(x) = σi
6
. (xi+1−x)3

xi+1−xi + σi+1

6
. (x−xi)3
xi+1−xi

+ yi.
xi+1−x
xi+1−xi −

σi
6
.(xi+1 − xi)(xi+1 − x)

+ yi+1.
x−xi

xi+1−xi −
σi+1

6
.(xi+1 − xi)(x− xi)

(4.14)

where

σi =
d2Si(x)

dx2
. (4.15)

An example of such interpolation is given on Figure 4.7.

xi−1

yi−1 yi+2

xi+1

iy

xi

yi+1

S i (t)

xi+2

Figure 4.7: Cubic Spline Interpolation.

Such spline is also called natural spline because it represents the curve of a metal
spline constrained to interpolate some given points.

When interpolation is not a hard constraint, one can use some control points
which change the shape of a given trajectory without forcing this trajectory to go
through such control point; such approach is called approximation for which one of
the famous methods is the Bézier curve.

Bézier approximation curve

Bézier curves[124] were widely publicized in 1962 by the French engineer Pierre
Bézier, who used them to design automobile bodies. But the study of these curves
was first developed in 1959 by mathematician Paul de Casteljau using de Casteljau’s
algorithm [125], a numerically stable method to evaluate Bézier curves. A Bézier

curve is defined by a set of control points ~P0 through ~Pn, where n is called its
order (n = 1 for linear, 2 for quadratic, etc.). The first and last control points are
always the end points of the curve; however, the intermediate control points (if any)

generally do not lie on the curve. Given points ~P0 and ~P1, a linear Bézier curve
~B(t) is simply a straight line between those two points (see Figure 4.8). The curve
is given by :

~B(t) = ~P0 + t(~P1 − ~P0) = (1− t)~P0 + t ~P1 , t ∈ [0, 1] (4.16)

With four points (~P0, ~P1, ~P2, ~P3), a Bézier curve of degree three can be built.

The curve starts at ~P0 going towards ~P1 and arrives at ~P3 coming from the direction
of ~P2. Usually, it will not pass through ~P1 or ~P2; these points are only there to
provide directional information (see Figure 4.9).
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P0

P1

Figure 4.8: Bézier Curve with 2 points.

BÉZIER CURVE

P3
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P1

P0

P0
P1

P2

Figure 4.9: Cubic Bézier curve.

Basis spline

B-spline [126] is a spline function that has minimal support with respect to a
given degree, smoothness, and domain partition. B-splines were investigated as early
as the nineteenth century by Nikolai Lobachevsky. A fundamental theorem states
that every spline function of a given degree, smoothness, and domain partition, can
be uniquely represented as a linear combination of B-splines of that same degree
and smoothness, and over that same partition. It is a powerful tool for generating
curves with many control points, B stands for basis. A single B-spline can specify
a long complicated curve and B-splines can be designed with sharp bends and even
“corners”. B-Spline interpolation is preferred over polynomial interpolation because
the interpolation error can be made small even when using low degree polynomials
for the spline. Furthermore, spline interpolation avoids the problem of Runge’s
phenomenon which occurs when interpolating between equidistant points with high
degree polynomials.

4.3.2.1 Uniform B-Splines of Degree Zero

We consider a node vector ~T = {t0, t1, . . . , tn} with t0 ≤ t1 ≤ . . . ≤ tn and n

points ~Pi. One want to build a curve ~X0(t) such that :

~X0(ti) = ~Pi (4.17)

⇒ ~X0(t) = ~Pi ∀t ∈ [ti, ti+1].

~X0(t) =
∑
i

Bi,0(t). ~Pi (4.18)
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where

Bi,0(t) =

{
1 if t ∈ [ti, ti+1]
0 elsewhere

(4.19)

The shape of the ~X0(t) function in one dimension is given on Figure 4.10.

it =4

t i+1t i

B    (t)
i,0

X   (t)
0

0 1 2 3 5 6 7 8

Pi

9

1

Figure 4.10: Uniform B-Splines of Degree Zero

4.3.2.2 Uniform B-Splines of Degree One

We are searching for a piecewise linear approximation ~X1(t) for which :

~X1(t) =

(
1− t− ti

ti+1 − ti

)
~Pi−1 +

(
1− t− ti

ti+1 − ti

)
~Pi ∀t ∈ [ti, ti+1] (4.20)

One can write ~X1(t) :
~X1(t) =

∑
i

Bi,1(t). ~Pi (4.21)

where

Bi,1(t) =


t−ti−1

ti−ti−1
if t ∈ [ti−1, ti]

ti+1−t
ti+1−ti if t ∈ [ti, ti+1]

0 elsewhere

(4.22)

The shape of the ~X1(t) function in one dimension is given on Figure 4.11.

4.3.2.3 Uniform B-Splines of Degree Three

Those B-Splines have been developed at Boeing in the 70s and represent one of
the simplest and most useful cases of B-splines. Degree 3 B-Spline with n+1 control
points is given by :

~X3(t) =
n∑
i=0

Bi,3(t). ~Pi 3 ≤ t ≤ n+ 1 (4.23)

where Bi,3(t) = 0 if t ≤ ti or t ≥ ti+4.
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t i+1t i

0 1 2 3 5 6 7 8

Pi

9

X   (t)
1

t i−1

i−1,1
B      (t)1

Figure 4.11: Uniform B-Splines of Degree One

~X3(t) =

j∑
i=j−3

Pi.Bi,3(t) t ∈ [j, j + 1], 3 ≤ j ≤ n (4.24)

When a single control point ~Pi is moved, only the portion of the curve ~X3(t) is
changed (with ti < t < ti+4) insuring local control property. The basis functions
have the following properties :

� They are translates of each other i.e Bi,3(t) = B0,3(t− i)

