
HAL Id: hal-04865334
https://enac.hal.science/hal-04865334v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Emergency Trajectory Structure for UAVs
Maëva Ongale-Obeyi, Damien Goubinat, Daniel Delahaye, Pierre-Loïc

Garoche

To cite this version:
Maëva Ongale-Obeyi, Damien Goubinat, Daniel Delahaye, Pierre-Loïc Garoche. Emergency Trajec-
tory Structure for UAVs. Aerospace, 2024, 12, �10.3390/aerospace12010021�. �hal-04865334�

https://enac.hal.science/hal-04865334v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Academic Editor: Gokhan Inalhan

Received: 6 November 2024

Revised: 25 December 2024

Accepted: 26 December 2024

Published: 31 December 2024

Citation: Ongale-Obeyi, M.;

Goubinat, D.; Delahaye, D.; Garoche,

P.-L. Emergency Trajectory Structure

for UAVs. Aerospace 2025, 12, 21.

https://doi.org/10.3390/

aerospace12010021

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Emergency Trajectory Structure for UAVs
Maëva Ongale-Obeyi 1,*, Damien Goubinat 2,†, Daniel Delahaye 3,† and Pierre-Loïc Garoche 3,†

1 Thales Avionics France, 31100 Toulouse, France
2 Thales Canada Inc., Montréal, QC H4S 2C2, Canada; damien.goubinat@thalesgroup.com
3 Ecole Nationale de l’Aviation Civile, Université de Toulouse, 31400 Toulouse, France;

delahaye@recherche.enac.fr (D.D.); pierre-loic.garoche@enac.fr (P.-L.G.)
* Correspondence: maeva.ongaleobeyi@fr.thalesgroup.com; Tel.: +33-6-52-38-39-40
† These authors contributed equally to this work.

Abstract: The study of the design of emergency trajectories of air vehicles is one of the
key elements in improving airspace safety for air vehicles. The aim is to lighten pilots’
workload, offering quick and effective solutions. However, almost all flight optimizers
proposed in the literature still need to be completed when it comes to resolving emergency
contexts, which presents a significant disadvantage to the advancement of scientific research.
This resolution is based on the following problems: (a) finding paths free of obstacles,
(b) ensuring their flight capacity, and finally, (c) calculating trajectories optimizing several
criteria with a calculation time constraint (a few minutes). This document analyzes the
safety landing problem and proposes an architecture that effectively reduces complexity and
ensures solvability within a reasonable computational time. This architectural framework
is designed to be adaptable, allowing for testing several algorithms to provide a quick
overview of their strengths and weaknesses in this context. The primary aim of these
tests is to benchmark the computational time of the overall architecture, ensuring that this
adaptable framework is fully capable of handling the problem’s complexity. It is important
to note that the algorithms chosen address only a simplified version of the problem. The
initial results are promising in terms of time response and the potential to enhance the
representativeness and complexity of the problem. The next phase of our research will
focus on striking the right balance between complexity, representativity, and computational
time, aiming to impact emergency response significantly.

Keywords: emergency; autonomous decision support framework; multiple trajectory planning

1. Introduction
Aerial vehicle safety is one of the most widely studied topics in aviation. Indeed,

the use of aerial vehicles within various disciplines makes them the key players in many
sectors, and thus, their system safety is always a priority. Before technical development
reaches the point where we can realistically question whether it is necessary to have a
pilot on board, we must first focus on a question such as “How can we reduce the crew
load as much as possible in all circumstances?”. This question is one of many that must
be resolved before allowing fully automatic flights. Our contributions to this research
could significantly impact the safety of aerial vehicles, inspiring and motivating further
improvement in the field.

Among the circumstances that can overload the crew’s work are emergencies, which
are the topic of this article. In response to an emergency during flight, the pilot’s first
objective is to stabilize and regain control of the aircraft. Then, they focus on the quickest

Aerospace 2025, 12, 21 https://doi.org/10.3390/aerospace12010021

https://doi.org/10.3390/aerospace12010021
https://doi.org/10.3390/aerospace12010021
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-4965-6815
https://orcid.org/0000-0002-0513-6076
https://doi.org/10.3390/aerospace12010021
https://www.mdpi.com/article/10.3390/aerospace12010021?type=check_update&version=1

Aerospace 2025, 12, 21 2 of 20

and safest way to land the plane, with the assistance of the Flight Management System,
flight manuals, and air traffic controllers. This decision is often difficult because it depends
on many factors, such as the new maneuvering envelope, the available fuel, the distance to
landing fields, and terrain avoidance.

Several projects and working groups have already addressed this issue from different
points of view. For instance, the study [1] focused on the case of emergency landings
for damaged aircraft, specifically for obstacle avoidance. Another study, which used an
Unmanned Aerial Vehicle (UAV) model, dealt with an obstacle avoidance problem, mainly
in managing the landing sites during an emergency landing [2]. A guidance aid in case of
systems failure was addressed in another study, where the generation of smooth trajectories
facilitates manual landing within this damaged flight envelope.

