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ABSTRACT Receiver Autonomous Integrity Monitoring (RAIM) is widely adopted in commercial aircraft
to support integrity monitoring for aircraft navigation safety in en-route and Non-Precision Approach (NPA)
phases. Recently, Advanced RAIM (ARAIM) has been developed, which further considers the simultaneous
satellite failures inmulti-constellation systems and supports multi-frequency signals. Standards provide a test
procedure for onboard RAIM, offering a means to demonstrate compliance with integrity risk requirements
for civil aviation. Based on this requirement, the aircraft computes the protection level that bounds the
position error. Unlike the integrity risk requirement, which is defined over the entire operational period,
the protection level is computed on a per sample or per-epoch basis. To properly interpret the requirement
defined over the operation period to a single time instance, the temporal correlation of error sources within
the operational period must be considered and quantified by the number of effective samples (NES). While
recent work has evaluated NES for ARAIM, the NES for RAIM has not been thoroughly investigated. Based
on the test procedure recommended in theMinimumOperational Performance Standards (MOPS), this paper
focuses on estimating and bounding the NES for RAIM under different scenarios of measurement errors.
Moreover, to address the limitations of these test procedures in light of the results obtained, representative test
procedures are proposed to account for worst-case fault bias and address the impact of temporal correlation.

INDEX TERMS Global positioning system (GPS), receiver autonomous integrity monitoring (RAIM),
temporal correlation, aircraft safety.

I. INTRODUCTION
ICAO standards define navigation requirements for
accuracy, continuity, integrity, and availability to achieve safe
and efficient flight operations. The continuity and integrity
requirements are defined over a period of operation. For
example, the integrity requirement for en-route and Non-
PrecisionApproach (NPA) is defined as 1− 1×10−7 per hour
according to ICAO’s Standards And Recommended Practices
(SARPs) [1]. Any navigation algorithm implemented at the
airborne side should comply with those requirements to
provide the intended services. Among various navigation
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algorithms, Receiver Autonomous Integrity Monitoring
(RAIM) was proposed to ensure integrity for en-route and
NPA phases of flight under the presence of a single fault [2],
[3], [4], [5]. In order to support more stringent phases of
flight, Advanced RAIM (ARAIM) has been proposed to ini-
tially meet Required Navigation Performance (RNP) 0.1 NM,
and in the longer term to support localizer performance with
vertical guidance (LPV) operations down to a 200 ft decision
height [6]. Autonomous integrity monitoring includes Fault
Detection and Exclusion (FDE) to alert the presence of an
unacceptably large position error [7].

Both RAIM and baseline ARAIM algorithms are imple-
mented on a per sample basis, computing a protection
level based on an integrity requirement applied at each
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sample [6], [8], [9]. However, recent studies have argued
that it might underestimate the impact of temporal decorre-
lation of the error sources, especially over a long period of
operation. Milner et al. [10] and Pervan et al. [11] assessed
the impact of temporal correlation on the integrity perfor-
mance of ARAIM and Ground-Based Augmentation System
(GBAS) monitors, respectively. Milner et al. [10] addresses
the key concept of mapping the continuity and integrity
requirements from the operational (per period of operation)
to the algorithmic (per sample). In this context, it introduces
the number of effective samples (NES), which represents
the ratio of the risk of hazardously misleading information
(HMI) during an operation to the risk of HMI at a single
epoch. In addition, it showed that the NES can be bounded
by the ratio of the period of operation and the time-to-alert
(TTA), yielding a value of 450 of NES for 1 hour of exposure
time and an 8-second TTA. Bang et al. [12] further evalu-
ates the NES considering the actual risk by performing first
order Gauss-Markov Monte Carlo runs. Pervan et al. [11]
recommended the NES for each GBAS ground and airborne
monitors in terms of continuity and integrity.

In the case of RAIM, if the protection level is calcu-
lated following an approach similar to that of Lee et al. [8],
an NES of 1 is implied. Considering recent findings on the
impact of a temporal correlation in ARAIM and GBAS,
this study focuses on evaluating a more representative NES
for RAIM through simulations based on the test procedure
recommended in MOPS DO-229E [13], DO-316 [7], and
DO-384 [14]. As shown in the results herein, these proce-
dures could be designed more conservatively and may be
optimistic. In fact, through simulation, we show that the
current test procedure could potentially underestimate the
actual integrity risk for all receiver classes. In addition,
we argue that the range domain ramp error (5 m/s), used
in the current test procedure, may not cover the worst-case
scenario. Previous studies on ARAIM [15], [16], [17] have
already emphasized the use of the worst-case fault bias and
proposed methods for determining it. Based on the analysis,
advancements to the current RAIM test procedure are pro-
posed, along with support for the definition of the ARAIM
test procedures. In this paper, only the Fault Detection (FD) is
considered, with Fault Detection and Exclusion (FDE) left as
future work.