� They are piecewise degree three polynomial

� Partition of unity
∑

iBi,3(t) = 1 for 3 ≤ t ≤ n+ 1

� The functions ~Xi(t) are of degree 3 for any set of control points

Bi−2,3(t) =
1

h



(t− ti−2)3 if t ∈ [ti−2, ti−1]
h3 + 3h2(t− ti−1) + 3h(t− ti−1)2 − 3(t− ti−1)3

if t ∈ [ti−1, ti]
h3 + 3h2(ti+1 − t) + 3h(ti+1 − t)2 − 3(ti+1 − t)3

if t ∈ [ti, ti+1]
(ti+2 − t)3 if t ∈ [ti+1, ti+2]
0 otherwise

(4.25)

where h is the distance between two consecutive points.
Those basis functions are shown on Figure 4.12.
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Figure 4.12: Order 3 basis function

4.3.3 Density map generation

This section describes how density map is built. The initial data set consists in
a set of trajectories for several days of traffic in the french airspace. Each trajectory
is represented by a set of samples gathering positions, time, speed vector and id
which are accumulated on a map. We set the size of the map to 800× 1000 pixels.
In order to increase efficiency of the algorithm, we first interpolate data. Some the
previous interpolation models have been tried and compared. For our purposes,
cubic spline interpolation has been chosen as it produces the best results in term
of error between models and observation. Cubic spline interpolation is easy to
implement and produce a curve that appears to be seamless. Furthermore, it is
efficient and numerically stable method for determining smooth curves from a set of
points. After interpolating, we scale trajectory as a mapping between [0, 1] into R2

(2D image). Based on this mapping, it is quite simple for building a matrix from
such a 2D map. This matrix (Map) will represent the aircraft density of the given
airspace and is built with the following process.

Suppose that (x, y) is a grid point of some trajectory. Then

Map[i][j] = Map[i][j] + 1, with i = ceil(y ∗ length), j = ceil(x ∗ width),

here length×width is the size of the map. The function ceil extract the integer part
of a given real number. The Figure 4.13 illustrates how we can build the matrix of
density map.

Figure 4.13: Establishing the matrix of density map
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4.3.4 Medial axis extraction

After getting the map from the above section it is possible to generate a traffic
picture. Figure 4.14 shows the density map of one day of traffic over France. Major
air traffic flows clearly appear in the airspace. This image is quite clear but not
sufficient identify major flows.

Figure 4.14: Traffic over France generated from the density map

To produce images which are easier to understand and sharper, we scale density
map to a gray scale matrix. This allows to extract the flows without losing the
structure of the airspace. The Figure 4.15 (a) shows a grey scale image of the traffic
over France.

The key idea of our approach is to consider such gray scale image as our former
retinal image and to used our previous “vessel” extraction algorithm to identify
major flows in the airspace (See Figure 4.15 (b)).

(a) An Image which was created
from the gray matrix.

(b) An example of a retinal image

Figure 4.15: Pictures illustrate similarities between the air traffic map and the retinal
image

We consider the main flows in the air traffic map as vessels in the eye image. So,
the remaining task of medial axis extraction has changed to the task of detection

79



and measurement of blood vessels in retinal images. We chose the algorithm of
the authors Bankhead P et al. [59] to get the features of the major flows (the
centerlines, the diameters of flow, the directions of flow, etc.). It is based on a flow
representation, similar to the vessel extraction in the previous sections.

The input data set contains 104072 trajectories which were collected during one
week, between 21st and 27th October 2013, in France. We applied the algorithm to
each day of traffic.

The Figure 4.16 shows that we can effectively apply the method for getting
medial axes. It also shows that, almost all main flows in the air traffic were totally
extracted.

Figure 4.16: Major flows extraction in the French airspace

4.3.5 Application of BV norm to airspace complexity

Based on the algorithms used in the first part of this thesis, we calculate the BV
norm along the main flows and use it as a metric of the complexity in the airspace.

After extracting all major flows and their features by using the algorithm de-
scribed in [59], we calculate the total variation on two different domains (circle and
rectangular) (see Figure 4.17 (a) and Figure 4.17 (b)).

(a) BV norm computation on circle
domain.

(b) BV norm computation on
rectangular domain

Figure 4.17: Pictures illustrate the domain on which BV norm is computed
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In the case of a circular domain, the total variation at each point P is given by

J(u) =
∑

(i,j)∈I

|(∇u)i,j| (4.26)

where I is the set of double indices corresponding to points in the disc of center
P and radius R. Note that R ≥ r, where r is the radius of flow at P (which is
determined by experiment).

In the case of a rectangular domain, the total variation is given by

J(u) =
∑

(i,j)∈D

|(∇u)i,j| (4.27)

where D is set of double indices corresponding to points in the rectangle with center
P , and width w ≥ 2r. The domain D is rotated with angle θ, which is the direction
of the flow.

We used the color map to represent the value of BV norm at points located along
centerlines. The figures below illustrate the results when we calculate the BV norm
with different domains and the associated density map.

Figure 4.18: BV-norm values computed with circular domain
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Figure 4.19: Density map

Figure 4.20: BV-norm values computed with rectangular domain

As expected, in both cases, the main complexity is located around Paris area
which is known to be the most complex airspace. BV-norm gives more information
than density in terms of complexity. In the next section we propose to extend the
BV-norm approach on the vector field associated the air traffic. Such vector field
will be computed by the mean of aircraft observations (positions and speeds) and a
dynamical system model regression.

4.4 Model of air traffic based on dynamical sys-

tem

The modeling of the set of trajectories by a dynamical system was proposed by
Delahaye et al. in [118]. The aim is to find a dynamical system which modelizes a
vector field as close as possible to the observations given by aircraft positions and
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Figure 4.21: Location of the eigenvalues of matrix A. The central rectangle corre-
sponds to organized traffic situations (in pure rotation or in translation).

speeds. It helps to build some metrics of the intrinsic complexity of the distribution
of traffic in the airspace.

