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A B S T R A C T

Background: Fast-ripples (FR) are short (~10 ms) high-frequency oscillations (HFO) between 200 and 600 Hz that 
are helpful in epilepsy to identify the epileptogenic zone. Our aim is to propose a new method to detect FR that 
had to be efficient for intracerebral EEG (iEEG) recorded from both usual clinical macro-contacts (millimeter 
scale) and microwires (micrometer scale).
New Method: Step 1 of the detection method is based on a convolutional neural network (CNN) trained using a 
large database of > 11,000 FR recorded from the iEEG of 38 patients with epilepsy from both macro-contacts and 
microwires. The FR and non-FR events were fed to the CNN as normalized time-frequency maps. Step 2 is based 
on feature-based control techniques in order to reject false positives. In step 3, the human is reinstated in the 
decision-making process for final validation using a graphical user interface.
Results: WALFRID achieved high performance on the realistically simulated data with sensitivity up to 99.95 % 
and precision up to 96.51 %. The detector was able to adapt to both macro and micro-EEG recordings. The real 
data was used without any pre-processing step such as artefact rejection. The precision of the automatic detection 
was of 57.5. Step 3 helped eliminating remaining false positives in a few minutes per subject.
Comparison with Existing Methods: WALFRID performed as well or better than 6 other existing methods.
Conclusion: Since WALFRID was created to mimic the work-up of the neurologist, clinicians can easily use, un
derstand, interpret and, if necessary, correct the output.

1. Introduction

According to the World Health Organisation, epilepsy affects around 
50 million people worldwide. About one-third of the patients suffer from 
drug-resistant epilepsy (Kwan et al., 2011). Only the surgical resection 
of the brain region involved in the initial steps of the epileptic seizures, 
the epileptogenic zone (EZ), when possible, can make these patients 
seizure-free (Engel, 1996; Rosenow and Lüders, 2001). An intracerebral 
exploration with the implantation of depth electrodes (or SEEG for 
stereo-EEG) is sometimes necessary to accurately identify the EZ and the 
epileptogenic network (Talairach and Bancaud, 1966; Trébuchon and 

Chauvel, 2016; Bartolomei et al., 2017; Isnard et al., 2018). In this case, 
between 5 and 18 depth electrodes are implanted, each having from 5 to 
18 contacts. This usually amounts to more than 120 recording sites per 
patient. Patients are continuously recorded 24/7, usually for 1–3 weeks, 
until several spontaneous seizures have been recorded, to accurately 
identify where the seizures originate from. The custom procedure is then 
to review these large amounts of data visually to analyze the seizures, 
and particularly the seizure onset (Rosenow and Lüders, 2001; Bernabei 
et al., 2023). This phase is tedious, time-consuming, and can take several 
months and up to one year before a synthesis can be reached. Following 
this stage, a neurosurgical decision can be made. But even if 
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neurosurgery is performed, which will be the case for about 50 % of 
patients, only 65 % of the patients are seizure-free after 5 years 
(Téllez-Zenteno et al., 2005; Englot and Chang, 2014). There is, there
fore, a pressing need for tools that can assist clinicians in analyzing SEEG 
data more easily and quickly, as well as tools that can contribute to 
improving patients’ prognoses.

Biomarkers other than seizures can also help the identification of the 
EZ. Interictal epileptic discharges (IED) allow the characterization of the 
brain regions involved in seizure propagation and may help to deduce 
the location of the EZ (Azeem et al., 2021; Thomas et al., 2022). How
ever, epileptic discharges are not specific to the EZ and are usually 
insufficient to identify the EZ precisely (de Curtis and Avanzini, 2001; 
Avoli et al., 2006; Bartolomei et al., 2016).

In recent years, research in epilepsy has focused on fast ripples (FR), 
a new promising biomarker of the EZ (Zijlmans et al., 2012). FR are 
high-frequency oscillations (HFO) superior to 200 Hz in frequency, of 
short duration (about 10 ms), that are considered to be pathological 
(Zelmann et al., 2012; Cimbálník et al., 2018). Studies have shown that 
the surgical removal of FR-related brain tissue is a good predictor of 
post-surgical outcome (Jacobs et al., 2010; Höller et al., 2015; Frauscher 
et al., 2017; Thomschewski et al., 2019; Nevalainen et al., 2020), 
including a recent review (Wang et al., 2024).

A major difficulty with FR detection is that they are highly transient 
events of relatively low amplitude compared to the background intra
cranial electroencephalogram (iEEG) activity. It is tedious to detect 
them manually in the clinical routine because the manual procedure 
involves reviewing the iEEG activity in short windows of 400–600 ms 
and adding a visual representation of the signal in the time-frequency 
domain. According to prior studies, it is deemed necessary to spend 
about 1 hour manually searching for FR in only 10 minutes of iEEG 
recording (Zelmann et al., 2009; Migliorelli et al., 2020), and this esti
mate escalates with the number of electrodes. In addition, interrater 
detection of HFO is usually low, suggesting that automated methods 
could help increase interrater reliability (Nariai et al., 2018).

FR can also be recorded from microwires using hybrid electrodes, 
which combine microwires and macro-contacts. Indeed, some studies 
suggest that more FR are recorded with microwires than macro-contacts 
(Worrell et al., 2008; Despouy et al., 2019). As microwires are very thin 
(20–50 micrometers), they allow access to the local field potential at the 
micrometer scale and can, in principle, record activities that 
macro-contacts of classical depth electrodes cannot. For example, the 
first FR were recorded in the EZ in rodents and humans using micro
electrodes (Bragin et al., 1999). In addition, the iEEG signals from 
microwires are usually recorded with dedicated research amplifiers with 
frequency acquisition rate above 30KHz to record neuron action po
tentials. In contrast, the iEEG signal from macro-contacts is recorded 
from clinical amplifiers with frequency acquisition ranging from 512 Hz 
to 2KHz. This means that iEEG recorded with microwires can help 
recording high-frequency oscillations at higher oscillatory rates (Worrell 
et al., 2008; Blanco et al., 2011). However, the addition of microwires 
increases the amount of signal to be analyzed as well as its complexity. 
For example, microwires also record neuron action potentials as already 
mentioned, which adds unwanted events in the iEEG when studying 
HFO, or worse, can sometimes mimic FR when the neurons fire in bursts. 
Although FR seem to be a promising biomarker of the EZ, their use in 
clinical practice is thus hindered by all these difficulties.

Since the beginning of the 2000s, several automatic detectors of FR 
have been proposed. These detectors were applied to various interictal 
biomarkers of epilepsy such as ripples (80–200 Hz), FR (200–600 Hz), 
HFO (80–600 Hz) or epileptic discharges, in either the time or the fre
quency domains (Staba et al., 2002; Firpi et al., 2007; Gardner et al., 
2007; Zelmann et al., 2009; Crépon et al., 2009; Song and Liò, 2010; 
Birot et al., 2013; Chaibi et al., 2013; Jrad et al., 2017; Gliske et al., 
2016).