In Section II of the paper, a brief background on how to
compute the NES is provided. Section III introduces the test
procedure defined in the MOPS. Section IV describes the
methodology used to evaluate the NES for RAIM in this
study, and the comparison of the current and proposed rep-
resentative test procedure is addressed. In Section V and VI,
the NES results for Class 1 and Class 2+ receivers, through
the current and representative test procedures, are provided.
Various levels of temporal correlation of errors are consid-
ered, and representative simulation scenarios are defined.
We show that the representative test procedure could avoid
the underestimation of risk. In addition, the simulation results

confirm that the NES is bounded by the analytical upper
bound introduced in [10]. Finally, the summary and conclu-
sions of this work are presented in Section VII.

II. INTEGRITY EQUATION FOR RAIM
A. INTEGRITY EQUATION FOR RAIM
The probability of HMI can be expressed as the sum of the
probabilities of HMI over all possible fault hypotheses [15],
[16], and shall be less than the integrity risk requirement,
IRreq:

Phmi =

∑n

j=0
Phmi,j < IRreq (1)

where, n denotes the number of fault hypotheses, and Phmi,j
represents the probability of HMI under hypothesis Hj. The
multiple hypotheses account for all faulty satellite and faulty
constellation combinations. In the ARAIM context, this list
is exhaustive and presents a partition of all possible states,
while in RAIM it is limited to single satellite failures [7].
The HMI event for hypothesis Hj occurs when the position
error exceeds the alert limit, the test statistic(s) fails to detect
the fault, and the hypothesis Hj is true. Accordingly, Phmi,j
can be expressed by the probability of hypothesis Hj and the
conditional probability of HMI under this hypothesis:

Phmi,j = P
(
|e| > lal∩q < T |Hj

)
· PHj (2)

where PHj denotes the probability of occurrence of the
hypothesis Hj. The symbols of e, lal , q and T indicate the
position error, the alert limit, the test statistic and thresh-
old. Note that multiple test statistics may be used in both
RAIM and ARAIM, in which case this condition refers to
all test statistics being below their respective thresholds. The
conditional probability on the right-hand side of (2) is also
known as the Probability of Missed Detection (PMD) under
Hj, which can be concisely denoted as PMD,j.
For en-route and NPA flight phase, the ICAO SARPs

define the signal-in-space integrity risk requirement as
1×10−7 per hour [1]. In RAIM, this required integrity risk is
fully allocated to the single-fault hypothesis (j = 1) [8], as the
risk from the fault-free hypothesis may be neglected and the
probability of the occurrence of multiple faults hypotheses
is considered insignificant [10]. Notably, the probability of
constellation failure was not accounted for during RAIM
development but is now set to 1×10−8 per hour for GPS [18].
Given these points, (2) can be rearranged to define PMD,1 as
follows, used to determine the protection level (l). Note that
in (3), the subscript ‘1’ in PMD,1 is omitted for simplicity:

PMD ≡ P (|e| > l ∩ q < T |H1) < IRreq
/
PH1. (3)

The term IRreq
/
PH1 in (3) is defined as PMD,req. In fact,

(3) is an under-specified equation since it also depends upon
the magnitude of the fault bias which is explicitly expressed.
By specifying the fault bias (f ), PMD is given as

PMD(f ) = P (|e| > l ∩ q < T |f ) . (4)
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PMD is a function of the fault bias magnitude f as shown in
Fig. 1 for a fixed protection level. In Fig. 1, the worst-case
fault bias (f ∗) denotes the bias magnitude when the PMD
reaches its maximum. The protection level must ensure that
the maximum PMD value, denoted as PMD(f ∗) remains below
the requirement PMD,req = 1 × 10−3 [8]. Because the hori-
zontal component is of interest in this work, a 2D integration
is employed to compute the probability on the right-hand side
of (4), implemented as in [19].

FIGURE 1. The definition of the worst-case fault bias (f^∗) based on the
PMD.

B. NUMBER OF EFFECTIVE SAMPLES
As previously mentioned, the integrity requirement in stan-
dards is defined for a specific duration of operation. However,
as seen in (2), protection level computations in the literature
are typically developed on a per sample basis [2], [3], [4], [5],
[6], [8]. Additionally, the system must also meet the Time-
To-Alert (TTA) limit. HMI occurs when the position failure
remains undetected for longer than the TTA [1], and can be
expressed as follows [10]:

PMD = P[
⋃ns−na

i0=1
{(

⋂na−1

j=0

∣∣ei0+j∣∣ > l)

×

⋂ (⋂nad−1

j=0
qi0+nd j < Ti0+nd j

)
|f ∗] (5)

where, ns ≡ TE/Ts,na ≡ Ta/Ts,nd ≡ TFD/Ts,nda ≡

Ta/TFD. The symbol of i0 denotes the initial epoch in the
TTA test window within the exposure time. The symbols of
TE , Ta, and Ts represent the operation exposure time, the
TTA, the interval of the receiver’s position, velocity, and time
(PVT) output, set to 1 hour, 8 seconds and 1 second (MOPS
DO-316, 2009). The receiver FD interval, denoted as TFD,
is tested for 1 and 8 seconds to evaluate both cases: when
the fault detection is performed at the same rate as the PVT
output rate and when it is performed at the minimum rate
allowed by the requirement. Fig. 2 illustrates the relationship
between these parameters. In (5), a Missed Detection (MD) is
declared if the following condition occurs at least once during
the exposure window: for any TTA period, the position failure
persists while the test statistic fails to detect the fault at each
FD within the TTA interval. Milner et al. [10] stated that the
PMD in (5) depends on the number of PVT samples during

the exposure time (ns) and fault detection trials (nd ). The NES
(nes) is defined by the following equation [10]:

nes (ns, nd ) ≡
PMD (ns, nd )
PMD (1, 1)