4.4.1 Linear dynamical systems

This approach consists of modeling a set of trajectories using a linear dynamical
system with the following equation:

~̇X = A · ~X + ~B (4.28)

where ~X represents the state vector of the system.

~X =

 x
y
z

 (4.29)

This equation associates a speed vector ~̇X with each point in the state space ~X.
The coefficients of matrix A determine the mode of evolution of the system in

relation to its dynamics. More precisely, the eigenvalues of this matrix will deter-
mine the behavior of the system. Thus, the real part of the eigenvalues indicates
whether the system is convergent or divergent. An eigenvalue with a positive real
part produces a divergence, and an eigenvalue with a negative real part results in
convergence. The absolute value of these real parts is proportional to the level of
contraction or expansion of the system. The imaginary part of the eigenvalues shows
the tendency of the system to organize itself following a global rotation movement
associated with each of the eigen axes.

In the complex plane, it is then possible to identify the locus of the eigenvalues
of matrix A associated with organized traffic situations (see Figure 4.21).

Our problem therefore consists of determining the dynamic model which is closest
to the observations we have available at a given instant. The least squares method
is applied in order to adjust the model to the observations.
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Figure 4.22: Radar captures associated with three aircraft

Figure 4.23: Vector field produced by the linear dynamic system

Let N be the number of observations at a given instant (number of airplanes
present in a sector at a given instant).

For each of these observations, we have a position measurement (see Figure 4.22):

Xi =

 xi
yi
zi


and a speed measurement:

Vi =

 vxi
vyi
vzi


We thus wish to find the vector field described by a linear equation ( ~̇X = A. ~X+

~B) which is best fitted to our observations. To illustrate this aspect, we construct a
grid over the airspace (see Figure 4.23) on which we carry out regression of a vector
field in such a way as to minimize the error between the model and the observation.

We then construct an error criterion E based on a norm (Euclidean, in our case)

which should be minimized in relation to matrix A and vector ~B, which represent
the parameters of the model:
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E =

√√√√i=N∑
i=1

∥∥∥~Vi − (A. ~Xi + ~B
)∥∥∥2

We then introduce the following matrices:

X =


x1 x2 x3 ... xN
y1 y2 y3 ... yN
z1 z2 z3 ... zN
1 1 1 ... 1


V =

 vx1 vx2 vx3 ... vxN
vy1 vy2 vy3 ... vyN
vz1 vz2 vz3 ... vzN


C =

 a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3


Criterion E may then be written in the following form:

E = ‖V − C.X‖F
where ‖ · ‖F represents the Frobenius norm (‖A‖F =

∑
i

∑
j A

2
ij).

Minimizing E is equivalent to minimizing E2 = ‖V − C.X‖2
F . We have

E2 = ‖V − C.X‖2
F = Tr(CX − V )(CX − V )T ,

where, Tr(A) is trace of matrix A and it is defined by (Tr(A) =
∑

iAii). By applying
the formula

∇MTr(AMB +D)(AMB +D)T = 2AT (AMB +D)BT (4.30)

and replacing A by I; M by C; B by X; and D by −V , we can calculate the gradient
of E2 in relation to matrix C as following:

∇CE
2 = 2.(C.X − V ).XT

By canceling the above, we obtain: ∇CE
2 = 0 ⇔ C.X.XT = V XT , which then

allows us to calculate Copt:

Copt = V.XT .(X.XT )−1 (4.31)

The expression XT .(X.XT )−1 is the pseudo-inverse of matrix X for which the sin-
gular values decomposition is given by :

XT .(X.XT )−1 = LT .S−1.R

where S is the diagonal matrix of the singular values. This decomposition allows
us to control conditioning by only inverting singular values which are sufficiently
distant from zero. Matrix C is thus given by:

C = V.LT .S−1.R
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Figure 4.24: Representation of the eigenvalues of matrix A associated with 4 traffic
situations.

We then extract matrix A, for which we calculate the associated eigenvalues:

A = L.D.UT .

As an example (see Figure 4.24), the eigenvalues of matrix A have been calculated
for a situation with three airplanes located on a circle, for which only the orientation
of the speed vectors is modified in order to create four traffic situations (organized
traffic, convergence, divergence and rotation).

As we see in Figure 4.24, the two organized traffic situations have eigenvalues in
the central band.

This approach, based on linear dynamic systems, thus produces a global mea-
surement of the level of organization of a set of trajectories. As the number of
degrees of freedom of the linear model is reduced, an error remains between the
model and the observation when we increase the number of measurements. In an-
other study [119], D. Delahaye et al. proposed an approach which consists of using a
local linearization of the underlying dynamic system. This allows to directly extract
the gradient of the associated vector field. This approach uses local linear model.

4.4.2 Local linear models

A local approximation method has been developed, which uses only observa-
tions close to the evaluation point when calculating regression in order to accelerate
the computation of the vector field on the airspace grid. The computation starts

by determining the global linear part of the vector field ( ~̇X = A. ~X + ~B) and by
subtracting it from each observations :

~vi = ~Vi − (A. ~Xi + ~B)

i ∈ {1, N} where N is the number of observations. ~vi represents the deviation of
the observation from the average field.
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The local approximation then consists of seeking a local linear model adjusted
to each of the deviations ~vi.