Techniques based on temporal signal characteristics were initially 
successful, in part because they work quite well to detect events that 

stand out from the background activity, such as epileptic discharges. The 
use of time-frequency representations marked a turning point in the 
automatic detection of FR. For example, Delphos (Roehri et al., 2017) 
detects HFO in a normalized (ZH0) time-frequency representation by 
analyzing the time width and frequency spread of peaks above a 
threshold. The ZH0 normalization technique significantly enhances the 
HFO footprint in time-frequency space. EPINETLAB (Quitadamo et al., 
2018) detects HFO in the scalogram of 1 s signal windows. The scalo
gram is obtained after preprocessing and segmenting the iEEG and 
transforming the time windows in the time-frequency domain using a 
complex Morlet transform. These methods have improved the detection 
and characterization of HFO. HFO can be represented in the 
time-frequency space as blobs that are more or less spread out vertically 
or horizontally, and stand out from the background activity (Roehri 
et al., 2017; Quitadamo et al., 2018; Donos et al., 2020).

In recent years, new methods have mainly focused on machine 
learning approaches. For example, the detector developed by Zuo et al. 
(2019) used a convolutional neural network (CNN) to detect HFO (rip
ples and FR) by giving as input to the CNN the temporal signal trans
formed into an image. Nadalin et al. (2021) developed a CNN able to 
detect epileptic spikes combined with ripples. Since a CNN requires the 
tuning of many parameters, they evaluated several configurations. Note 
that to our knowledge, these approaches (Zuo et al., 2019) have been 
applied to iEEG recorded at the macro-contact scale but it is unknown 
how they would perform at the microwire scale. A recent solution, 
PyHFO (Zhang et al., 2024), used deep learning as a second step to 
categorize events that had been identified by conventional HFO de
tectors. Other recent similar toolboxes have recently been developed, for 
example to study the characteristics of sharp-wave ripples (Navas-Olive 
et al., 2022; 2024), demonstrating a growing trend for these solutions in 
the field.

In this study, we describe the features and performance of WALFRID 
(Wavelet AnaLysis and IDentification of Fast-Ripples), an integrative 
method that takes advantage of the technique described above. The 
method is based on a CNN processing time-frequency maps (scalo
grams), followed by a feature-based control step that helps reject false 
positives. The SEEG data from 38 patients were used to train the CNN 
and assess its performance. Visualization and interaction with the can
didates are available via a Graphical User Interface (GUI) to create a 
multi-step semi-automatized flexible detector, leading to a hybrid 
approach, automated detector + human rater, as suggested by recent 
work (Kural et al., 2022). We assessed the performance of WALFRID 
using several approaches as recommended by Remakanthakurup Sindhu 
et al. (2020). We first used simulated gold standard data to situate 
WALFRID’s performance in comparison to six other FR detectors at the 
macro-iEEG scale (SimiEEG-dataset). We then tested WALFRID on real 
data acquired from a subset of 11 patients (RealiEEG-dataset), who were 
implanted with classical and hybrid micro-macroelectrodes.

2. Methods

2.1. Training datasets

2.1.1. Patients
The iEEG of 38 awake patients with drug-resistant epilepsy was 

recorded at the University Hospital of Toulouse France (Epifar project, 
ClinicalTrial: NCT02491476, inclusion period 2015–2022). The im
plantation of the hybrid electrodes and the collection of data were 
approved by the local ethics committee and by the French National 
Agency for Medicines and Health Products Safety (CPP Sud-Ouest et 
Outre-Mer I, no.1–14–23 and ANSM 2014-A00747–40).

The patients were implanted with classical and 2–4 hybrid electrodes 
(DIXI Medical, Besançon, France). Each hybrid electrode comprised 6 or 
9 conventional macro-contacts (diameter of the shaft: 800 microns, 
length of the macro-contacts: 2 mm) and 2 or 3 tetrodes emerging be
tween the two deepest macro-contacts (see Despouy et al. (2020)) for a 
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detailed description of the hybrid electrode). Each tetrode comprised 4 
micro-wires (diameter: 20 microns bundled together) (Fig. 1).

The macro-iEEG (intracranial EEG recorded on the macro-contacts) 
was recorded using two system PLUS EVOLUTION 64-channel acquisi
tion unit (Micromed, France) with a sampling rate of 2048 Hz (anti- 
aliasing filter: 926.7 Hz; high-pass filter: 0.15 Hz; low-pass filter: 
1000 Hz). The micro-iEEG (intracranial EEG recorded on the micro- 
contacts) was recorded using a 64-channel Cerebus system (Blackrock 
Microsystems, Salt Lake City, UT, USA) with a sampling rate of 30 kHz 
(0.3–7.5 kHz bandwidth). Line noise cancellation at 50 Hz was applied. 
A macro-contact located in the white matter was used as a reference for 
macro-iEEG and micro-iEEG contacts. The recordings were stored 
following the Brain Imaging Data Structure Specifications (BIDS; www. 
bids.neuroimaging.io) (Holdgraf et al., 2018, 2019; Pernet et al., 2018) 
(Fig. 2).

2.1.2. FR and non-FR dataset
FR were tagged by two experts in neurophysiological epileptic bio

markers (JC and LG). FR criteria for were those proposed by Jacobs 
et al. (2008) and Zelmann et al. (2009) (events containing at least 4 
consecutive oscillations with amplitude clearly higher than the base
line). Brainstom’s GUI (Tadel et al., 2011) was used to manually detect 
FR using multiple panels for the visualisation of raw, filtered 
(200–600 Hz) and time-frequency signals. This first detection was per
formed by either LG or JC. Events were extracted and imported in 
WALFRID where they were reviewed with a panel presenting the raw 
and filtered signal as well as the corresponding scalogram for double 
validation by the second reviewer. No inter-rater agreement was 
calculated 1) as LG and JC simply discussed the case if it was discordant, 
2) since some variability in the FR was accepted and in fact desired to 
train the CNN, 3) and that the final user can in any case review the 
features of the FR detected and modify their status in WALFRID (“Step 
3”) to check the results of the detection if she/he wants to be more or less 
liberal/conservative. At first, 4954 FR were manually detected among 
13 patients (330 macro-FR and 4624 micro-FR). This manual detection 
stage allowed the construction of a first version of WALFRID, which 
allowed the automatic detection of 6598 new FR in the other 25 patients. 

Each of these new FR were individually reviewed. The 11,552 detected 
FR in total (N macro-FR: 5529; N micro-FR: 6023) were extracted from 
the iEEG recordings with 400 ms portions of surrounding background 
activity.

Non-FR activity was extracted from these same 13 patients, using an 
automatic procedure where around 9000 signal portions of 400 ms were 
randomly drawn. These signals were manually reviewed to eliminate 
those in which a FR or a comparable event was captured by chance. At 
the end, 8574 signal portions of 400 ms were stored. Any type of activity 
could be found in these non-FR snippets: slow waves, gamma activity, 
ripples, epileptic discharges, artefacts… The goal was to feed the CNN 
and make it able to discriminate FR among a large variety of other ac
tivities that can be found classically in iEEG.

Thus, two datasets were created to train the neural network: a FR 
dataset and a non-FR dataset.