=
PMDT
PMD0

(6)

where the denominator on the right-hand side represents the
PMD computed for a single epoch, denoted as PMD0 in this
paper, as in (4). The numerator represents the PMD computed
over an exposure time, denoted as PMDT, which can be
computed from (5). The NES is known to be bounded by
the ratio of the exposure time to the TTA [10], and it could
serve as a mapping factor in future implementations when
applying the integrity requirement in the standards (defined
per operation) to the onboard algorithms (runs per sample).
It allows the aircraft to retain the onboard algorithmwith only
a minor modification regarding the NES, without requiring
the implementation of assessing (5) in real-time.

However, proposed protection levels in RAIM literature
assume an NES of 1 [8], [20], [21], [22] which indicates
that the probability of missed detection computed on a per
sample basis is the same as that computed over an exposure
time. To assess whether such RAIM protection levels do not
underestimate the actual integrity risk, the NES of RAIM is
evaluated in this paper. In addition, since NES is determined
for exposure time, the impact of temporal correlation of error
sources on position error and test statistics becomes a key
factor. This point will be investigated in later sections.

FIGURE 2. Timeline within the exposure time.

III. CURRENT AND REPRESENTATIVE MOPS TEST
PROCEDURE
The test procedure is a recommended means to demon-
strate compliance with the minimum acceptable performance
parameters specified in the MOPS [7], [13], [14], [23]. Most
up-to-date recommendations can be found inMOPSDO-229,
DO-316 and DO-384 according to the supported airborne
equipment: DO-316 for Aircraft Based Augmentation Sys-
tem (ABAS) airborne equipment, such as those providing
RAIM capability; DO-229E for Satellite Based Augmenta-
tion System (SBAS) airborne equipment; DO-384 for Global
Navigation Satellite System (GNSS)-aided inertial system.
The detailed steps of the test procedures are not mandated,
meaning other test procedures may be also acceptable. In this
manner, we focus on refining the test procedure using the
recommendations in the MOPS as a baseline.

A. CURRENT MOPS TEST PROCEDURE
MOPS standards provide test procedures for off-line FDE
tests to demonstrate compliance with the missed alert
probability of 1 × 10−3. The missed alert includes both the
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missed detection and wrong exclusion. To focus on the capa-
bility of the fault detection function, only missed detection is
considered in this paper. Accordingly, the missed alert prob-
ability is fully allocated to the missed detection probability.
In this paper, the least-square residual method [21] is used as
the test statistic. Based onDO-229E andDO-316 [7], [13], the
recommended sampling interval shall not exceed 1 second.

For the test procedure, as stated in the MOPS, 20 different
geometries need to be selected to provide an approximately
uniform range of Horizontal Protection Level (HPL) from
0.1 NM to the maximum Horizontal Alert Limit (HAL)
supported by the equipment. In our test, 20 geometries are
selected with HPL ranging from 0.1 NM to 4 NM, as shown
in Fig. 3. The 20 geometries are chosen randomly from
all possible geometries observable from the reference epoch
defined in DO-229E [13] over 24-hour period at user loca-
tions. These locations cover all latitude and longitude ranges
with 5-degree intervals, using the optimized 24 GPS constel-
lation [13]. The geometry index in Fig. 3 indicates an index
of the selected geometry. Once geometries for test procedure
are selected, the simulation is conducted over a total of 1,650
Monte Carlo runs for each of the 20 geometries. According
to DO-229E, during all runs, satellite velocities are set to
zero to ensure that the HPL remains constant. Additionally,
a GPS satellite malfunction is simulated as a ramp error in
the range domain with a slope of 5 m/s [13]. This failure
is injected into the pseudorange of the satellite that is most
difficult to detect, as detailed in Section III. For each run,
the test is terminated when either a correct exclusion, failed
exclusion or a missed alert occurs. To consider only missed
detection, the termination condition is modified according
to DO-208 [23], such that the test terminates when either a
missed detection or a successful detection occurs. The num-
ber of missed detection cases are cumulated over all Monte
Carlo runs and geometries. Finally, based on the total number
of missed detection cases and the number of total runs, it can
be determined if the equipment is compliant to the missed
alert requirement of 1 × 10−3.

FIGURE 3. Horizontal protection level of each selected satellite geometry.