The first order approximation of the spatio-temporal field ~f is given by the
following expression:

~f(t0, ~X0) =~f(t, ~X) +
∂ ~f(t, ~X)

∂t
(t0 − t)+

+
∂ ~f(t, ~X)

∂ ~X
( ~X0 − ~X) +O(|t0 − t|+ ‖ ~X0 − ~X‖)

where ∂ ~f(t, ~X)
∂t

is the temporal derivative of the field ~f and ∂ ~f(t, ~X)

∂ ~X
the associated

spatial derivative.
This equation represents a local linear model of field ~f in the vicinity of point

(t, ~X).
We shall now use this model to compute an approximation of the field based on

a set of local observations.
Let us consider a grid point (t, ~X) in the state space and look for observations

located in its vicinity. The field is regressed in such a way as to minimize the error
between the relative deviation ~vi(ti, ~Xi) and the local linear model associated with

field ~f at the grid point:

~vi(ti, ~Xi) ' ~f(t, ~X) +
∂ ~f(t, ~X)

∂t
(ti − t) +

∂ ~f(t, ~X)

∂ ~X
( ~Xi − ~X)

= ~a+~b.(ti − t) + C.( ~Xi − ~X)

with ~a = ~f(t, ~X), ~b = ∂ ~f(t, ~X)
∂t

and C = ∂ ~f(t, ~X)

∂ ~X

We now wish to find the vectors ~a, ~b and the matrix C to minimize criterion J :

min
~a,~b,C

J =
N∑
i=1

‖~vi( ~Xi, ti)−
{
~a+~b(ti − t) + C.( ~Xi − ~X)

}
‖2.ψi (4.32)

where ψi = ψ(ti − t, ~Xi − ~X) is a spatio-temporal weighting window used to select
observations in the vicinity of a given grid point.

Noting:

X =


1 1 1 ... 1

(t1 − t) (t2 − t) (t3 − t) ... (tN − t)
(x1 − x) (x2 − x) (x3 − x) ... (xN − x)
(y1 − y) (y2 − y) (y3 − y) ... (yN − y)
(z1 − z) (z2 − z) (z3 − z) ... (zN − z)



V =

 vx1 vx2 vx3 ... vxN
vy1 vy2 vy3 ... vyN
vz1 vz2 vz3 ... vzN
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M =

 ax bx Cxx Cxy Cxz
ay by Cyx Cyy Cyz
az bz Czx Czy Czz


and

Ψ =


√
ψ1 0 0 ... 0
0

√
ψ2 0 ... 0

0 0
√
ψ3 ... 0

0 0 0 ... 0
0 0 0 ...

√
ψN


as ‖A‖2

F = Tr(AAT ), then criterion J takes the form:

J = ‖(M ·X − V )Ψ‖2
F

= Tr(M ·X − V )Ψ · (M ·X − V ) ·Ψ)T

= Tr(MXΨ2XTMT )− Tr(MXΨ2V T )− Tr(VΨ2XTMT ) + Tr(VΨ2V T )

= J1 − J2 − J3 + J4, (4.33)

where, J1 = Tr[MXΨ2XTMT ], J2 = Tr[MXΨ2V T ], J3 = Tr[VΨ2XTMT ], and
J4 = Tr[VΨ2V T ].

We will now calculate each term of (4.33).
Using the formula

∇XTr(XBXT ) = XBT +XB,

we have

∇MJ1 = ∇MTr(MXΨ2XTMT ) = M(XΨ2XT )T +M(XΨ2XT )

= 2M(XΨ2XT ). (4.34)

Applying the formula
∇XTr(XA) = AT ,

it follows that

∇MJ2 = ∇MTr(MXΨ2V T ) = (XΨ2V T )T = VΨ2XT . (4.35)

As
∇XTr(AXT ) = A,

then

∇MJ3 = ∇M(VΨ2XTMT ) = VΨ2XT . (4.36)

Finally, taking the derivative of a constant

∇MJ4 = ∇MTr(VΨ2V T ) = 0 (4.37)

By taking now the derivative of J with respect to matrix M , and taking into
consideration (4.34)-(4.37), we obtain:

∇MJ = ∇MJ1 −∇MJ2 −∇MJ3 +∇MJ4

= 2M(XΨ2XT )− VΨ2XT − VΨ2XT + 0 (4.38)

= 2[M(XΨ2XT )− VΨ2XT ]
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By setting the derivative of J vanish, we get

Mopt = V ·Ψ2 ·XT (X ·Ψ2 ·XT )−1 (4.39)

Having Mopt it is possible to extract the parameters of the local models: vectors

~a, ~b and matrix C.
Based on this algorithm, we can easily compute a smooth vector field which fit

exactly with observations. Such vector field will now be used to build air traffic
complexity metric.

4.4.3 Computation of local vectorial total variation norm of
vector field.

We now propose to compute a traffic complexity metric by using local vectorial
total variation norm of the relative deviation vector field which is expressed in
the previous Section 4.4.2. In what follows, we introduce a complete method to
compute the local vectorial total variation norm of relative deviation vector field.
This indicator will provide a local measurement of disorder of the field, taking into
account the relative deviation.

As mentioned in Section 1.2, several methods to define the vectorial total vari-
ation norm of vector-valued function have been proposed. As TVJ can be derived
from the generalized Jacobians from geometric measure theory, within the context
of this theory, it is the most natural form of a vectorial total variation. It can be
shown that, in the case of differentiable u, the vectorial total variation can be ob-
tained by computing the integral over the largest singular value of the derivative
matrix. However, when different methods are compared in the context of numerical
analysis (in terms of computational complexity), TVF is preferable to another meth-
ods. Because of its good performance, TVF has emerged as a favorite candidate for
vectorial TV. Therefore, in our experiments, we chose the approach based on the
Frobenius Norm to calculate the vectorial total variation norm of vector field. TVF
can be computed by using the following integral :

TVF =

∫
ΩX∗

‖Du(x)‖dx, (4.40)

where, X∗ = [x∗, y∗, z∗]T is the considered point, and ΩX∗ is the neighborhood of
X∗.