One lesson from these previous works [3] is that the problem is far too complex to
tackle all at once, especially in our case when we try to minimize computational time. The
context of the situation justifies our need to have this control over time computation; in an
emergency, in the tactical phase, the algorithm’s reactivity is a must, unlike many studies
performed to meet an objective for the strategic phase. Indeed, we are either working on
avoidance problems, as in [4], or solving problems related to the search for a landing site [5],
or even trajectory smoothing problems, as we can find solutions in [6]. Also, we notice that,
in a general way, the literature presents us with only a partial solution to the problem rather
than a complete resolution. By “resolution system”, we mean a comprehensive approach
that addresses all aspects of the emergency landing problem. Certification is one of the main
reasons for partial solutions. With the need for embedded algorithms, the number of usable
systems and the ability to solve complex problems are limited. Thus, by repealing this
certification limit, we aim for a more comprehensive treatment of the plan: Our ambition is
first to focus on the resolution system before focusing on the certification question.

1.1. Literature Review

The field of autonomous driving has witnessed the application of various decision-
support architectures. Rule-based [7,8] and knowledge-based [9] methods achieved success
in controlled environments. However, these methods are not without their challenges,
demanding a comprehensive understanding of the traffic environment and significant time
and memory resources for computations. This underscores the need for a more efficient
and effective solution.

Given the intricacy of the task, current methods often concentrate on a single aspect of
the problem, be it the multiple of the trajectories [10], the smoothing of the trajectory [11],
the computation of an optimal route [12], the calculation of a dynamic optimal trajec-
tory [13], etc. The cornerstone of these planning-based methods is trajectory planning,
i.e., generating a trajectory for a given scenario [14,15]. However, their applicability must
still be completed in a highly interactive environment, such as in emergencies. This re-
search, therefore, focuses on the planning scheme of multiple optimal trajectories, from one
start point to one or more landing points, in an emergency scenario, aiming to fill this gap.

The complexity of the problem at hand necessitates a multi-faceted approach, ruling
out a single-pass or single-program solution. As demonstrated in [16,17], we have tackled
this issue using decomposition. This research, therefore, introduces a crucial multi-layer ar-
chitecture that effectively addresses all aspects of the problem, underscoring its significance
in the field of autonomous driving and artificial intelligence.

1.2. Problem Description

Our research centers on a specific problem: computing one or more trajectories be-
tween a starting point and a well-defined landing point while avoiding obstacles in a 3D

Aerospace 2025, 12, 21 3 of 20

cluttered environment. To tackle this problem, we employ tools from avoidance problems,
path-smoothing tools, and optimal control theory to find the best algorithm combination
for each aspect of our problem.

The mathematical formulation of the safety trajectories is a novel approach intricately
linked to the avoidance analysis of dynamic systems. This research sets out to categorize
the problem into three distinct areas: first, the avoidance problem in a 3D environment;
second, the exploration of smoothing tools for paths to create flyable paths without abrupt
variations in the input parameters; and finally, a comprehensive survey of the situation and
the dynamic context in which the vehicle operates. This study unveils the potential to meet
all the following criteria:

1. Compute one or more paths in a 3D cluttered environment, with different obstacles of
different density;

2. Compute one or more smooth paths in a 3D cluttered environment;
3. Compute one or more continuous and dynamic trajectories in a 3D cluttered environment.

1.3. Organization

This paper is organized as follows: First, a background of existing methods is pre-
sented, where relevant algorithms are highlighted. Second, we present how such methods
have been tested and associated to resolve our problem.

2. Survey of Existing Methods
As previously said, the problem of emergency trajectories is too complex to be tack-

led in one pass. Therefore, we split the problem to manage all aspects more effectively.
To accomplish this decomposition, we use the characteristics requested by our trajectories:

1. First, we want to compute an obstacle-free path connecting two points in a known
clustered 3D environment. This problem is a classic case widely studied in avoidance
problem studies; an overall survey can be found in [18].

2. Second, in case of a problem with the trajectory tracking tools, like Airborne Collision
Avoidance Systems (ACAS) or Traffic Alert and Collision Avoidance Systems (TCAS),
it is the pilot’s responsibility to ensure the continuation of the flight. Thus, producing
a path as smooth as possible is necessary to avoid sudden changes in speed or angles.
This issue is related to a smoothing path problem: the aim is to design a flyable path
over or close to the objective points while satisfying constraints such as maximum
curvature and G2 continuity (Two curves having a common point and tangent vectors
lying along the same direction and having the same curvature (which is, the same rate
of change of the direction) are said to have curvature continuity. The directions at the
joint seem to change with the same “speed”). This study has been addressed using
approaches like nonlinear optimization algorithms in [19].

3. Finally, we consider the dynamic model. Indeed, considering the aircraft’s dynamics
and the state of the flight controls, this multi-dimensional approach can be obtained
using optimal control theories, which may provide the entire set of optimal parameters
(including the attitude angles, velocities, fuel, etc.) for a trajectory between two points
as a function of time and subject to the particular restrictions involved. The study
of these methods, described in [20], implies a complete analysis in time and space.
Hence, treating this last problem allows us to convert our paths into trajectories.