B. CURRENT MOPS ERROR MODELING
For the test procedures, time series of pseudorange residual
errors need to be generated according to the Gaussian models

specified in MOPS DO-229E [13] and DO-316 [7]. The
overall standard deviation of the combined error sources,
or equivalently, pseudorange residual error for a non-failed
GPS satellite can be modeled as follows:

σ 2
i = σ 2

i,URA + σ 2
i,UIRE + σ 2

i,air + σ 2
i,tropo (7)

where the subscript i represents a satellite index. The sym-
bols of σi,URA and σi,UIRE represent the values for the
standard deviation of clock/ephemeris and the ionospheric
errors, respectively. To generate the time series of each error
source, it is recommended to use the Gaussian error mod-
els in DO-316 [7] and DO-229E [13]. On the other hand,
for the GNSS/inertial integrated system it is recommended
to use a first order Gauss-Markov (GM) process. Further-
more, the standards recommend considering the correlation
induced by the carrier smoothing filter for the integrated
system. TABLE 1 summarizes the recommendations in
DO-229E [13] andDO-316 [7] and the additional information
found in DO-384 [14]. The symbols of fmap, el and τ denote
the mapping function, elevation angle and time constant of
the first order GM process. The term σi,divg accounts for
the steady-state error of the carrier smoothing filter with a
100-second smoothing time constant due to the ionospheric
divergence [7]. The detailed equation for the standard devi-
ation of ionospheric delay, tropospheric delay and airborne
receiver model can be found in DO-316 [7], DO-229E [13],
and DO-384 [14].

TABLE 1. Signal modeling in MOPS document.

To account for the temporal correlation, this paper uses the
first-order GM process to generate the error sources shown in
TABLE1, based on the corresponding time constants found in
the standards. For the Class 1 receiver, which does not employ
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carrier-smoothing, this approach can be justified by Pervan
et al. [11], who showed that less than 5% of the estimated
time constants were less than the sampling interval (<1 s).
Therefore, the majority of errors (95%), may be considered
temporally correlated. For the noise and divergence error
terms for Class 2+ receiver, DO-316 [7] recommends using
the worst-case value of 0.36 m, which is adopted in this
paper. For a Class 2+ receiver, the carrier smoothing filter is
implemented, and the covariance of the input multipath must
be determined according to DO-384 [14]. To account for the
temporal correlation of the ionospheric residual error, time
constants of 1 hour and 2 hours are used based on [24] and
the data analysis shown in Fig. 8 in Section V.

C. REPRESENTATIVE TEST PROCEDURE
Besides adopting the first-order GM model to generate the
time history of error sources in the proposed representative
test procedure, the following advancements were made in
terms of considering a fault bias and a test period.

1) WORST-CASE FAULT BIAS
In the current test procedure, a GPS satellite fault is simulated
by injecting a 5 m/s ramp error into the pseudorange residual
of the satellite that is most difficult to detect. This satellite
is determined based on the slope (g) which is defined as the
ratio of the impact of a fault on the position error to the impact
of the fault on the test statistic [20] and is independent of
the fault magnitude [16]. The slope of ith satellite (gi) in the
horizontal plane is defined as follows for the residuals-based
test statistic.

gi =

(
g2east,i + g2north,i

)1/2
(8)

where, geast ,i = |S1i| σi/
√
(I − B)ii) and gnorth,i =

|S2i| σi |
√
(I − B)ii. The matrix S can be expressed as(

GTWG
)−1GTW , whereG is an observation matrix andW is

a weighting matrix, whose ith diagonal element is defined as
1/σ 2

i . The standard deviation of pseudorange residual error,
σi is defined in (7). In addition, the matrix B can be replaced
byG

(
GTWG

)−1GTW . The subscript ii of matrix B indicates
the ith diagonal element of B. Equation (8) is computed for
each visible satellite, and the satellite with the maximum gi
is selected as the faulty satellite in the test procedure.

Note that an ideal protection level may be determined
rigorously using (4) and under the worst-case fault vector,
for both the direction and magnitude of the fault bias. Since
RAIM assumes a single satellite failure, the direction of the
fault vector can be easily determined: all elements in the
fault vector are filled with zero, except for the faulty satellite.
The search for the magnitude of the fault is performed to
maximize (4) [21], [22] and as indicated by the green dot in
Fig. 4(a) and (b). In contrast, the current test procedure does
not consider the worst-case fault bias but rather employs a
slope (r) of 5 m/s. The magnitude of the fault impact in the
pseudorange residual, denoted as r · t , increases as the time
elapsed (t) from the onset of the fault increases as shown

in Fig. 4 (a) and (b). Depending on the test duration, the
magnitude of the fault bias due to the ramp error may not
reach the worst-case magnitude of the fault, denoted as f ∗ in
Fig. 4(b). Furthermore, the magnitude of the fault bias is not
maintained at the worst value throughout the test, meaning the
worst-case conditions are not fully tested. Therefore, in the
proposed test procedure, a fault bias at its worst value (f ∗)
at each instance is applied throughout the entire test period.
In Fig. 4(a), the orange circles indicate the joint distribution
of the test statistics and the position error when the ramp
error occurs at t = 0, and the green circle denotes the joint
distribution when the worst-case fault bias is present. The
PMD corresponds to the integration of the joint distribution
over the HMI region, the upper left quadrant.