In order to compute such integral (4.40),we will now develop numerical method.
Let τ = Vk

k
i=1 be a partition of ΩX∗ i.e. a system of measurable sets Vi such that

∪ki=1Vi = ΩX∗ and m(Vi∩Vj) = 0, ∀i 6= j, i, j = 1, . . . , k, m(V ) is a measure of a set
V . For simplicity , we use the regular partition, m(Vi) = m(Vj) = m ∀i, j = 1, . . . , k.
The integral sum is built as follow:

SI =
k∑
i=1

‖Du(Xi)‖F ·m, (4.41)
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where Xi ∈ Vi is an arbitrary point. The summation (4.41) can be used to approxi-
mate the integral (4.40). In practice, we set m = 1.

Let us now describe the practical algorithm for computing complexity maps.

1) Regression of the global linear dynamic system (A · ~X) + ~B. (as in Subsection
4.4.1)

2) Computation of relative observations (~Vi − (A · ~X + ~B)).

3) For each grid point ~X(t) of a cube of airspace, carry out:

i) Computation of the local linear model (~a,~b, C) (as in the Subsection 4.4.2)

ii) Computation vectorial total variation norm (as expression above).

We have tested the proposed method in three simulated traffic situations. In
each situation, the performance can be described as follow. First, at the time t, we
filter the data set to get data in the interval [t− tminus; t+ tplus], in the experiment,
we chose tminus = 25s and tplus = 15s. In our artificial data, the time step period is
set to 3s.

We then solve Equation (4.31) to obtain the global linear model (A, ~B). Next, we
solve the the problem (4.32) to get the vector field and its derivative at grid points.
In this step, a space-time weight function has been used to select the observations
which are close to the grid point. Because the data set has been filtered by time,
the weight function now only depends on space. This function is chosen as below

Ψi(ti − t, ~Xi − ~X) =

{
1− ‖ ~Xi− ~X‖

R
if ‖

~Xi− ~X‖
R

< 1
0 otherwise

where R is the radius of the grid point neighborhood.
The main task now is to compute the optimal solution which has been given

in (4.39). Finally, the complexity indicator is obtained by calculating vectorial
total variation norm of the vector field which has been expressed above. We chose
the vicinity of the given point ( ~X) as a square, which is divided by a partition of 7×7
small boxes. Here, we consider the problem in the two-dimensional (2D) context. A
three-dimensional (3D) form can easily be extended from this algorithm. The points
Xi in the integral sum (4.41) are the centroids of the small squares. Figure 4.25
depicts the vicinity of a given point.
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Figure 4.25: The vicinity of a given point which is marked by red color

In the next subsection, we present some very good results to affirm the fitness
of the model.

4.4.4 Results

We investigated three traffic situation. Those are parallel case, face to face case
and convergent flows case. The results are computed at the flow centerline.

Parallel case

In this case, we created 44 aircraft. Those aircraft form a parallel flow without
conflicts. This is depicted in the Figure 4.26 (a).

(a) A parallel flow with no conflict (b) Complexity of the parallel case.
The vertical axis shows complexity
values and the horizontal axis gives

the distance along the flow.

Figure 4.26: Parallel situation

The Figure 4.26 (b) shows that, the parallel flow case does not generate complex-
ity at all. All values are smaller than 1E − 14. Only the remaining computational
error is shown on the figure.
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Face to face case

In the second situation, we created 2 opposite flows. Each flow contains 22
aircraft that are set parallel without conflict as shown on Figure 4.27 (a). The
Figure 4.27 (b) shows the complexity which is highest at time when the conflict
occurs. The complexity value gradually increases when the flow moves towards the
conflict points (the two flows will collide at the time t = 225s).

(a) Two opposite flows (b) Complexity of face to face case

Figure 4.27: Face to face situation

Convergent 3 flows case

In this case, we created 3 flows that move towards the same point. Each flow
includes 21 aircraft with no conflict. The Figure 4.28 (a) depicts the convergent
situation. The result of this case shows that, the value of complexity increases
when the aircraft fly towards the conflict points. This result also indicates that the
complexity of three convergent flows is higher than the face to face case.
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(a) Three convergent flows (b) 3D complexty representation

(c) Complexities of three convergent flows

Figure 4.28: Convergent situation
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Conclusion

This thesis has two main contributions. The first one establish an automatic
algorithm for classification of vasculitis in multiple sclerosis fundus angiography. In
the second one, we have extracted an airspace complexity indicator based previous
results on image processing.

The thesis includes three parts. It starts with the background that provides us
preliminary knowledge required for the part 2 and part 3.

In chapter 1, we introduce an overview of total variation as well as its applications
in image processing. A discrete version of TV used in our algorithm has been
presented. Then, we introduced an extension of scalar total variation norm to vector-
valued functions which has been applied in the air traffic management application
(part 3).

In chapter 2, a tutorial on Support Vector Machines has been presented. It starts
with the concepts of VC dimension and structural risk minimization. Then, SVMs
for separable and non-separable data have been introduced based on structural risk
minimization. At the end of the chapter, we described kernel methods in details
which are used for non-separable data. Kernel methods are very efficient for real
world data analysis problems requiring nonlinear methods. It allows us to avoid
computing dot product in the high-dimensional feature space.

In the second part of this thesis, we propose a method for classification of retinal
images. Our method helps ophthalmologists for the diagnosis of vasculitis in multiple
sclerosis fundus angiography. First, we provide a review of methods for segmentation
and measurement of blood vessel in retinal image that is an important step in our
method. Based on BV norm calculated at each point along centerline, we detect
the diseased region in the pathological images. A feature extraction strategy was
introduced to be used in SVMs model. The resulting set of features was then used
to represent the input image set in terms of feature vectors. Standard SVM classifier
was applied to classify images. The reported evaluation indicated that the proposed
method worked well and also produce good results.