This paper focuses on a particular emergency; indeed, we place ourselves in a static
context and only consider static obstacles. Thus, the terrain database will entirely define
our obstacle database, such as potential non-fly zones, terrain relief, etc.

Aerospace 2025, 12, 21 4 of 20

2.1. Path Planning

Motion planning for an automated robot has been widely discussed over the past
50 years. Two main categories of approaches are usually distinguished: deliberative and
reactive processes (see Figure 1).

Figure 1. Classification of path-planning algorithms [21].

• The principle of “deliberative approaches” is to determine a complete movement of the
robot between an initial position and a final position from a model of the environment
in which the system evolves;

• “Reactive approaches”, on the other hand, only compute the movement to be applied
to the next time step from the sensor data retrieved by the robotic system at each
instant. A representation of the environment is thus constructed as the movement
progresses: navigation is, therefore, possible in an uncertain environment, as well as
in a dynamic environment.

The importance of having a complete journey, therefore, means that deliberative
approaches are best suited to our problem. We meticulously compared the most used
deliberative algorithms in the field, both in their initial forms and modified forms, to ensure
we found the best answer to the problem.

1. A* algorithm: A* is the most widely used algorithm in robotics. The A* algorithm
is a path search algorithm in a graph between an initial node and an ending node.
It uses a heuristic on each node to estimate the best path and then visits the nodes
based on this heuristic evaluation. It is one of the so-called “admissible” algorithms
because its purpose always guarantees to find the shortest path. This algorithm was
first proposed by Peter E. Hart, Nils John Nilsson, and Bertram Raphael in 1968 [22].
Each node of a cost function to evaluate a path can be expressed as follows:

f (n) = g(n) + h(n) (1)

where f is the cost of the node, g is the distance separating the current node from the
initial node, and h is a lower bound of the distance separating the current node from
the final node.
The algorithm evaluates each node to find the best resultant f (n) corresponding to
the shortest path. The properties of the A⋆ algorithm make it the most used in mobile
robotics. Reference [23] shows it is optimal in its computational times and faster than
any other shortest-path algorithm using the same heuristic. In addition, this method
has many variants and can solve many situations.

Aerospace 2025, 12, 21 5 of 20

We chose to study this algorithm in modeling the avoidance problem because, in ad-
dition to being one of the best-known, it has refinement properties linked to path
building. A⋆ is part of the graph search methods. Thus, the refinement of the grid
depends on the user. From this point of view, we find a strong advantage in the study
of obstacle avoidance in having a refined grid around the obstacle and looser and
more spaced points with free space.

2. PRM algorithm: The Probabilistic Roadmap Method (PRM) [24] is a discrete version
of a continuous (c-space) that contains far fewer states than the original space. It is
generated by randomly sampling the most significant c-space and connecting these
points in a roadmap.
PRMs are unique among other cell decomposition planners, those who try to solve the
planning problem by decomposing the whole search space into multiple cells. Path
planning using a PRM has two phases:

(a) A construction phase of the roadmap: random points of the free space are
chosen and added to a list of feasible points. The mapping algorithm tries to
connect those feasible points if the associated links do not intersect with the
obstacles. This list of links is the roadmap;

(b) A path query phase: In the query phase, when the robot needs to plan a path
between two points, the algorithm uses the roadmap created in the first phase.

Due to its random search, the PRM is not an algorithm subject to the curse of dimen-
sionality. It also makes it an excellent candidate for solving the avoidance problem.

3. RRT algorithm: Another possible algorithm is a sampling-based method named
Rapidly Exploring Random Tree (RRT). Popularized by Karaman and Sertac [25], RRT
is a random sampling of the configuration space; it starts at the starting location and
randomly grows a tree to span space. The main objective is to favor the extension of
the tree to areas that still need to be filled. The planner pushes the search tree from
previously constructed vertices.
The principle is as follows: from an initial point qinit, the neighborhood of such a point
is explored by arbitrarily choosing a new unobstructed configuration qrand at each
iteration. The second step determines the qnear node closest to qrand in the existing
tree. The next step extends the tree from qnear in the direction of qrand by a length ϵ.
Finally, if this extension succeeds, the newly created point qnew will be added to the
tree. This process is repeated until the destination qgoal is reached. This principle is
illustrated in the Figure 2.

Figure 2. The construction process of RRT [25]. Input: Initial points qinit, qgoal . Incremental distance
ϵ. Output: RRT graph G.

The RRT exploration method contains a free space-spanning tree construction and
query phases. Its performance comes from the fact that it does not require a pre-
computation stage. A suitable property of this approach is that the growth is strongly

Aerospace 2025, 12, 21 6 of 20

biased towards unexplored areas of free space, so rapid exploration occurs. This
construction allows, in particular, the processing of large dimensions; thus, the search
remains steady in areas of immense dimensions.