FIGURE 4. Comparison between a ramp-type fault and the worst-case
fault bias. (a) the joint distribution of test statistics and position error for
two cases, and (b) the PMD for the worst-case fault bias and the ramp
fault.

2) CONSIDERATION OF THE EXPOSURE TIME AND
RE-ADMITTANCE OF THE FAULT
As mentioned in Section III-A, each Monte Carlo run in
the current test procedure terminates if either a success-
ful or missed detection is declared based on DO-208 [23],
DO-316 [7] and DO-229E [13]. However, actual flight oper-
ations are conducted over a specific period, known as the
exposure time, as specified in the standards. Therefore, the
entire exposure time is simulated in the proposed test proce-
dure. In addition, re-admittance of a faulty satellite is adopted
at the following epoch [25]. Note that successful detection
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FIGURE 5. Comparison of the test termination conditions between
(a) legacy, and (b) representative test procedures.

is declared when the following conditions are jointly sat-
isfied: the test statistic exceeds the threshold and that this
occurs within the specified TTA after the time at which the
position error exceeded the alert limit. Fig. 5(a) shows the
conditions for successful and missed detections in the current
test procedure, and Fig. 5(b) depicts the fixed test period and
associated re-admittance used in the proposed representative
test procedure.

IV. COMPARISON OF METHODOLOGY AND
CORRESPONDING NES
A. COMPARISON OF METHODOLOGY
This section compares the methodologies of the current and
the representative test procedures according to the proposi-
tions described in the previous section. The complete flow
charts of the two test procedures can be found in Fig. 6.
The advancements made in the proposed representative test
procedure are highlighted in bold. Once the 20 geometries are
selected, the HPL is computed in the current test procedure.
In the representative test procedure, the HPL is computed,
and the worst-case fault bias is determined. The MOPS
does not mandate specific models for generating the error
sources, the representative approach uses a 1st order GM
process to account for the temporal correlation of the errors.
After generating the errors, the impact of the satellite fault
is injected into the pseudorange residual error. As mentioned
previously, the worst-case bias is injected for the represen-
tative test procedure instead of the ramp error. After that,
the algorithm checks the missed detection for each Monte
Carlo run and for the 20 geometries to compute the total
of PMDT, which indicates the PMD over an exposure time.
Finally, the obtained PMDT is checked to ensure it does

not exceed the missed alert requirement for GPS RAIM,
PMD,req = 1 × 10−3 [7], [13].

This paper aims to conduct a thorough analysis of the
temporal correlation of errors in integrity monitoring, which
can be quantified by the NES. As defined in (6), the NES can
be determined by computing the ratio of the PMD over a test
period (PMDT) and at a single sample (PMD0). This is of
significant, since it is likely that the missed alert requirement
is allocated to each sample when computing the HPL in
RAIM [8], [20], [21], [22]. The overall flow chart to compute
the NES is shown in Fig. 7. Note that the HPL is computed for
the PMD0= 1×10−3, which could result in PMDT, obtained
from Fig. 7, being larger than 1 × 10−3. Since the objective
of the flow chart in Fig. 7 is to obtain the NES, the resultant
NES will be used to determine PMD0 while ensuring PMDT
equals to 1 × 10−3, the required value.

FIGURE 6. Difference between current and representative test procedure.

FIGURE 7. Flow charts of the NES evaluation.

The same procedure as given in Fig. 6 is conducted to
compute the PMDT for a total of 105 Monte Carlo runs and
20 geometries. To compute the PMDT, the total number of
missed detection cases, denoted as numMD, is divided by the
number of geometries, ngeo, and by the number of Monte
Carlo runs, nruns. Note that the increased number of Monte
Carlo runs of 1× 105 is used to account for low values of the
PMDT under various simulation conditions of the temporal
correlation.
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B. COMPARISON OF NES
To investigate the impact of the worst-case fault bias and the
exposure time, this section evaluates the PMD and resulting
NES of the current and representative test procedures. The
exposure time and TTA are set to 1 hour and 8 seconds,
respectively [10]. For comparison, each error source is mod-
eled as a 1st order GMprocess with time constants given in [7]
and [14]. The NES is computed according to the flow chart
as shown in Fig. 7 for both the current and representative
test procedure using conditions defined in Fig. 6. The ramp
error or the worst-case fault bias are injected from the first
epoch for a Class 1 receiver, while for a Class 2+ receiver
the fault is injected after the carrier smoothing filter reaches
the steady state, which corresponds to 360 seconds after the
carrier smoothing filter initialization time [13].
TABLE 2 summarizes the NES computed using the

methodology described in the previous section. Values of
1 s and the TTA are tested as the FD interval (TFD). RAIM
HPL computations typically assume implicitly an NES of 1
[8], [20], [21], [22], while the NES evaluated in simulation
under the current test procedures may be significantly lower
for Class 1 receivers. The representative test procedure finds
that the actual risk (and NES) is much higher, with a ratio
of approximately 500 and 100 for the FD intervals of 1 s
and TTA respectively. This suggests a non-compliant HPL
implementation in Class 1 receiver could pass the current test
procedure while considerably underestimating the true risk.
The ratio for Class 2+ receivers is less alarming on the order
of 10.