The third part addresses an Air Traffic Management application. Based on the
ideas developed in the second part, we introduced a method to extract the main
flows in the airspace which critical for ATM application. Based on algorithms used
in the second part, we developed an airspace complexity indicator which could be
used at macroscopic level. The results show that, such indicator is better than the
regular density metric which is computed just by counting the number of aircraft.

Finally, by using a dynamical system model of air traffic, we propose a method
for developing a new traffic complexity metric based on the computation of the local
vectorial total variation norm of the relative deviation vector field. By investigating
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three different traffic situations, the obtained results are quite relevant with what is
expected in operation.
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Appendix A

Applications of Total Variation

Although there are some applications of total variation in the field of differen-
tial equations (eg. the TVD scheme introduce in [18]), we just focus here on the
applications in images processing.

A.1 The ROF model

The use of TV as a regularizer has been shown to be very effective for processing
images because of its ability to preserve edges. The denoising unconstrained model
is defined by Rudin et al. as follows.

inf
u∈L2(Ω)

∫
Ω

|∇u|+ µ

∫
Ω

(u− f)2dx (A.1)

Here, Ω is the image domain, f : Ω −→ R is the observed noisy image, u : Ω −→ R
is the denoised image, and µ ≥ 0 is a parameter depending on the noise level.

The first term is the total variation which is a measure of the amount of oscillation
in the resulting image u. It is given by

TV (u) =

∫
Ω

|∇u| (A.2)

Its minimization would reduce the amount of oscillation which presumably reduces
noise.

The second term is the L2 distance between u and f , which encourages the
denoised image to inherit most features from the observed data. Thus the model
trades off the closeness to f by gaining the regularity of u. The noise is assumed to be
additive and Gaussian with zero mean. If the noise variance level σ2 is known, then
the parameter µ can be treated as the Lagrange multiplier. Being introduced for
different reasons, several variants of TV can be found in the literature, restraining the
resulting image to be consistent with the known noise level, i.e.,

∫
Ω

(u−f)2 = |Ω|σ2.

A.2 Total variation based image deblurring

Image deblurring is fundamental in making pictures sharp and useful. Like
denoising, it frequently arises in imaging sciences and technologies, including optical,
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medical, and astronomical applications, and is often a crucial step towards successful
detection of important patterns such as abnormal tissues or the surface details of
some distant planets [20]. Image deblurring can be extended from ROF model as
follows.

min
u

{∫
Ω

|Du|+ 1

2

∫
Ω

(Au− f)2dx

}
, (A.3)

where Ω ⊂ R is the domain of the image and A is a linear operator and is called the
blurring kernel. In this model, f is formulated as the sum of a Gaussian noise v and
a blurry image Au resulting from the linear blurring operator A acting on the clean
image ū, i.e., f = Au + v. The existence and uniqueness of the optimal deblurred
estimation is studied by Chambolle and Lions [22]. The following conditions will be
assumed for the study of existence.

a) Observation f ∈ L2(R2)
⋂
L∞(R2).

b) Image u ∈ BV2(R2), and ‖u‖L∞ ≤ ‖f‖L∞

c) Kernel A ∈ BV (R2), nonnegative, and satisfies the DC-condition A[1] ≡ 1,
treating 1 ∈ L∞(R). Here, DC stands for direct current since the Fourier
transform of a constant contains no nonzero frequencies.

Computationally, model (A.3) can be implemented via many different algorithms
[22, 23]. Some numerical results which demonstrate the performance of the above
model show that the model is very competitive.

A.3 Total Variation Based Inpainting

Inpainting technique has found use in many applications such as restoration
of old films, object removal in digital photos, red eye correction, super resolution,
compression, image coding and transmission. The word inpainting is an artistic
synonym for image interpolation and has been used for quite a while among museum
restoration artists [24]. It was first transplanted into digital image processing in the
remarkable work by Bertalmio et al. [25], which has stimulated the recent wave of
interest in numerous problems related to image interpolation, including the works by
Chan and Shen and their collaborators [20]. Image inpainting refers to the filling-in
of missing or occluded regions in an image based on information available on the
observed regions. The aim of inpainting might be to use the background information
for restoring damaged portions of an image or for removing unwanted elements that
are presented in the image.

Several successful inpainting models have been proposed that are based upon
the Bayesian, variational, PDE, wavelet approach, such as Masnou and Morel [26]
and Bertalmio et al. [25]. The TV inpainting model which uses variational methods
in inpainting is proposed by Chan and Shen in [27]. The TV inpainting model is to
find the solution of the the boundary value problem:

min
u

∫
Ω

|∇u| subject to
1

Area(Ω \D)

∫
Ω\D
|u− u0|2dx = σ2. (A.4)
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Here, D is the inpainting region with piecewise smooth boundary Γ, u0 is the ob-
served image whose value in D is missing, we assume that u0|Ω\D is contaminated by
homogeneous white noise (modeled by the Gaussian distribution), σ is the standard
deviation of the white noise.

Thus, the TV inpainting method simply fills-in the missing region such that the
TV in Ω is minimized. The use of TV-norm is desirable because it has the effect
of extending level sets into D without smearing discontinuities along the tangential
direction of the boundary of D [15].

As practiced in the variational methodology, it is more convenient to solve the
unconstrained TV inpainting problem

min
u

∫
Ω

|∇u|+ λ

∫
Ω\D
|u− u0|2dx, (A.5)

where λ plays the role of the Lagrange multiplier for the constrained variational
problem (A.4).

By defining the masked Lagrange multiplier

λD(x) = λ · 1Ω\D(x), (A.6)

the Euler-Lagrange equation for (A.5) can be written as

−∇ ·
(
∇u
|∇u|

)
+ 2λD(u− u0) = 0 (A.7)

which has the same form as that in the ROF model, except that the regularization
is switching between 0 and λ in different regions.