2.2. Path Smoothing

Then, we need to be able to provide a smooth path. Furthermore, we need to process
the route computed by our path-planning algorithm.

Smoothing paths for a non-holonomic mobile [26] robot is the subject of many works.
The first approach consists of generating paths of straight-line segments tangentially con-
necting circular arcs of maximum curvature. These paths are the shortest in configurations
where the robot only moves forward (as demonstrated by Dubins in 1957 [27]). However,
several studies [28,29] on the control of mobile robots have highlighted the importance of
the continuity of curvature to obtain precise tracking paths (although the mentioned paths
do not verify this property). Therefore, the proposed solutions introduce interpolation and
approximation techniques to geometrically model paths for mobile robots. Among these
primitive paths are cubic splines, the first methods to be developed. Bezier curves were then
introduced, adopting a more flexible design. The evolution continued with B-Splines, well
defined here [30]; the generalization of Bezier curves, described in [31]; and Non-Uniform
Rational Basis Splines, also called NURBS, in the 1980s. Next, we present an overview of
the path-smoothing techniques used in robotic navigation.

1. Dubins Splines: [27] showed that an optimal path between two points is a piecewise
curve C1 and C2 without obstacles. This curve is formed by circular arcs connected
tangentially by segments of lines and can be written in the form CSC or CCC with
C as a circular arc of minimal radius, i.e., a radius equal to 1 and S as a straight line
segment [32]. It should also be noted that each arc of a segment or circle can be
degenerated, that is, of zero length.
This path can be specified more precisely by indicating its direction of travel. Indeed,
we denote by R (respectively L) a circular arc traversed in the direct or clockwise
direction (respectively, counterclockwise). Thus, there are at most six Dubins paths
between two points:

• The CCC type containing the two paths of LRuL and RLuR types where u repre-
sents the length of the intermediate arc, satisfying π ≤ u.

• The CSC type containing the four paths of the LSL, LSR, RSL, and RSR types.

2. Cubic Splines: The automotive industry developed spline interpolation at General
Motors around 1950 [30]. Cubic spline interpolation consists of finding for each inter-
val [xk, xk+1] a polynomial Sk(x) of the third degree so that the resulting interpolation
function of [x0, xn], as well as its first and second derivative, are continuous:

Sk(x) = akx3 + bkx2 + cx
k + dk, x ∈ [xk, xk+1] (2)

Spline functions offer flexibility (i.e., no break in the curvature radius) at the interpo-
lation function’s level. However, all the points are linked, and changing the location
of one of them affects the whole system of equations.

3. Non-Uniform Rational B-Splines, also called NURBS [33], are defined by the
following equation:

C(u) =
∑n

i=0 Ni,p(u)wiPi

∑n
i=0 Ni,p(u)wi

a ≤ u ≤ b (3)

where the {Pi} are the control points (forming a control polygon) and the {wi} are
their associated weights. The {Ni, p(u)} are the B-spline basis functions of degree p
defined on the nodal vector U. The nodal vector is a sequence of parameter values

Aerospace 2025, 12, 21 7 of 20

that determine where and how the control points will affect the shape of the curve.
It divides the parameter space into intervals, and each time the parameter enters
a new nodal interval, a unique control point becomes active, while an older one
becomes inactive. This ensures the local influence of the control points, providing
a clear understanding of their role in shaping the curve. This vector is built with
an increasing sequence of nodes (ui ≤ ui+1) between 0 and 1. These consecutive
nodes can have identical values: this is defined by a node diversity, which allows it to
accentuate a point influence on the curve.
Thus, to ensure the interpolation of the two ends of the control polygon, it is necessary
to fix the diversity of the first and the last node of U to the value p + 1. Note also that
the degree p, the number of control points n + 1, and the number of nodes m + 1 of
the nodal vector are related by m = n + p + 1.
As for the weight parameter, each wi plays a crucial role in determining the impact
of the point Pi on the curve. Increasing weights associated with points pulls the
curve towards these points, providing a strong sense of control and predictability;
conversely, when weights are decreased, the curve moves away.
If wi = 1 for any point, we find ourselves in the case of B-splines. Otherwise, for val-
ues different from 1, higher or lower importance is attributed to the corresponding
control point:

• wi ≤ 1: gives a curve farer to Pi;
• wi ≥ 1: gives a curve closer to Pi;
• wi = 0: the point Pi no longer has any influence;
• wi → ∞: the curve passes through Pi.

NURBS are B-splines with weighted control points, offering precision that allows
the curve to be precisely snapped to one or more points, as desired. They maintain
the degree of independence and the property of local modification that characterizes
B-splines. Incorporating control point weights significantly enhances flexibility and
allows NURBS to dynamically synthesize various curve shapes by adjusting control
points, nodes, and weights.

2.3. Time Parametrization

Now that we can successfully compute a path without obstacles, we must introduce
the dynamic context. We want to join the points of the route planning by a continuous
trajectory that simulates the vehicle’s movement.