2.1.3. Structure of the datasets
We designed a NoSQL (Not only SQL) database architecture to store 

all FR and non-FR snippets with a unique JSON (Java Script Object 
Notation) file to store the meta-data of all the events such as the source 
file name, time location, channel name, patient number, sample rate, 
duration, unit of measurement, etc. and a folder containing as many raw 
data files (in the form of.csv files) as the database contains events, where 
the time series for each event were stored (Fig. 2). All data were pseu
donymized. This architecture allows for easy navigation by computers 
and human users, as well as flexible optimal storage in RAM and on the 
hard disk. A single event in this database, without compression, weighs 
between 21 and 50 KB. Fig. 3 shows the database configuration.

2.2. Test datasets

2.2.1. SimiEEG-dataset: Simulated Macro-iEEG
Realistically simulated macro-iEEG data were freely available from 

Roehri et al. (2017). This dataset was chosen to evaluate the perfor
mance of WALFRID because it had already been used to benchmark six 
other HFO detectors. Data from this dataset were generated using real 
recordings of non-rapid eye movement (non-REM) slow-wave sleep of 

Fig. 1. Schematic representation of the hybrid electrode used in this study. (A) The gray areas represent the macro-contacts. The colored sticks and dots represent the 
tetrodes. (B) 10 seconds of micro-iEEG activity. (C) 10 seconds of macro-iEEG activity. Note that in the configuration where there are three tetrodes like in A, only the 
3 most medial and 3 most lateral macro-contacts are recording EEG. ”Mi”: Macro-contact “i”. “tet”: tetrode.
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patients with drug-resistant epilepsy undergoing pre-surgical intrace
rebral examination. Events such as IED, ripples and FR were extracted 
from the original data and were randomly inserted (3 events/min) into a 
simulated background activity, built from portions of the original signal 
without events, on which different filters were applied to control the 
Signal to Noise Ratio (SNR). Two events could appear simultaneously (e. 
g., an IED occurring concomitantly with a ripple, or a ripple occurring 
concomitantly with a FR). The 120-second simulated recording included 
30 channels for 4 SNR values (0; 5; 10; and 15 dB). Each channel and 
SNR was simulated 30 times, leading to a total of 960 channels.

2.2.2. RealiEEG-dataset: Real Hybrid macro/micro-iEEG
Simulated data cannot account for the diversity and complexity of 

real brain iEEG activity. Furthermore, to the best of our knowledge, no 
simulated micro-iEEG data are available to date. For these reasons, we 
evaluated our method on data recorded from patients implanted with 
deep brain hybrid micro- and macro-electrodes (DIXI Medical, Besan
çon, France). We used the iEEG of 11 patients randomly selected from 
the 38 patients mentioned above. To prevent overfitting, the data from 
these patients were removed from the FR-dataset and a specific CNN was 
trained with the data from the remaining 27 patients.

Fig. 2. Schematic representation of the database architecture with examples of the content of each event.
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2.3. WALFRID detection pipeline

The summary workflow of our method is as follows: first, the iEEG 
recording is split into short time windows of 400 ms. These signal por
tions are pre-whitened and transformed into scalograms on which we 
apply a specific whitening method to reduce the noise and a convolution 
transform to increase the SNR. These scalograms are given as inputs to a 
trained CNN, whose binary output is used to assign a label to them: it can 
either be a FR candidate or a non-FR. All events tagged as FR candidates 
are sent to a second processing step in order to reduce false positives. For 
this step, the signal is filtered into two distinct frequency bands: 

200–600 Hz (band-pass; which ideally requires the EEG signal to be 
sampled at 2048 Hz) and above 600 Hz (high-pass). We then calculate 
the Hilbert envelope of these signals to find the highest magnitude 
portions and check if one of these signal portions is representative of the 
candidate FR in terms of duration, amplitude and number of peaks, or if 
it is more likely to be a false positive that was detected by the CNN (see 
Fig. 4B). Thirdly, the detected events are stored in a database that can be 
consulted by the user through a GUI, that can be used to further explore 
the detected events if necessary, to assign a confidence level to them, or 
to carry out various operations of signal processing thanks to data 
visualization. This whole process is summarized in Fig. 4 and will be 

Fig. 3. Description of the database. A. Data snippets were stored in two databases using the exact same structure, one database for Fast-ripple (FR) and the other for 
Non-FR. These events were extracted from the iEEG of 38 patients. The 400 ms time series and their metadata (patient num, channel name, file name, onset time…) 
were stored in a NoSQL database. B. Top of each insert: Raw signal. Middle: 200–600 Hz filtered-signal. Bottom: Scalogram. The CNN was trained with the 
200–600 Hz portion of the scalogram, but we display it between 1 and 600 Hz so that the reader can have a better understanding of the overall signal dynamics. For 
the same reason, we represent the raw signal before pre-whitening.
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explained in more detail in the next sections. Note that in all procedures, 
only 1 micro-wire per tetrode was kept. The reason is that the 4 micro- 
wires of a same tetrode reflect the same local field potential activity. The 
study of small differences at the scale of one tetrode falls outside the 

scope of this paper and will be studied in the future.

2.3.1. Data preprocessing
Once cut into 400 ms portions, the iEEG snippets went through 

Fig. 4. Flowchart of the WALFRID algorithm. (A) Schematic representation of Step 1, which is based on a CNN processing scalograms. (B) Schematic representation 
of Step 2. This step consists in rejecting false positives, based on the filtered signal and its Hilbert envelope which is shown as an orange dashed line above the filtered 
signal. See section “2.3.3.1. Control of FR criteria” for details. (C) Graphic user interface allowing users to review the detector output. Many options are available 
including tagging the event with different labels (FR, artefact, etc.). (C1) Left panel used to manage different parameters and change the label assigned to the 
displayed event. (C2) raw signal (400 ms). (C3) Filtered (200–600 Hz) signal (400 ms window). (C4) Scalogram (400 ms window). (C5) Additional time- 
synchronized window showing the raw signal of adjacent contacts. Please note that additional windows providing FR statistics can also be open (length, mode, 
entropy, etc. not shown here). (D) Results on a glass brain: example for one patient. The yellow diamonds represent the position of the micro-contacts in hybrid 
electrodes. The red dotted rectangles represent the FR detection site. In this example, the patient suffered from mesial temporal epilepsy localized in the left 
hemisphere, with a large number of FR being recorded there. Note that results are now presented under the form of a topographic map (see corresponding section and 
figure). However, a small amount of FR (macro-FR: 0.75 %, micro-FR: 0 %) were located in the hemisphere contralateral to the epileptogenic area (right).

Fig. 5. Overview of the CNN. A. The CNN was trained to differentiate scalograms of iEEG signal portions containing FR (FR-dataset) versus those not containing FR 
(Non-FR dataset). B. 4-fold cross-validation and final test diagram. C. Diagram of the architecture of the CNN. Model’s architecture was plotted using Net2Vis 
(Bauerle et al., 2021).
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several stages of normalization: 

1. Pre-whitening using first-order backward differencing procedure 
(Gardner et al., 2007; Roehri et al., 2016). The purpose of 
pre-whitening was to suppress the continuous component of the 
signal and to reduce the impact of low frequencies on the following 
steps (Eq. 1).

2. Pre-whitened signals were then transformed into scalograms using 
continuous wavelet transform (CWT) with the following parameters: 
wavelet type: Morlet; cycles: 16; boundaries: 200–600 Hz (fmin- 
fmax); number of frequencies between fmin and fmax (nf): 100 
(Cohen, 2014). The scalograms were resized to 500 × 50 pixels.