Compared with all the other variational inpainting schemes, the TV model has
the lowest complexity and easiest digital implementation. It works remarkable well
for all local inpainting problems such as digital zoom-in and text removal [21].

A.4 Image Segmentation

In computer vision, image segmentation is the process of partitioning a digital
image into multiple segments (sets of pixels, also known as superpixels). Its goal
is to partition a given image into a collection of ”objects”, built upon which other
high-level tasks such as object detection, recognition, and tracking can be further
performed. In this section, we cite the survey by Chan et al. [29]. It presents in
detail the recent results in Total Variation based image segmentation.

TV minimization problems also arise from image segmentation. When one seeks
for a partition of the image into homogeneous segments, it is often helpful to regu-
larize the shape of the segments. This can increase the robustness of the algorithm
against noise and avoid spurious segments. It may also allow the selection of features
of different scales. In the classical Mumford-Shah model [28], the regularization is
done by minimizing the total length of the boundary of the segments. In this case, if
a segment is represented by its characteristic function, then the length of its bound-
ary is exactly the TV of the characteristic function. Therefore, the minimization of
length becomes the minimization of TV of characteristic functions.
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Given an observed image u on an image domain Ω, the piecewise constant
Mumford-Shah model seeks a set of curves C and a set of constants c = (c1, c2, . . . , cL)
which minimize the energy functional given by:

FMS(C, c) =
L∑
l=1

∫
Ωl

[u(x)− cl]2dx + β · Length(C). (A.8)

The curves in C partition the image into L mutually exclusive segments Ωl for l =
1, 2, . . . , L. The idea is to partition the image, so that the intensity of u in each
segment Ωl is well approximated by a constant cl. The goodness-of-fit is measured
by the L2 difference between u and cl. On the other hand, a minimum description
length principle is employed which requires the curves C to be as short as possible.
This increases the robustness to noise and avoids spurious segments. The parameter
β > 0 controls the trade-off between the goodness-of-fit and the length of the curves
C.

The Mumford-Shah objective is non-trivial to optimize especially when the curves
need to be split and merged. Chan et al. [30] proposed a level set-based method
which can handle topological changes effectively. In the two-phase version of this
method, the curves are represented by the zero level set of a Lipschitz level set
function φ defined on the image domain. The objective function then becomes

FCV (φ, c1, c2) =

∫
Ω

H(φ(x))[u(x)− c1]2dx

+

∫
Ω

[1−H(φ(x))][u(x)− c2]2dx + β

∫
Ω

|∇H((φ))|
(A.9)

The function H is the Heaviside function defined by H(x) = 1 if x ≥ 0, H(x) = 0
otherwise. In practice, we replace H by a smooth approximation Hε, e.g.,

Hε =
1

2

[
1 +

2

π
arctan

(x
ε

)]
.

Although this method simplifies splitting and merging of curves, the energy func-
tional is non-convex which possesses many local minima. These local minima may
correspond to undesirable segmentations [31].

Interestingly, for fixed c1 and c2, the above non-convex objective can be refor-
mulated as a convex problem, so that a global minimum can be easily computed
[32, 33]. The globalized objective is given by

FCEN =

∫
Ω

(
(u(x)− c1)2 − (u(x)− c2)2

)
φ(x)dx + β

∫
Ω

|∇φ| (A.10)

which is minimized over all φ satisfying the bilateral constraints 0 ≤ φ ≤ 1, and all
scalars c1 and c2. After a solution φ is obtained, a global solution to the original
two-phase Mumford-Shah objective can be obtained by thresholding φ with µ for
almost every µ ∈ [0, 1], see [32, 33]. This problem is exactly a TV denoising problem
with bound constraints. Some other proposals for computing global solutions can
be found in [31].
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Appendix B

Karush-Kuhn-Tucker conditions

B.1 Notation

Definition B.1.1 (Convex Set) A set X in a vector space is called convex if for any
x, x′ ∈ X and any λ ∈ [0, 1], we have

λx + (1− λ)x′ ∈ X (B.1)

Definition B.1.2 (Convex Function) A function f defined on a set X (note that X
need not be convex itself) is called convex if, for any x, x′ ∈ X any λ ∈ [0, 1] such that
λx + (1|λ)x′ ∈ X, we have

f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) (B.2)

A function f is called strictly convex if for x 6= x′ and λ(0, 1) (B.2) is a strict inequality.

The following lemma shows the relationship between convex set and convex func-
tion.

Lemma B.1 Denote by f : X −→ R a convex function on a convex set X . Then
the set

X := {x|x ∈ X and f(x) ≤ c} ∀c ∈ R (B.3)

is convex.

Proof. For any x and x′ ∈ X we have f(x) ≤ c and f(x′) ≤ c, since X is convex so
λx + (1− λ)x′ ∈ X for any λ ∈ [0, 1]. Moreover,

f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′)

≤ λc+ (1− λ)c = c.

Hence we have λx + (1− λ)x′ ∈ X.

Theorem B.2 (Minima on Convex Sets) If the convex function f : X −→ R
has a minimum on a convex set X ⊂ X , then its arguments x ∈ X, for which the
minimum value is attained, form a convex set. Moreover, if f is strictly convex,
then this set will contain only one element.
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Corollary (Constrained Convex Minimization) Given the set of convex func-
tions f , c1, ..., ck on the convex set X , the problem

min
x

f(x)

subject to ci(x) ≤ 0
i = 1, . . . , k.

(B.4)

has as its solution a convex set, if a solution exists. This solution is unique if f is
strictly convex.

The Support Vector problem has the same formulation as this problem. However,
in practice ci is written as positivity constraints by using concave functions and this
can be fixed by a sign change [9]. In some cases, we additionally have equality
constraints e(x) = 0 for some j = 1, . . . , k′. Then the optimization problem can be
written as

min
x

f(x)

subject to ci(x) ≤ 0 for i = 1, . . . , k,
ej(x) = 0 for j = 1, . . . , k′.