This paper uses the Point Mass Model for general flight vehicle dynamics. Consider
an inertial frame attached to the Earth. The state of the system is defined by the following:

• (x, y, z) ∈ R3 is the position of a vehicle in the inertial reference frame;
• V ∈ [Vmin, Vmax] is the True Air Speed;
• ϕ ∈ [−π, π] is the heading angle;
• γ ∈ [−π, π] is the flight pass angle.

The computation of continuous trajectory is based on the equations of motion, which
are defined by the following system, called 5D Dubins model [34]:

ẋ = Vsinϕcosγ

ẏ = Vcosϕcosγ

ż = Vsinγ

ϕ̇ = u1

γ̇ = u2

(4)

Aerospace 2025, 12, 21 8 of 20

where V(t) = ∥v(t)∥, v(t) = (ẋ, ẏ, ż) ∈ R3 is the velocity at time t, ϕ is the heading angle and
γ the flight-path angle. Here, the control u = (u1, u2) is subject to the following constraint:

∥u1∥ ≤ umax, ∥u2∥ ≤ umax, (5)

where the typical value of the maximal control umax is around 1.
Based on this system of equations, we aim to determine a trajectory that minimizes a

specific criterion while satisfying the constraints. The resolution of this type of problem
relies on principles of the theory of optimal control.

Definition 1. In optimal control, we distinguish two vector variables: a control variable, u,
to indicate the decisions made, and a state variable, x, to indicate the system’s state over time.
The standard control model (Pc) for a control system is composed of two main components: first,
the dynamic controlled system (to which constraints are often added), and second, the functional
control system (defining the optimization criterion):

Pc ≡



min
u,x

J(u(t), x(t)), (corresponding to the cost to be minimized)

Under constraints
ẋ(t) = f (u(t), x(t), t), (controlled dynamic system: state equations)

x(t0) = x(t0), x
(

t f

)
∈ C f , (initial and terminal conditions, on the states)

g(u(t), x(t), t) ≤ 0, (conditions on control and/or state)

(6)

where:

• J : R×Rn ×Rm → R is C1.
• f : Rn ×Rm → Rn is C1.
• g : Rn ×Rm → Rn is C1.

The following statement is the most usual Pontryagin Maximum Principle (PMP),
well developped in [35], valuable for general nonlinear optimal control problems (6),
with control constraints but without state constraint.

Theorem 1. If the trajectory x(t), associated to the optimal control u(t) on [t0, t f], is optimal,
then it is the projection of an extremal (x(t), p(t), p0, u(t)) (called extremal lift), where p0 ̸= 0 and
p(t) : [t0, t f]→ Rn is the adjoint vector, with (p(t), p0) ̸= (0, 0), such, that{

ẋ(t) = ∂H
∂p (x(t), p(t), p0, u(t), t)

ṗ(t) = ∂H
∂x (x(t), p(t), p0, u(t), t)

(7)

almost everywhere on the time interval [t0, t f], where H(x, p, p0, u, t) = ⟨p, f (x, u, t)⟩ +
p0 f 0(x, u, t) is the Hamiltonian,

H(x(t), p(t), p0, u(t), t) = max
v∈U

H(x(t), p(t), p0, v(t), t) (8)

almost everywhere on the time interval [t0, t f]. Moreover, if the final time t f to reach the target M1

is not fixed, then the following condition must be met at the final time t f

max
v∈U

H(x(t), p(t), p0, v(t), t) = −p0 ∂g
∂t

(x(t f), t f). (9)

Aerospace 2025, 12, 21 9 of 20

Additionally, if M0 and M1 (or just one of them) are submanifolds of Rn locally around
x(t0) ∈ M0 and x(t f) ∈ M1, then the adjoint vector can be built to satisfy the transversality
conditions at both extremities (or just one of them):

p(t0)⊥Tx(t0)
M0 p(t f)− p0 ∂g

∂t
(x(t f), t f)⊥Tx(t f)

M1, (10)

where Tx Mi denotes the tangent space to Mi at the point xi.

Over the past few decades, many numerical methods in optimal control have
emerged [36]. While it is impossible to list them all, we will focus on the local deter-
ministic methods, a subset that presents a unique set of challenges:

• Indirect methods [37]: these methods use the conditions of the PMP to determine the
controls u as a function of the states x and the adjoint states p and to reduce to the
resolution of an algebra-differential system. This last system will be transformed into
a nonlinear problem of finite dimension to determine the initial assistant states p(t0),
making it possible to obtain the final state x(t f).

• Direct methods [38]: by appealing to a total or partial “discretization” of the optimal
control problem (in the sense that discretization allows the transformation of the
continuous problem into a discrete problem with a finite number of variables), these
methods refer partly to the original problem as a nonlinear programming problem.

However, the literature has allowed us to identify the advantages and drawbacks of
these methods, which we summarize in Table 1 below [20].

Table 1. Characteristics of the direct and indirect methods.