3. A “H0 Z-score” normalization was applied to the scalograms to 
strengthen the SNR across frequencies (Roehri et al., 2016).

4. To further improve the SNR on the scalograms, we applied a two- 
dimensional convolution using a gaussian kernel of size 20 and 
standard deviation 5.

x[n] = x[n] − x[n − 1] (1) 

2.3.2. Detection step 1: CNN
CNNs are a particular class of deep, feed-forward neural networks. 

They have become popular network architectures in the Deep Learning 
field due to their success in image processing and classification (Firpi 
et al., 2007). The main difference between CNN and other feed-forward 
neural networks is the application of convolution operations to extract 
features from the input image. In addition to convolution, CNN have 
other layers that improve and accelerate learning and inference by 
downsampling the amount of data that is generated.

For the first step of the WALFRID detector, we trained a custom CNN 
to differentiate between 400 ms normalized scalograms containing a FR 
from those without (Fig. 5A). The architecture of the neural network is 
presented in Fig. 5C Input to the network are images (scalograms) with a 
size of 50 × 500 pixels.

The network was designed using the Python 3.7 version of Keras API 
for Ten- sorFlow 2.8.0. Its architecture was inspired from Zuo et al. 
(2019), with 3 convolutional layers (filters per layer: 32; 32; 16. Kernel 
size: [2,4]; [1,2]; [1,2]. Padding: always set to “same”. Trainable pa
rameters: 288; 2080; 528), 3 max pooling layers (kernel size: [2,4]; [1, 
4]; [1,4]), 1 drop-out layer, 1 flattened layer and 3 fully connected layers 
(units: 64; 32; 1. Activation: sigmoid, sigmoid, sigmoid. Trainable pa
rameters: 179,264; 2080; 33). We explored various parameters, and 
while other configurations could be considered, we achieved satisfac
tory results with the ones we propose, which emerged as the most 
effective during our experimentation. The initial network weights were 
randomly assigned for each training session. To evaluate the models 
while cutting back overfitting problems, we performed a K-fold stratified 
cross-validation (with K=4). First, the dataset was split in two sets: 80 % 
was used to perform the 4-fold cross-validation and the remaining 20 % 
for performing a final test of the system (Fig. 5.B). The 4-fold 
cross-validation set was divided again into four different subsets. Each 
subset consisted of, approximately, 50 % FR and 50 % non-FR cases. 
Then, the network was trained and validated along 40 epochs (10 per 
fold), using three of the subsets for training and the remaining one for 
validating the system, with a learning rate of 0.00001 and a batch size of 
32 using Adam optimizer. Operations were performed on the 32 hearts 
GPU and 64 Go of random-access memory (LPDDR5) of an Apple Silicon 
M1 Max Macbook Pro.

2.3.3. Detection step 2: Rejection of false positives
This step is divided into two parts that use exactly the same pro

cessing, but on the filtered signal at different frequencies, 200–600 Hz 
and above 600 Hz, respectively. The first part aims at eliminating false 
FR candidates based on the formal criteria defining FR (Zelmann et al., 
2009). The second part aims to eliminate high harmonic signals, which 
can occasionally mislead the CNN due to the traces they leave in the 

spectrograms.

2.3.3.1. Control of FR criteria. Several objective criteria are used to 
define FR and need to be taken into consideration. While the CNN itself 
extracts the features of interest, it is necessary to verify that the FR 
candidates meet the expected criteria. To verify that the FR candidates 
meet the criteria of amplitude, duration and number of oscillations, and 
that those that do not meet them are rejected, we evaluate each of them 
according to the following procedure: 

1. The Hilbert envelope (orange line in Fig. 4.B) of the filtered signal 
between 200 and 600 Hz is calculated (bandpass linear digital filter: 
Butterworth 200–600 Hz, order: 6). Only the portions above the 
97.5th percentile are kept (above the green part of the filtered signal 
in Fig. 4.B). Such a threshold was previously used by Gardner et al. 
(2007) on the cumulative distribution function of line-length values, 
which is highly correlated with Hilbert’s envelope 
(Remakanthakurup Sindhu et al., 2020).

2. If this extreme portion of the Hilbert envelope is continuous for more 
than 6.6 seconds (minimum duration of an FR, for 4 oscillations at 
600 Hz; corresponding to 1000 ms / 600 Hz x 4 oscillations), the 
signal goes to the next step, otherwise it is rejected.

3. The magnitude of the portion of the Hilbert envelope of interest is 
averaged and compared to the averaged magnitude of the rest of the 
envelope (<97.5th percentile, background activity). If the average 
magnitude of the continuous-extreme portion is at least twice that of 
the rest of the signal (arbitrary threshold, meeting Zelmann et al. 
(2009) criteria that the amplitude of the FR be clearly higher than the 
baseline), the signal goes to the next step.

4. The number of peaks in the oscillation below the Hilbert envelope 
portion of interest is estimated using a peak detection function 
(find_peaks method of the SciPy library in python). If the number of 
peaks is at least 4, the signal is kept and considered as a FR.

2.3.3.2. Rejection of high harmonic signals. The selected FR undergo a 
last selection step. This consists in repeating the 4 steps described before 
but on the signal filtered beyond 600 Hz rather than the one filtered 
between 200 and 600 Hz. Contrary to the decision process explained 
above, the signals that successfully meet the rejection criteria are 
eliminated. Indeed, some high harmonic signals, such as artefacts, very 
abrupt epileptic discharges or action potentials of single neurons in 
micro-iEEG can partially mimic the frequency signature of FR between 
200 and 600 Hz. This leads to “false fast-ripples”, false oscillations due 
to the frequency transformation that are not present in the raw signal, 
sometimes referred to as the Gibbs phenomenon (Bénar et al., 2010; 
Worrell et al., 2008). However, unlike FR, these events also leave a trace 
in the higher frequency bands because of their harmonics. If these har
monics are detected, then the system considers that the presented 
element is not a FR, and it is rejected.

2.3.4. Evaluation metrics
We analyzed the results of WALFRID after Step1 and Step 2. Detected 

signal portions that actually contained a FR were considered as True 
Positives (TP). Detected signal portions that did not contain a FR were 
deemed False Positives (FP). Omitted FR were considered as False 
Negatives (FN). Note that, as for all such datasets, it is not possible to get 
a true negative value as the signal is continuous. It is thus not possible to 
compute specificity. To evaluate our model, we used precision (Eq. 2) 
and sensitivity (Eq. 3) criteria as well as the F1-score (Eq. 4), which 
combines precision and sensitivity to characterize the detector overall 
performance (Roehri et al., 2017). 

Precision = 100 ×
TP

TP + FP
(2) 
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Sensitivity = 100 ×
TP

TP + FN
(3) 

F1score =
2 × Precision × Sensitivity

Precision + Sensitivity
(4) 

2.4. WALFRID’s GUI

Through the WALFRID’s GUI, users can explore a diverse array of 
visualizations and signal analyses related to the FR that were detected. 
The GUI was designed to be easily used by non-specialists, such as cli
nicians. It displays the original raw EEG signal alongside the corre
sponding signal bandpassed between 200 and 600 Hz and the 
scalogram, aiding in the identification of potential labelling errors. The 
user can easily re-label the FR if necessary, using different options 
(artefact, neuronal spike, noise, etc.). We also provide the reviewer with 
the ability to give the FR a confidence level (1 =high confidence that this 
is a true FR to 3 =low confidence that this is a true FR) and to generate 
summaries taking into account these confidence levels. The user inter
face allows for instantaneous navigation through time series and tran
sitions between channels. Statistics about FR, both for FR individually or 
across the whole FR database, are also available. These statistics include 
the length of the FR, entropy, spectral mode, FR index and SNR (Ibarz 
et al., 2010). More about the GUI is presented in Fig. 4.C.