TABLE 2. NES result for the current and representative test procedure.

V. ANALYSIS ON THE IMPACT OF TEMPORAL
CORRELATION ON THE NES
The previous section established that the current test proce-
dure may not accurately reflect the true risk over the period
of operation. In this section, we analyze further the impact of
temporal correlation assumptions related to the representative
test procedure proposed.

A. TEMPORAL CORRELATION OF ERROR SOURCES
The temporal correlation can be reflected in the time constant
of an assumed 1st order GM process [11], [12]. The time con-
stants tested for all error sources in the simulation are shown
in TABLE 3. The values in bold indicate a nominal error
condition defined in this study. The nominal values can be
found in theMOPS [7], [13], [14]. For satellite orbit and clock
errors, a 2-hour time constant is considered, as recommended

by theMOPS and evaluated in [26]. Three values of time con-
stants for tropospheric delay, 1800, 900, and 300 seconds, are
tested including the recommended value in MOPS. The noise
error for Class 1 receiver is modeled as a 1st order GMprocess
to account for the temporal correlation due to multipath. A
25-second time constant is selected as the nominal condition,
which is the same as the MOPS recommendation for Class
2+ receivers. In addition, 8, 25, 60 and 100 second time
constants are tested for Class 1 receivers. The 8-second time
constant is chosen to test the condition when the temporal
correlation is the same as the TTA period. The 25-second time
constant can be found in the MOPS. The remaining values
are chosen within the range of estimated time constants for
Boeing aircraft in [11]. In case of Class 2+ receiver, only the
value recommended in the MOPS is considered for modeling
multipath because the temporal correlation introduced by the
carrier smoothing filter with a 100 second time constant will
be dominant unless the time constant of the multipath is much
longer than 100 seconds, as shown in [11].

TABLE 3. Time constant of 1 st order GM process test for simulation
(Values in Bold Indicate the Nominal Condition).

In the case of ionospheric delays, there is no recom-
mended time constant provided by the MOPS. In this paper, a
2-hour time constant is considered as the nominal condi-
tion for ionospheric delay, according to [24]. To verify this,
we have analyzed the ionospheric residual errors when the
ionospheric delay is corrected by the Klobuchar ionospheric
model [27]. To compute the ionospheric residual error, the
slant Total Electron Contents (TEC) estimates based on real
data collected from more than 300 global distributed refer-
ence stations equipped with receivers from different receiver
manufacturers such as Trimble, Ashtech and Leica, were
used. This data was provided by the Joint Research Centre
(JRC). The analyzed TEC was estimated for February 28th,
2014, which corresponds to the day with the highest solar
activity of solar cycle 24. The analysis showed that the maxi-
mum time constant of the ionospheric residual for all latitudes
can be bounded by 2 hours, as shown in Fig. 8. For the
sensitivity analysis, a 1-hour time constant is also considered,
which corresponds to a lower bound for the median time
constant.

In section IV-B, σURA is set to 5.7 m according to the
recommendation in DO-316 [7]. To assess the impact of the
URA, a value of 2.4 m, which corresponds to the upper bound
of the range indicated by the URA index 0, is also tested.
In addition, 0.0 m is also tested to consider the potential
for near-perfect Signal-in-Space (SIS) errors. The motivation
is that with regards to temporal correlation effects on the
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FIGURE 8. Estimated time constant of the ionospheric delay residual on
28th of February 2014.

NES, the worst case is when the local errors with short
correlation times dominate the error budget. The simulation is
conducted for the single-frequency (SF) and dual-frequency
(DF) modes. For the ionosphere-free (IF) measurement error,
the ionospheric term, σi,UIRE , is eliminated in (7), and the

noise term, σi,air is replaced to
√

γ 2+1
γ−1 σi,air , where, γ denotes

the squared ratio of L1 over L5 frequencies. In addition,
the recently recommended airborne receiver model for the
IF measurement from The German Aerospace Center (DLR)
[28] is also tested.

B. SENSITIVITY ANALYSIS RESULTS
1) IMPACT OF THE TEMPORAL CORRELATION OF THE
MULTIPATH ON NES ESTIMATION
Fig. 9 shows the impact of the noise error time constant for
Class 1 receivers. In both SF and DF modes, the NES and
the PMDT decrease as the time constant increases. Since an
8-second time constant provides the largest NES, this value
is used for the analysis on the temporal correlation of errors
in the following sections.