Direct Methods Indirect Methods

Simple implementation, without prior
knowledge

A priori knowledge of the structure of the
optimal trajectory

Insensitive to choice of initial condition Susceptible in the choice of the
initial condition

Ease of taking state constraints into
account

Theoretical difficulty of taking state
constraints into account

Globally optimal closed-loop controls Locally optimal open-loop control
Low and medium numerical precision Very high numerical precision

Effective in low dimension Effective in any dimension
Problem of local minima Small domain of convergence

Heavy in memory Parallelizable computation

Stepping back from the theory, we find ourselves leaning towards direct methods.
To illustrate this, we will use a concrete example provided by [39], as depicted in the
following figure (Figure 3), to compare the methods.

1. Single shooting method: The main idea begins meticulously discretizing the control
u and the denoted state x. This transforms the initial optimal control problem into a
finite-dimensional, potentially significant, nonlinear programming problem (NLP).
The single shot involves approximating the trajectory using a single integration.
In other words, it is like firing a cannonball, checking where the ball has landed,
adjusting the initial velocity, and repeating. This process is repeated until the error
between the target and the place where the ball landed, called a defect, denoted ϵ, is
reduced to zero (ϵ → 0). The optimization algorithm is designed to find the initial
speed that achieves this precision. This behavior is illustrated in Figure 4.

Aerospace 2025, 12, 21 10 of 20

2. Multiple shooting method: This method is designed for efficiency. It starts by dis-
cretizing a partial problem in control and state, defining a parameterization of the
control on each time interval [tl , tl+1], and choosing a numerical integrator for the
resolution of the ODEs. The optimal control problem is then discretized into an NLP
problem. Multiple shooting works by dividing the initial problem into sub-problems
and solving them in parallel. In the end, continuity constraints between the segments
are added, ensuring a smooth and efficient solution.This behavior is illustrated in
Figure 5.

3. Direct collocation method: This method is robust and reliable. It starts by assuming
a specific representation of the state, particularly a “polynomial”. Then, it ensures
that the dynamic equations are followed in a finite number of instants under the
collocation conditions. These intermediate instants in [tl , tl+1], called “quadrature
instants”, subdivide [tl , tl+1] into k− 1 periods and are used by the digital dynamics
integration scheme. Piecewise polynomial state trajectories are obtained, which
converge towards the dynamics of the controlled system at the collocation points.
The discretization of the problem in optimal control is then carried out, and an NLP
problem is generated. This behavior is illustrated in Figure 6.

Figure 3. OCP problem [39]. This situation can be modeled as a boundary-value problem. The goal
is to find the trajectory, assuming that (1) the cannonball is a point mass, (2) air friction is modeled
using quadratic drag, and (3) the amount of powder is proportional to the initial speed squared.

Figure 4. Single shooting scheme [39]. It approximates the trajectory using a single simulation: fire
the cannon, check where the ball landed, adjust the initial speed, and repeat.

Aerospace 2025, 12, 21 11 of 20

Figure 5. Multiple shooting sheme [39]. It works by breaking the problem into smaller ones and
solving them parallelly. In the end, each segment is constrained to connect to the previous one.

Figure 6. Collocation shooting scheme [39]. The trajectory is approximated using a piecewise
polynomial. Physics is satisfied by requiring that the dynamics match the derivative of the polynomial
at each collocation point.

3. Experiences and Results
3.1. Experiences

Now that we have presented and described the relevant design algorithms, we present
a scenario to select the fastest algorithms to implement our trajectory computation problem.
Thus, by considering the various sub-problems previously stated, we outline the algorithm
most likely to answer this sub-problem. The goal is to end up with the most efficient
combination in terms of time for computing emergency trajectories.

3.1.1. Path Planning Problem

To support a validation of the 3D trajectory planning of aerial vehicles, we analyzed
several algorithms to extract the three that are the most significant to our problem, the quick-
est in time computation.

it is crucial to note that this section conducts a comprehensive theoretical comparison of
those algorithms, with their characteristics succinctly summarized in Table 2. Subsequently,
they undergo a rigorous evaluation based on the computed results.

As mentioned earlier, the primary focus is on time computation. Given our objective to
handle emergencies, the computational time of the program takes precedence over all other
characteristics, including the path length, particularly in our case where the avoidance
problem is the initial step for our solution.

Aerospace 2025, 12, 21 12 of 20

For our tests, we take the cluttered 3D environment below, dedicated to UAVs for
which the number of obstacles (in blue on the Figure 7) has been fixed at 10, 15, and 20
(Table 3).

Table 2. Comparison of different path planning method properties [40].

Method Type Time Complexity S/D Environment Structure Real-
Time

A⋆ Node/Grill-Based Algorithms Θ(mlogn) ≤ T ≤ Θ(n2) Static Grill Online
PRM Sampling-Based Algorithm Θ(nlogn) ≤ T ≤ Θ(n2) Dynamic Roadmap Online
RRT Sampling-Based Algorithm Θ(nlogn) ≤ T ≤ Θ(n2) Static and Dynamic Tree Online

Figure 7. UAV environment. The starting positions are marked with a red point, and the destination
positions are black shapes. The blue columns represent the no-fly zones, obstacles that must be
avoided.The X, Y, and Z axes represent the longitude, latitude, and altitude coordinates measured in
degrees for the lateral and kilometers for the vertical, respectively.