3. Results

3.1. Training evaluation

We first evaluated the performance of the training (n(FR) = 11,552). 
After the cross-validation was performed, four subsets were used for 
training and the remaining 20 % of the dataset was used to test the 
network (Fig. 5). This model achieved 95.46 % accuracy. The evolution 
of the binary cross-entropy loss and accuracy over 10 epochs for each 
fold is shown in Fig. 6.

3.2. Evaluation on simulated macro-iEEG data and comparison with 
other FR detectors

We evaluated the two steps of our FR detection method on the 
SimiEEG-dataset, which contained 23,040 FR distributed in the macro- 
iEEG signal at different SNR values. This corresponds to 5760 FR for 
each SNR. This signal also included ripples, interictal epileptic dis
charges and background activity. WALFRID achieved low performance 
at 0 dB (sensitivity: 8.32 %; precision: 80.37 %). This result was, of 
course, expected as FR must stand out from surrounding activity to be 
correctly detected. Performance greatly improved at 5 dB (sensitivity: 
72.5 %; precision: 96.98 %) and above, when the SNR increased. Global 
accuracy reached a plateau at 10 dB (sensitivity: 99.51 %; precision: 
98.01 %), with no major changes at 15 dB (sensitivity: 99.95 %; preci
sion: 96.51 %). Results of the detection are reported in Fig. 7 and in 
Table 1.

The results obtained by six other detectors that processed the 
SimiEEG-dataset are available for download with the dataset (Roehri 
et al., 2017). These detectors are available in RippleLab (Navarrete 
et al., 2016), except for Delphos which is available with the Anywave 
software (Colombet et al., 2015), and MOSSDET (Lachner-Piza et al., 
2020). Among these detectors, MOSSDET, Delphos and SLL demonstrate 
the best F1-score. On closer examination, MOSSDET and Delphos 
outperform SLL because of their overall better sensitivity/precision ratio 
(Fig. 7). A good balance between sensitivity and precision is indeed 
essential for the interpretability of results, which in the presence of large 
numbers of false positives can be difficult or impossible to use.

In this dataset, the efficiency of step 2 of WALFRID did not really 
reach the goal of improving the overall performance. This can be 
explained by the fact that the SimiEEG-dataset is very clean. For 
instance, at 5 dB the F1-score dropped from 82.07 % at Step 1–75.04 % 
at Step 2, due to a decrease of the sensitivity (-10.7 %) that was not 
compensated by a significant increase in precision (+0.5 %). Indeed, the 
precision could not really improve because it had already reached a high 
performance (96.38 %).

3.3. Resistance to false fast-ripples

As mentioned in the Introduction, a key feature expected from a FR 
detector is to be insensitive to “false fast-ripples”, that is false oscilla
tions induced by the spectral content of sharp transients such as epileptic 
discharges (Bénar et al., 2010; Worrell et al., 2012). Among the 5760 
simulated epileptic discharges that passed through our detector from the 
SimiEEG-dataset, 309 (5.4 %) were labeled as FR. However, 283 of these 
events were recorded on the same channels (GPH’) and presented 
non-physiological morphological characteristics, maybe because of an 
inconsistency in the simulation parameters used to create these signals. 
It is very unlikely to record similar epileptic discharges in the real iEEG 
of patients. If we remove these events, false positives fall to 0.4 %, which 
suggests that WALFRID is largely immune to false FRs induced by sharp 
interictal epileptic discharge.

3.4. Evaluation of FR detection on real micro-macro iEEG data

With good performances observed on the SimiEEG-dataset, we 
challenged WALFRID on real data from the RealiEEG-dataset. Unlike 
simulated macro-iEEG data, these recordings also contained micro-iEEG 
data. Note also that we did not clean the data whatsoever, for example 
by removing artefacts or noisy time windows. As our method is resilient 
to noise and because we want to get as close as possible to the conditions 
of real use in clinical routine, we have not been restrictive on the quality 
of the data to obtain the best possible result. We simply removed the 
recording channels completely unusable when there were any, which 
was less than 1 % of the original data. For this evaluation, we used a 
different model than the one used before. We indeed removed the data of 
the patients including in this evaluation from the original dataset to 

Fig. 6. Training and validation of the model. Evolution of the loss and accuracy 
when training the model using 4-fold cross validation with 10 epochs each 
using the entire FR-dataset.
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avoid overfitting. A second model was thus trained on less FR (n FR =
5350). It achieved good accuracy (93.21 %) with accuracy and loss over 
10 epochs for each fold highly comparable to the first model.

3.4.1. Events categorization
We manually visualized and assigned a label to each event detected 

as a FR candidate after the CNN output, so just after Step 1, based on five 
categories: one category for true positives and three categories for false 
positives. This distinction was intended to assess the efficiency of the 
second step of our detection procedure in eliminating each category of 
false positives, and to provide a better understanding of the events that 
are most likely to mislead a CNN that uses scalograms as input. Events 
were categorized as follows: 

• FR (True Positive, examples in Fig. 8A1 and 6A2).
• Artefact (FP, examples in Fig. 8B1 and 6B2): Abnormal, large, and 

brief change in amplitude, or spurious frequency. Several causes can 

be at the origin of such artefacts: movements of the patient, transient 
electrical dysfunction, action potentials in the micro-iEEG…

• FR-like (FP, example in Fig. 8C): Event resembling an FR in terms of 
the scalograms and/or the filtered temporal signal and/or the raw 
signal but which could not be objectively classified as such, mainly 
because one of the expected criteria was missing (e.g. only 3 oscil
lations instead of 4, relatively low amplitude or frequency…).

• Other (FP, example in Fig. 8D): Portions of the signal where no 
specific event could be identified or an unknown event.

3.4.2. True positives at the CNN output
WALFRID detected 4074 FR in the 11 patients of the RealiEEG- 

dataset after the CNN output (detection step 1) (Fig. 9). In the 6 pa
tients for whom hybrid recordings could be analyzed, 1188 FR were 
detected at the macro-iEEG scale and 367 FR at the micro-iEEG scale. 
Note that for these patients, the available number of macro-contacts 
(n = 628) was much larger than the number of tetrodes (n = 51), as 
described in Table 2. The mean overall number of FR per macro-contact 
(1.9) was thus much lower than per tetrode (7.2). The remaining 2519 
FR were detected in the 5 other patients for whom only macro-contacts 
(n = 490) were available.