TABLE 4 summarizes the NES results under nominal con-
ditions. For Class 1 receiver, the NES from the DF mode is
much larger than that from the SF mode due to the elimina-
tion of the ionospheric error, which is the error source with
the longest temporal correlation. This can be validated by
TABLE 5, which shows the 50th percentile (median) of the
estimated time constants for the combined errors, including
noise, multipath, tropospheric delay, satellite orbit and clock
error, and ionospheric delay in case of the SF mode. This can
also explain the increase of NES when TFD is increased from
1 second to TTA for two modes. Because the DF measure-
ment is less temporally correlated, the degradation of PMDT
due to the increase of the detection interval is worse than the
SF measurement case. For Class 2+ receivers, which employ
carrier smoothing, the measurement error is more temporally
correlated compared to that of Class 1, as shown in TABLE 5.
This leads to a smaller NES for Class 2+ receivers, given
in TABLE 4. In addition, the temporal correlation of the
pseudorange residual is similar for the SF and DF modes for
Class 2+ receiver due to the use of the carrier smoothing,
the NESs for both modes are similar, and their increments

for the increased TFD are not as drastic compared to a Class
1 receiver.

TABLE 4. NES results under nominal condition (PMD0 = 10−3,
τURA = 7200 s, τTropo = 1800 s, τIono = 7200 s, , τnoise = τmp = 25s).

TABLE 5. Estimated time constant of the combined error under nominal
condition.

FIGURE 9. NES for Class 1 receivers for (a) single-frequency mode, and
(b) dual-frequency mode.

2) IMPACT OF THE SATELLITE CLOCK AND ORBIT ERRORS
ON NES ESTIMATION
In this section the impact of the magnitude of the σURA is
analyzed rather than the time constants. This is because the
temporal correlation of the satellite clock and orbit errors
generally depends on the orbit determination and ephemeris
generation, which limits the large variation in the time con-
stant compared to those of the multipath and tropospheric
errors, which depend on the environment. TABLE 6 summa-
rizes the NES for Class 1 and Class 2+ receivers according
to different modeling parameters. The time constants of the
other error sources are set to nominal condition. Regardless of
types of receivers, the NES is larger for small σURA. For Class
2+ receiver under DF mode, the NES values for different
airborne models based on MOPS and DLR are similar.
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TABLE 6. NES for class 1 and class 2+ receivers for SF and DF modes
according to different modeling parameters for satellite clock and orbit
errors (TFD = TTA).

3) IMPACT OF TEMPORAL CORRELATION OF
TROPOSPHERIC ERROR
Fig.10 and Fig. 11 show that the impact of changing the time
constant of tropospheric error on the NES can be neglected.
This is because the standard deviation of the tropospheric
delay is much smaller than that of other errors, such as
satellite orbit and clock, and ionospheric delay, making the
contribution of the tropospheric error to the resultant temporal
correlation of the combined errors relatively small.

FIGURE 10. NES for Class 1 receivers for (a) SF, and (b) DF mode
according to time constant of tropospheric and ionospheric error.

FIGURE 11. NES for Class 2+ receivers for (a) SF, (b) DF based on
standard deviation from MOPS and DLR according to time constant of
tropospheric and ionospheric error.

4) THE NES FROM THE SENSITIVITY ANALYSIS
TABLE 7 summarizes the NES bound obtained from the
analysis presented in Section V-B.1)-3) where various time
constants for error sources are tested. In all cases, the NES is
bounded by the theoretical limit of 450 [10], while the values
of the evaluated NES values exceed 1, which is the assumed
value of NES in the current RAIM.

TABLE 7. Worst-case nes from the simulation (PMD0 = 10−3,
τURA = 7200 s, τIono = 3600 s, TFD = TTA).

VI. ERROR MODELING SCENARIO AND ASSOCIATED NES
FOR TEST PROCEDURE
The purpose of the test procedure is to check if the PMD eval-
uated from the airborne RAIM algorithm during the exposure
time exceeds the required integrity risk. To account for the
risk over the operation, the HPL should ideally be computed
accounting for the NES [29]. As seen in the results from
the sensitivity analysis, the NES depends greatly on the time
constants and standard deviations of each error source. There-
fore, a representative simulation scenario with specified time
constants for the errors and the associated values of the NES
should be defined for the test procedure. This section defines
the simulation scenario based on the simulation results in the
previous section and the realistic time constants of the error
sources from the references.

A. DEFINITION OF SIMULATION SCENARIOS
To propose a test procedure that accounts for the tempo-
ral correlation of the errors, specified simulation conditions
in terms of the temporal correlation of the errors and the
associated NES should be defined. For this purpose, four
different scenarios are defined in TABLE 8, based on the
simulation results in the previous section and the realistic
time constant of the error sources that can be found from the
references. Scenario 1 is closest to the current standards [7],
[13], [14]. It adopts time constants that are recommended
in the MOPS except for the ionospheric error. For the iono-
spheric error, a time constant of ionospheric error from [24] is
adopted in this study. Scenario 2 represents the realistic case
which uses the time constants derived based on real GNSS
data processing or based on the products that are estimated
by the real GNSS data from reference papers [11], [24],
[26]. For the multipath time constant, 5th percentile of the
estimated multipath in [11] is adopted, because it is the small-
est value that is specified for Boeing aircraft. In addition,
scenario 3 represents the practical worst-case, using the time
constants and σURA for which the simulation results were the
worst in the previous section. Finally, scenario 4 represents
the worst-case which can only be applicable to Class 2+
receivers. In this scenario, the combined error is assumed
to be temporally correlated at 100 seconds, which is the
same value as the time constant used for carrier smoothing
filter. This represents the worst-case limit whereby only local
errors with a short temporal correlation contribute to the error

166196 VOLUME 12, 2024



J. Song et al.: Impact of Temporal Correlation of Errors on GPS RAIM

budget. This scenario is feasible under significant orbit, clock
and tropospheric modelling improvements but nevertheless
remains unlikely and may be considered as an alternative
upper limit on the NES.