Table 3. Comparison of different 3D path planning methods depending on the number of obstacles.
In the table, the bold text highlights the best results.

Obstacles Methods Computation Time (s)

10
A⋆ 3.12

PRM 1.50
RRT 1.05

15
A⋆ 4.03

PRM 2.23
RRT 1.30

20
A⋆ 6.15

PRM 4.51
RRT 3.30

When it comes to results, the RRT stands out as the top performer, thanks to its
unmatched speed. In the realm of path smoothing, we lean on this algorithm for the initial
phase of problem resolution, which involves generating a feasible path. The RRT’s rapidity

Aerospace 2025, 12, 21 13 of 20

and efficiency make it a solid choice for this crucial first step, providing you with a sense of
being well informed and confident in its capabilities.

3.1.2. Path Smoothing

Due to the importance of generating smooth trajectories with continuous curvatures
and controlling and tracking non-holonomic mobile robots, several solutions have been
proposed in the literature to compute feasible solutions.

In this comprehensive review, we have meticulously outlined the proposed methods
for resolving this problem, starting from the initial solutions that introduced only nons-
mooth curves (ignoring the continuity of curvature) to the various splines used to model
the curves’ paths (cubic splines and NURBS). Our thorough exploration of NURBS curves,
highlighting their significant advantages over other techniques, leads us to the conclusion
that NURBS is the most suitable method for solving our smoothing problem. We have also
compared the various methods in the same environment as before. For the resolution of
the problem, two alternatives were offered:

1. The combination with the RRT: The path-planning algorithm allows for different
expansion methods, notably smoothing techniques. This choice increases the compu-
tational time but allows for the simultaneous processing of both the avoidance and
smoothing problems (Table 4).

Table 4. Comparison of different smooth path planning methods depending on the number of obstacles.

Obstacles Methods Time Computation (s)

10
RRT + Dubins 8.32

RRT + Cubic Splines 5.32
RRT + NURBS 2.00

15
RRT + Dubins 10.76

RRT + Cubic Splines 9.34
RRT + NURBS 3.12

20
RRT + Dubins 20.0

RRT + Cubic Splines 12.43
RRT + NURBS 4.97

2. The post-path-planning phase uses smoothing methods after computing the reference
path. This choice forces us to add an obstacle checker, which ensures the path remains
obstacle-free after smoothing. The obstacle checker scans the environment and alerts
the system if any obstacles are detected, preventing potential collisions (Table 5).

Table 5. Comparison of different smoothing planning methods depending on the number of obstacles.

Obstacles Methods Time Computation (s)

10
Dubins 0.11

Cubic Splines 0.024
NURBS 0.019

15
Dubins 0.20

Cubic Splines 0.027
NURBS 0.025

20
Dubins 0.37

Cubic Splines 0.030
NURBS 0.028

Aerospace 2025, 12, 21 14 of 20

Regardless of the option we consider, it is clear that the method involving NURBS
consistently produces the best computational times. This not only confirms its practicality
but also provides insurance about its efficiency. In terms of the two options, they are
not directly comparable, and the choice ultimately comes down to the preference for the
structure of our architecture. In our case, we have chosen to go with the post-path-planning
approach phase.This approach, being independent from the path planning algorithm,
empowers us to try different combinations of path planning and smoothing algorithms
without running both of them, as is the case with the smoothing algorithms included in
the RRT.

3.1.3. Time Parametrization

A drawback of direct-shooting methods is the dependence on the initial point. This
can lead to numerical instabilities during the numerical integration process. For instance,
even minor variations in the initial conditions x0 can result in significant changes in the
terminal conditions. In light of this, the collocation method emerges as the most reliable
solution for our problem, a conclusion we will validate empirically. The reliability of the
collocation method gives us confidence in its use. To compare the three methods, we initiate
the resolution of the following OCP:

(Pc) =


min
u,x

∫
t0 = 0t

f ∥u(t)∥dt

Under the constraints
ẋ = f (u(t), x(t), t)

x(t0) = A, x(t f) = B,

(11)

where f is the function presented in (4), which represents the objective function of our
optimization problem, with different starting points A and ending points B (Table 6).

Table 6. Comparison of different direct optimal control methods depending on the scenario.

Environments Methods Time Computation (s)

A = [5, 11, 8, π
6 , π

3 , π], B = [10, 20, 30, π
6 , π

3 , 5]
Single Shooting 4.5

Multiple Shooting 4
Collocation 2.7

A = [10, 20, 30, π
6 , π

3 , 5], B = [5, 11, 8, π
6 , π

3 , π]
Single Shooting 10

Multiple Shooting 5.1
Collocation 2.9

A = [100, 50, 20, π
4 , π

2 , π], B = [10, 20, 30, 0.9, π]
Single Shooting 174

Multiple Shooting 63
Collocation 5.7

As always, the computation time is this survey’s primary criterion for comparisons.
Whether from an empirical or theoretical standpoint, we can confidently assert that colloca-
tion is the most efficient method for solving OCP through direct methods.