3.4.3. False positives at the CNN output

3.4.3.1. Sources of false positives at the CNN output at the macro-iEEG 
scale. 4500 false positives were detected by the CNN at the macro- 
iEEG scale in the 11 patients of the RealiEEG-dataset (right after 
detection step 1). The majority of FP at the macro-iEEG scale (44.4 % of 
all false positives) was categorized as “FR-like” for the following reasons: 
(a) insufficient number of oscillations, and/or (b) low amplitude, and/or 
(c) non-converging raw/filtered/time-frequency signals. The second 
source of FP (31.7 %) was coming from events that were categorized 
“Other”. The remaining 23.9 % false positives originated from artefacts 
potentially caused by a transient electrical default or wire movements 

Fig. 7. Comparison of WALFRID with other detectors on simulated macro-iEEG data. WALFRID, in red, Step 1 bar plot shows the performance at CNN output. 
WALFRID Step 2 bar plot shows the performance after false positives rejection stage. MOSSDET: (Lachner-Piza et al., 2020); Delphos: (Roehri et al., 2016); HIL: 
(Crépon et al., 2009); MNI: (Zelmann et al., 2012); SLL: (Gardner et al., 2007); STE: (Staba et al., 2002).

Table 1 
Performance of WALFRID at Step 1 and Step 2 on the SimiEEG-dataset. Prec: 
precision (Eq. 2), Sens: sensitivity (Eq. 3), F: F1-score (Eq. 4). TP: true positives. 
FN: false negatives. FP: false positives.

Output of the step 1 (detection with CNN)

SNR TP FN FP Sens (%) Prec (%) F (%)
0 dB 479 5281 117 8.32 80.37 15.08
5 dB 4176 1584 130 72.5 96.38 82.07
10 dB 5732 28 135 99.51 97.70 98.60
15 dB 5757 3 303 99.95 95.00 97.41
Output of the step 2 (false positives rejection)
SNR TP FN FP Sens (%) Prec (%) F (%)
0 dB 287 5473 112 4.98 71.93 9.32
5 dB 3559 2201 121 61.79 96.91 75.40
10 dB 5710 50 116 99.13 98.01 98.57
15 dB 5744 16 208 99.72 96.51 98.09

L. Gardy et al.                                                                                                                                                                                                                                   Journal of Neuroscience Methods 415 (2025) 110350 

10 



caused by head movements or patient gestures.

3.4.3.2. Sources of false positives at the CNN output at the micro-iEEG 
scale. WALFRID detected 896 FP at the micro-iEEG scale in 6 patients 
of the RealiEEG-dataset at the CNN output (detection step 1). The dis
tribution of FP across the different categories was roughly balanced, 
with 38 % of events classified as "FR-like", 32.6 % as "Other" and 29.4 % 
as "Artefacts". In addition to the sources of artefacts that can affect the 
macro-iEEG signal, new ones could be considered such as action po
tentials of neurons, in isolation or in burst.

3.4.4. Efficiency of Step 2 to reject false positives
About 1750,000 scalograms were analyzed by the CNN, in step 1 of 

our detection procedure (1169 channels * 600 seconds / 0.4 seconds). 
Following CNN output, 9470 events were classified as FR candidates, i.e. 
0.54 %. Among these candidates, 4074 were FR (0.23 %) and 5396 were 
false positives (0.31 %). Of these false-positive, 2770 were eliminated by 
step 2. We describe the results of this step in detail in the paragraphs 
below and in Fig. 9.

3.4.4.1. Efficiency of Step 2 at the macro-iEEG scale. Of the 4500 false- 
positive detected at the macro-iEEG scale in 11 patients of the 
RealiEEG-dataset, 2392 (53.2 %) were eliminated by Step 2. More 

Fig. 8. Example of different types of events. In these examples, we used one of the features of WALFRID to automatically code the power of the detected events using 
colors. Red indicates a high SNR, yellow and green a medium SNR and blue a low SNR. The right row contains events with relatively high SNR, the left contains 
events with relatively low SNR. Top of each insert: Raw signal. Middle: 200–600 Hz filtered signal. Bottom: 200–600 Hz scalogram. A1 and A2: Fast Ripples. B1: high- 
frequency, high-amplitude artefact. B2: burst of neuronal activity recorded on the micro-wires of hybrid electrodes. These bursts can mimic the spectral activity of a 
FR. C: This event was not classified as a true FR because of the number of oscillations. D: No particular event could be observed.
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precisely, 2090 were eliminated in Step 2.1 and 302 in step 2.2 (rejec
tion of harmonics of events > 600 Hz). As expected, the efficiency of 
Step 2 was mainly observed in the "Other" (942 out of 1427 in total) and 
"Artefact" (902 out of 1077 in total) categories. As expected as well 
because of their resemblance to FR, the "FR-like" events were poorly 
eliminated (545 out of 1996 in total).

As a counterpart to the elimination of false positives, Step 2 also 
eliminated 486 FR (out of 3707 in total).

3.4.4.2. Efficiency of Step 2 at the micro-iEEG scale. Among the 896 
false-positive at the micro-iEEG scale in 6 patients of the RealiEEG- 
dataset, 378 (42.2 %) were eliminated by Step 2. More precisely, 268 
were eliminated after Step 2.1 and 110 after Step 2.2. As for macro-iEEG, 
the efficiency of Step 2 was mainly observed in the "Other" (99 out of 
292 in total) and "Artefact" (221 out of 264 in total) categories. As above, 
the "FR-like" events were poorly eliminated (58 out of 340 in total).

As a counterpart to the elimination of false positives, Step 2 also 
eliminated 36 FR (out of 367 in total).

3.4.5. Summary of the precision for the real micro-macro iEEG dataset
Considering the above figures, the overall precision of WALFRID 

after step 2 was 57.5 %. It was higher for macro-EEG (60.4 %) than for 
micro-EEG (39.0 %). This means that some FP were still present after 
Step 2 (about 40 % of all events for macro-EEG and 50 % of all events for 
micro-EEG). However, it only takes a few minutes to discard these FP 
using the Step 3 GUI. Sensitivity could not be measured because the 
number of false negatives is unknown for real EEG data.

3.5. Review and summary of the results

Automation of FR detection is crucial, but automated procedures do 
not address all demands. Users, in particular clinicians, require confi
dence and clinical insights in the result of the output of automated 
procedures. It is one of the goals of WALFRID to provide the user with an 
interface to review the results. WALFRID includes the automatic 
detection of FR but also many features revolving around interaction with 
the results that can be reviewed using specialized user interfaces. During 
the detection process, FR candidates are systematically stored in a 
database that can be consulted according to several representations: raw 
signal (Fig. 4C2), filtered signal (Fig. 4C3), scalograms (Fig. 4C4). The 
user can change their label or perform various signal processing oper
ations to analyze them (Fig. 4C1). This Step 3, which we call “episte
mological review” (Fig. 4) is necessary if one wants a system to be 
adopted by clinicians. For this reason, WALFRID is viewed as a semi- 
automatic detector as it does not, on purpose, remove the user from 
the whole detection procedure.

In addition, what a user wants to see is a summary of the amount of 
FR detected over the channels of each electrode. We designed a dedi
cated graphical representation to display this information efficiently 
(Fig. 10). It summarizes the intensity of the FR detection on a plot which 
shows the different electrodes on the y-axis and the different contacts on 
the x-axis. The clinician can thus easily understand from where the most 
FR were recorded.