TABLE 8. Time constants of each error for different simulation scenarios.

B. NES RESULTS FOR ERROR MODEL SCENARIOS
TABLE 9 summarizes the PMD0, PMDT, and NES results
when the fault detection is conducted every TTA seconds. For
Class 1, the NES can be bounded at 77 for the SF mode, and
282 for the DF mode, respectively. For Class 2+ receivers
and scenarios 1-3, the NES may be bounded by 13 and
120 for SF and DF modes, respectively. In the worst-case
scenario (Scenario 4), the NES for Class 2+ receivers could
reach around 155. Milner et al. [10] provides the bound of
the NES of ARAIM according to exposure time (TE ) and
TTA (Ta). When the current simulation condition is applied,
TE = 3600s and Ta = 8s, the upper bound of the NES
computes to 450. It can be observed that the NES results for
all scenarios in TABLE 9 are below this value.

TABLE 9. PMDT and NES according to scenarios (TFD = TTA).

Fig. 12 shows the PMDT according to satellite geometry.
As in Fig. 3, the satellite geometry is selected to provide an
HPL ranging from 0.1 NM to 4 NM. Solid and dashed lines
indicate the SF and DF modes, respectively. We can also
observe that the PMD is relatively independent of satellite
geometry for those geometries yielding an HPL larger than

FIGURE 12. PMDT according to HPL for (a) Class 1, and (b) Class 2+

receivers (σURA = 5.7m for scenario 1, 2 and 4).

FIGURE 13. Comparisons of Class 1 SF HPLs computed with using
NES=1 (current RAIM, blue) and using the derived NES (red) for
scenario 1-3 (a-c).

FIGURE 14. Comparisons of Class 2+ SF HPLs computed with using
NES=1 (current RAIM, blue) and using the derived NES (red) for
scenarios 1-4 (a-d).

approximately 1 NM. Based on this observation, the simu-
lation design in this study could provide solid results which
will not change much even if additional satellite geometries
are considered.

Fig. 13 and Fig. 14 show the impact of the NES on the SF
HPL of Class 1 and Class 2+ receivers for various scenarios.
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The blue line indicates the HPL computed using NES=1
which is the assumption of the current RAIM. The red line
denotes the HPL computed using the NES values shown in
TABLE 9. The results show that the NES larger than 1 lead to
an increase in the HPL, while also helping to avoid possible
underestimation of the integrity risk. Similar results can be
observed for DF HPL which are omitted in this paper.

VII. CONCLUSION
As a prior step to develop a test procedure for ARAIM, the
existing test procedure for RAIM has been revisited and sev-
eral advancements are proposed to account for the worst-case
fault bias and the period of the exposure time. Addition-
ally, this study analyzes the impact of error correlation and
computes the NES for RAIM. Overall results indicate that
the NES from the proposed representative method is greater
than the values from the current method, suggesting a poten-
tial underestimation of the integrity risk by the current test
procedure. This discrepancy may arise because the repre-
sentative test procedure uses the worst-case fault bias to
simulate the faulty GPS satellite, allowing it to account for
the worst PMD throughout the test period, unlike the current
test procedure, which employs a ramp error. In addition,
error model scenarios are established to represent different
assumptions regarding the temporal correlation of each error
source. The results from all scenarios illustrate the ranges of
achievable NES of RAIM under various error modeling con-
ditions. The results from scenario 1 and 2, which comply with
the time constants from standards and real data processing,
yield similar NES values. Scenario 3, representing a practical
worst-case, shows NES values that are approximately 1.1 and
13 times larger than those of scenario 1 and 2 for Class 1 and
Class 2+ receivers, respectively. Results from the worst-case
scenario indicate that the NES can reach up to 155 for Class
2+ receiver, although such an extreme case is unlikely to
occur. Overall, the results of all scenarios are bounded by 450,
which is the theoretical NES upper bound for ARAIM when
considering 1 hour of exposure time and 8 seconds of TTA.
The derived scenario-specific NES may be used to compute
the protection level as described in [10].

Future work needs to consider the impact of exclusion and
include the determination of appropriate assumptions regard-
ing the temporal correlation constants of errors for operation.
The result of this work could contribute to the definition of
test procedures for ARAIM. In this regard, the representative
test procedure shall also be extended to account for multi-
ple hypotheses, including multiple simultaneous failures and
constellation faults. Additionally, since ARAIM takes into
account nominal biases in the pseudorange residual error, this
error term should be considered in the future work.
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