(B.5)

B.2 Optimization conditions

Theorem B.3 (Equality Constraints) Assume an optimization problem of the
form (B.5), where f, ci, ej : Rn −→ R for i = 1, . . . , k and j = 1, . . . , k′ are arbitrary
functions, and a Lagrangian

L(x,α,β) = f(x) +
k∑
i=1

αici(x) +
k′∑
j=1

βjej(x) for αi ≥ 0 and βj ∈ R (B.6)

If a triple of variables (x̄, ᾱ, β̄) with x̄ ∈ Rn, ᾱ ∈ [0,∞)k, and β̄ ∈ Rk′ exists such
that for all x ∈ Rn, α ∈ [0,∞)k, and β ∈ Rk′,

L(x, ᾱ, β̄) ≤ L(x̄, ᾱ, β̄) ≤ L(x̄,α,β), (Saddle point) (B.7)

then x̄ is a solution to (B.5)

Definition B.2.1 Function

L(x,α,β) = f(x) +
k∑
i=1

αici(x) +
k′∑
j=1

βjej(x) for αi ≥ 0 and βj ∈ R (B.8)

is called the Lagrangian of the problem B.5,

g(α,β) = min
x
L(x,α,β) (B.9)

is Lagrange dual function and

max
α,β

g(α,β)

subject to αi ≥ 0
i = 1, . . . , k.

(B.10)

is dual problem.
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B.2.0.1 Some important properties

� The dual problem is always convex.

� The primal and dual optimal values, f ∗ and g∗, always satisfy weak duality:
f ∗ ≥ g∗. Indeed, Let x̄ be a primal feasible solution and ᾱ, β̄ be a dual feasible
solution. Then

g(ᾱ, β̄) = min
x

{
f(x) +

k∑
i=1

ᾱici(x) +
k′∑
j=1

β̄jej(x)

}

≤ f(x̄) +
k∑
i=1

ᾱici(x̄) +
k′∑
j=1

β̄iej(x̄)

≤ f(x̄).

Definition B.2.2 Given primal feasible x̄ and dual feasible ᾱ; β̄, the quantity
f(x̄)− g(ᾱ, β̄) is called the duality gap between x̄ and pair (ᾱ, β̄).

� Slater’s condition: for convex primal, if there is an x such that ci(x) < 0 for
i = 1, . . . , k and ej(x) = 0 for j = 1, . . . , k′ then strong duality holds: f ∗ = g∗.

From now on we make the assumption: the Primal problem (B.5) is convex and
its objective function is differentiable.

Definition B.2.3 (Karush-Kuhn-Tucker conditions) Given general problem

min
x
f(x)

subject to ci(x) ≤ 0 for i = 1, . . . , k,
ej(x) = 0 for j = 1, . . . , k′.

The Karush-Kuhn-Tucker conditions or KKT conditions are:

∂xL(x,α,β) = ∂xf(x) +
k∑
i=1

αi∂xci(x) +
k′∑
j=1

βj∂xej(x) = 0 (stationarity) (B.11a)

αici(x) = 0 for all i (complementary slackness) (B.11b)

ci(x) ≥ 0; ej(x) = 0 for all i; j (primal feasibility) (B.11c)

αi ≥ 0 for all i (dual feasibility) (B.11d)

Theorem B.4 (Necessary optimality condition) If x∗ and α∗,β∗ are primal
and dual solutions, with zero duality gap, then x∗,α∗,β∗ satisfy the KKT conditions.

Proof. Let x∗ and α∗,β∗ be primal and dual solutions with zero duality gap (strong
duality holds, e.g., under Slater’s condition). Then,

f(x∗) = g(α∗,β∗)

= min
x∈Rn

f(x) +
k∑
i=1

α∗i ci(x) +
k′∑
j=1

β∗j ej(x)

≤ f(x∗) +
k∑
i=1

α∗i ci(x
∗) +

k′∑
j=1

β∗j ej(x
∗)

≤ f(x∗)
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In other words, all these inequalities are equalities. So

k∑
i=1

α∗i ci(x
∗) +

k′∑
j=1

β∗j ej(x
∗) = 0

=⇒
k∑
i=1

α∗i ci(x
∗) = 0,

this follows from
∑k′

j=1 β
∗
j ej(x

∗) = 0.
Note that α∗i ≥ 0 and ci(x

∗) ≤ 0 we deduce α∗i ci(x
∗) = 0 for all i = 1, . . . , k.

This is complementary slackness.
Primal and dual feasibility evidently hold. Finally, because point x∗ minimizes

L(x,α∗,β∗) over x ∈ Rn. Hence the derivative of L(x,α∗,β∗) with respect to x
must be 0 at x = x∗. This is exactly the stationary condition.

Theorem B.5 (The sufficient optimality condition) If x∗ and α∗,β∗ satisfy
the KKT conditions, then x∗ and α∗,β∗ are primal and dual solutions.

Proof. If there exists x∗,α∗,β∗ that satisfy the KKT conditions, from stationary
condition (B.11a), we have

g(α∗,β∗) = f(x∗) +
k∑
i=1

α∗i ci(x
∗) +

k′∑
j=1

β∗j ej(x
∗) (B.12)

On the other hand, from complementary slackness condition (B.11b) and feasible
conditions, we get

f(x∗) +
k∑
i=1

α∗i ci(x
∗) +

k′∑
j=1

β∗j ej(x
∗) = f(x∗) (B.13)

Comparison of (B.12) and (B.13) shows that

f(x∗) = g(α∗,β∗). (B.14)

Therefore duality gap is zero (and x∗ and α∗,β∗ are primal and dual feasible) so x∗

and α∗,β∗ are primal and dual optimal.
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