An unexpected finding of such display is that for most patients, the 
information can be interpreted immediately after completing Steps 1 
and 2 of the automatic detection procedure, without the need for manual 

Fig. 9. Distribution of the number of detected events over the two detection steps by WALFRID, for both macro- and micro-contacts. Results were manually labeled 
based on 4 categories after visual inspection. Left panel: results for 11 patients of the RealiEEG-dataset. Right panel: results on the micro-electrodes for 6 patients of 
the RealiEEG-dataset.

Table 2 
Characteristics of the electrodes implanted in the 11 patients used to evaluate 
our detector (RealiEEG-dataset).

Patient Number of electrodes 
(including hybrids)

Number of 
macro-contacts

Number of 
tetrodes

1 13 (4) 108 9
2 11 (4) 104 10
3 10 (4) 105 9
4 13 (4) 97 9
5 14 (3) 107 6
6 13 (3) 107 8
7 13 101 no tetrode
8 15 106 no tetrode
9 12 111 no tetrode
10 12 (3) 110 corrupted
11 10 (3) 62 corrupted
Total 136 (22) 1118 51
Detected 
FR

4075 3707 368
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review of Step 3. For example, Fig. 10A shows all events after Step 2, 
while Fig. 10B shows the same results after manual reviewing (Step 3). 
Of course, results are cleaner on Fig. 10 after manual cleaning but 
Fig. 10A allowed to arrive at the same clinical conclusion, that is that 
most FR are recorded on channels B1–2–3 (those were located in the 
anterior hippocampus of the patient). This raises the possibility, which 
needs to be assessed in future studies, that the results of WALFRID do not 
necessarily need to be manually reviewed in details. It also suggests the 
interesting possibility that in fact most FR-like events (Fig. 8C), which 
were estimated to account for about 40 % of all false positives are in fact 
true FR, however not strictly meeting the formal criteria for FR reported 
in the literature and used in the current study for the sake of compara
bility across studies. Given these thoughts, we have developed a pro
cedure to categorize FR in three: FR with a confidence level 1 (FR 
meeting all formal criteria), FR with a confidence level 2 (events close 
but not entirely meeting formal criteria) and FR with confidence level 3 
(FR meeting some aspects of FR, i.e. more than 2 of the formal criteria 
for a FR are missing). As can be seen from Fig. 10, those provide a very 
similar picture of the location of FR in the brain suggesting that FR may 
overall have more variability than previously thought.

4. Discussion

Several studies have shown that FR could be promising biomarkers of 
the epileptogenic zone (Frauscher et al., 2017; Nevalainen et al., 2020; 
Thomschewski et al., 2019; Remakanthakurup Sindhu et al., 2020; 
Fedele et al., 2016; Scott et al., 2020; Wang et al., 2024), although this 
has recently been questionned (Lachner-Piza et al., 2020; Jacobs and 
Zijlmans, 2020; Kuhnke et al., 2019; Roehri et al., 2018). Over the past 
two decades, several attempts to create FR detectors have emerged 
(Donos et al., 2020; Lai et al., 2019; Fedele et al., 2016; Burnos et al., 
2014), but no solution has gained consensus possibly because the con
straints for day-to-day use are too great: clinicians do not have the time 
to perform extensive pre-processing on iEEG data or to sort out large 
amounts of false positives, without suitable interactive data visualiza
tion tools. Also, there may often be a discordance between the published 
performance of the algorithms and what clinicians experience when 
they implement them in the real world.

Here, we created a computer-aided method that automatically de
tects FR. We have combined the strengths and advantages of three 
generations of high-frequency oscillation detectors for the detection of 
FRs: those based on time series analysis, those based on scalogram 
analysis and those based on deep learning, to which we have added two 

Fig. 10. Example of topographic maps. A. Result after automatic detection on 10 minutes macro-EEG signal, without human intervention to label the detected 
events. B. Showing FR after manual reviewing of each event (confidence level 1) using the WALFRID GUI. C. Showing FR with a confidence level 2. D. Showing FR 
with a confidence level 3. Note the strong co-location observed for all confidences.
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essential elements: firstly an approach mimicking the workup of clini
cians for better performance and greater acceptability of the results by 
clinicians, and secondly an adaptive capacity for analysis at different 
scales of micro- and macro-EEG recordings. WALFRID thus follows three 
processing steps: FR candidate detection; rejection of false-positives and 
reviewing. The objective was to limit as much as possible the user’s 
workload, especially the processing of false positives, which are always 
numerous as soon as large quantities of real data are used (Kural et al., 
2022), while keeping the clinician into the loop in order to provide high 
confidence in the output results.

WALFRID’s performance was compared to 6 other FR detectors. 
WALFRID performed close to the best detectors available, Delphos and 
MOSSDET, and even exceeded them at certain SNR levels. Delphos and 
MOSSDET performed better at 0 dB (+6 % and +29 % in F1-score 
respectively), but the interest of 0 dB oscillations is debatable since 
the criteria established in the literature stipulate that the amplitude of 
the FR must exceed that of the background activity to be considered as a 
true FR (Zelmann et al., 2009). At 5 dB, the gap between WALFRID, 
Delphos and MOSSDET became small (+3 % in F1-score for both of them 
compared to WALFRID). At 10 dB, WALFRID took the lead (+8 % 
compared to Delphos, +7 % compared to MOSSDET), and remained 
better at 15 dB (+7 % compared to Delphos, +4 % compared to 
MOSSDET). These differences are relatively small and may vary from 
one dataset to another.

WALFRID is based first on a CNN. Detecting FR using deep learning 
allows us to approach the problem from a different and potentially more 
effective angle, or at least one that complements, past methods. Deep 
learning algorithms effectively demonstrate a certain form of resilience 
to poor-quality input data, including for multi-class scenarios (Zuo et al., 
2019; Medvedev et al., 2019; Hagen et al., 2020). One critical benefit of 
the approach in this study was that there was no need for any 
pre-processing of the signal: we did not reject artefactual periods of iEEG 
as is usually needed for most conventional detectors. This is an impor
tant progress as this saves a lot of time, particularly for clinicians for 
whom artefact rejection has little added value. Of note, the few detectors 
based on deep learning available are usually fed with portions of the 
temporal signal, either raw or filtered. However, scalograms can be 
much more informative and discriminating when looking for HFO 
(Donos et al., 2020; Quitadamo et al., 2018; Roehri et al., 2016), leading 
to the idea that time series should only be used for fine analysis of the 
signal’s oscillatory characteristics.

The second steps of WALFRID aimed at rejecting false positives. 
False-positives are common in iEEG recordings due a large variety of 
reasons related to electro-magnetic and electronic artefacts (sensor is
sues, connectors, cables movements, poor ground and reference, 
external source of electric noise, etc.). False FRs can also be induced by 
sharp transients. In addition, a large number of false positives, due to a 
liberal detector, helps achieving higher sensitivity. However, rejecting 
false positives manually through signal reviewing can be very time 
consuming and can severely diminish the interest of an automatic de
tector. The false-positives rejection step gave satisfactory results as 
improvement in precision was of 42 % on the micro-EEG signal and of 
53 % on the macro-EEG signal. Importantly, we found out that contrary 
to true positive FR, which are densely clustered on a few electrode 
contacts, false positives are distributed without any particular rule (i.e., 
depending on the artefact, noise and so on that were recorded on these 
other contacts). When the user consults the map of the distribution of the 
FR across the different contacts, he can quickly perceive on which 
contacts is located the FR cluster because of the high density of detected 
events. In contrast, false positives spread out across other contacts, 
leading to a low density of events (example in Fig. 10A). We believe that 
our Step 2 could be improved in a number of ways, or even tailored to 
specific needs and teams if needed.

The counterpart of Step 2 is to also reject some true positives. 
Nevertheless, the time saved to process the final result in routine can 
compensate for this loss. If the user prefers not to lose any FR, the 

different steps can be dissociated. The user can thus choose to stop at 
Step 1 and analyze the results at the output of the CNN. This choice can 
be interesting when a patient presents very few FR, or when the analyses 
focus on only a few electrodes, requiring less manual processing time. 
Generally speaking, and from a clinical point of view, it is not necessary 
to have the exact count of FR for a patient. This is probably impossible to 
achieve in any case as FR can more often than not be in a grey zone 
between FR strictly meeting all criteria for a FR and FR not meeting all 
these but still viewed as a FR. This will depend on reviewers and whether 
they are liberal or not regarding this issue. This situation is very similar 
to other interictal biomarkers that are difficult to categorize such as 
interictal epileptic discharges (Kural et al., 2020).

Interestingly, we found that events classified as "FR-like", that is, FR 
that were labeled with a confidence level 2 (medium confidence that it is 
a true FR) or even 3 (low confidence), were often co-located on the 
electrode contacts on which FR with high level of confidence were also 
recorded (Fig. 10). This observation leads us to believe that the criteria 
for selecting FR might generally be restrictive, leading to eliminating 
large amounts of events of interest regarding the localization of brain 
tissue related to the epileptogenic zone. These events are correctly 
detected by an unsupervised approach, such as with a CNN in this study, 
but discarded because of the objective criteria used to set the thresholds 
of parametric methods. To date, some criteria such as the number of 
peaks whose amplitude exceeds that of the background activity have 
been established mainly to avoid the detection of false FRs (Bénar et al., 
2010; Amiri et al., 2016). But with the improvement and resilience of 
machine learning techniques, we could imagine in the near future being 
able to abandon certain criteria to maximize useful information. 
Different patterns broadly corresponding to FR could be automatically 
detected and then clustered to identify subtypes among FR and reject 
artefact-like FR, as suggested in Blanco et al. (2011).

Manual post-processing using Step 3 is most of the time not 
mandatory, particularly after what we have just reported regarding the 
analysis of the confidence levels applied to FR. If for some reason it has 
to be done, for example because a patient shows discordant results with 
another clinical examination or the clinicians simply want to gain con
fidence in the results, it takes about one hour to visually process 1000 
events detected with WALFRID. For example, we processed for this 
study all detected events one by one, i.e. 9470 in the 11 patients, which 
corresponded to a processing time of about 9 hours. A combined 
approach mixing an automatic detection step and human supervision 
has proven to be efficient for interictal epileptic discharge analysis 
(Kural et al., 2022), which is similar to the approach we propose here. Of 
course, if we had to do this work entirely manually, it would have taken 
dozens of days, which is obviously impossible to ask of clinicians and 
demonstrates the interest of automated methods.

Another major objective of our study was to detect FR on the micro- 
contacts of hybrid electrodes. The first FR described in humans were 
recorded in the EZ using micro-electrodes (Bragin et al., 1999). But since 
it was discovered that FR could also be recorded with macro-electrodes, 
almost all clinical trials and dedicated automatic detectors were 
designed exclusively for this type of electrode. Some studies have shown 
that it is possible to record more FR at the micro-EEG scale, but in total, 
very few have been conducted simultaneously at both the macro-iEEG 
and micro-iEEG scales (Worrell et al., 2008; Despouy et al., 2019), 
thus limiting our capacity to draw solid conclusions about how many FR 
could be recorded at both scales simultaneously. Although there isn’t yet 
any gold standard regarding FR recorded on micro-EEG, WALFRID 
performed without difficulty on micro-contact. With this regard, Step 3 
is also useful to get acquainted with FR and to look for FR subtypes, 
which may be particularly relevant to analyze whether FR recorded in 
the micro-iEEG bring the same clinical information or have the same 
physiological origin that FR recorded in the macro-iEEG. Previous work 
in animals has for example suggested that there could be both “pure” 
and “emergent” FRs (Ibarz et al., 2010). Whether the size of the elec
trode, which can vary considerably in patients with epilepsy between 
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ECoG (electrocorticography), depth electrodes and microwires, has an 
effect on the FR record remains to be clarified (Menendez de la Prida 
et al., 2015).

To accurately capture FR within the upper range of the 200–600 Hz 
band (e.g., at 500 Hz), a sampling rate of 2048 Hz is ideally required, 
which may not be routinely available in clinical settings. It may be 
valuable to consider acquiring an hour-long EEG recording for FR 
analysis, such as during a nap or the early stages of nighttime sleep. 
Recent studies have described very high-frequency oscillations 
(>1000 Hz) (Brazdil et al., 2017). While WALFRID is not designed to 
detect these, its underlying principles and architecture could potentially 
be adapted for this purpose, provided a suitable dataset of events is 
available.

5. Conclusion

We have shown that the combination of frequency-based signal and 
image processing techniques for FR detection shows results that could 
live up to clinical expectations. WALFRID enables FR detection with 
high sensitivity and precision, while allowing clinicians to customize the 
level of sharpness of the results, from liberal to conservative, depending 
on the time available to process the data and their needs. It also allows 
processing both micro- and macro-EEG signal, a notable feature give the 
rising interest in microelectrodes recordings.
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Song, Y., Liò, P., 2010. A new approach for epileptic seizure detection: sample entropy- 
based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 03 (06), 
556–567. https://doi.org/10.4236/jbise.2010.36078.

Staba, R.J., Wilson, C.L., Bragin, A., Fried, I., Engel, J., Jr, 2002. Quantitative analysis of 
high-frequency oscillations (80–500 hz) recorded in human epileptic hippocampus 
and entorhinal cortex. J. Neurophysiol. 88 (4), 1743–1752. https://doi.org/ 
10.1152/jn.2002.88.4.1743.

Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., Leahy, R.M., 2011. Brainstorm: a user- 
friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716. 
https://doi.org/10.1155/2011/879716.

Talairach, J., Bancaud, J., 1966. Lesion, “irritative” zone and epileptogenic focus. 
Stereotact. Funct. Neurosurg. 27 (1–3), 91–94. https://doi.org/10.1159/000103937.

Téllez-Zenteno, J.F., Dhar, R., Wiebe, S., 2005. Long-term seizure outcomes following 
epilepsy surgery: a systematic review and meta-analysis. Brain 128 (5), 1188–1198. 
https://doi.org/10.1093/brain/awh449.

Thomas, J., Kahane, P., Abdallah, C., Avigdor, T., Zweiphenning, W.J.E.M., 
Chabardes, S., Jaber, K., Latreille, V., Minotti, L., Hall, J., Dubeau, F., Gotman, J., 
Frauscher, B., 2022. A subpopulation of spikes predicts successful epilepsy surgery 
outcome. Ann. Neurol. 93 (3), 522–535. https://doi.org/10.1002/ana.26548.
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