3.1.4. Synthesis

The results demonstrate that we can determine the best algorithm for each sub-
problem. Thus, the combination of the three algorithms allows us to compute a trajectory
validating the following three criteria:

1. To be obstacle-free, which is what the RRT path-planning algorithm checks;
2. To be smooth, which is the result of the path smoothing part via NURBS;

Aerospace 2025, 12, 21 15 of 20

3. To be a continuous trajectory responding to the dynamic context, which is processed
through the time parametrization solver.

Our structure, which includes the combination of the three algorithms and the tra-
jectory calculation process, is designed to efficiently compute trajectories. This quick
computation of trajectories is a key advantage of our approach, effectively addressing
our problem.

3.2. Results

We use a numerical approach to support our remarks and to present our analysis from
an industrial perspective. The objective is to compute an emergency trajectory for a drone,
a task that is of significant importance in the field of drone technology. The starting point is
clearly defined, and there are multiple landing zones.

This use case involves the search for one or more emergency trajectories in the context
of a drone failure in mid-flight. With knowledge of the environment, our solver must
compute trajectories, respecting the criteria we have previously defined. The considered
airspace is reported in Figure 6 above.

First, three paths are generated in the previously defined environment. Starting
from the same starting point, they connect different landing sites chosen randomly by the
algorithm. The complexity of the computation is linked to the position of the initial point.
Indeed, we need to compute several paths leading to different landing sites. In searching n
paths, we begin by running n times a simple RRT algorithm. Its random behavior might
allow us to find different paths, in our case, three. We must compute them simultaneously
to always end up with distinctly different paths.

The process remains similar to the standard RRT. Each tree explores the search space
from the same qstart. A random point qrand is chosen for each tree, and then the point closest
to qrand in the tree, qnear, is selected. For each pair {qnear, qrand}, the point qnew is computed
(this point is at a distance δ from qnear in the direction of qrand). If qnew does not belong to
the obstacle space, it is added as a new path point to the corresponding tree. The process is
repeated until each tree is linked to one of the endpoints (see Figure 8). The steps of the
proposed approach for multiple paths are shown below in Algorithm 1.

Algorithm 1 Multiple RRT pseudocode

Generate k Path(qstart, qgoal,k, maxiter, obstacle, N)
for k = 1 to N do

Treek ← qstart
while qgoal,k not in Treek or i = maxiter do

qrand ← RandomNode()
qnear ← NearestNode(Treek, qrand)
qnew ← NewNode(qrand, qnear)
if no_collision(qnew, obstacle) and no_ intersection(qnew, Matrix_Tree) then

qnearnode ← NearNodes(qnew)
qnew ← SelectParent(qnearnode)
if qnew then

Treek.addnode(qnew)
i← i + 1

end if
end if

end while
Matrix_Tree.addtree(Treek)

end for

Aerospace 2025, 12, 21 16 of 20

Then, we smooth them out using the second algorithm (see Figure 9). The NURBS
method above belongs to the class of approximation methods. Therefore, the newly
computed curves do not necessarily interpolate with the previous obstacle-free waypoints,
thus presenting a risk of obtaining paths that intercept obstacles. To avoid this issue, we
are forced to use a trajectory checker, which works as follows:

• Initially, each waypoint has its weight initialized to wi = 1.
• For each point of the calculated smooth paths, we check if there is an interception with

an obstacle: if there is an interception, the NURBS curve will be recalculated with an
update of the weights. As previously discussed, the greater the weight of a waypoint,
the more critical the point.

Figure 8. Computation of the flight paths. Input: environment presented in Figure 7. Output: list of
waypoints for the three computed flight paths.

Figure 9. Computation of the smooth flight paths. Input: list of waypoints for the three computed
flight paths present in Figure 8. Output: list of waypoints for the three computed smooth flight paths.

Aerospace 2025, 12, 21 17 of 20

Finally, now that the flight plans are well established, we use them as a reference to
calculate the continuous trajectories. Considering the UAV’s dynamics, previously defined
in Equation (4), we can calculate three 5D Dubins trajectories avoiding obstacles (see
Figure 10). The color lines in Figures 8–10 highlight the three different paths.

Therefore, we consider the optimal control problem:

J = min ta, f , ∀a ∈ 1, . . . , Na, (12)

subject to the Point Mass Model, where a ∈ {1, . . . , Na} is the path index, Na is the number
of paths, and t is time. The function f represents our dynamics, detailed in (4) and (5).

Figure 10. Computation of the dynamic trajectories. Input: list of waypoints for the three computed
flight paths present in Figure 9. Output: list of waypoints for the three computed dynamic trajectories.

These examples validate the effectiveness of our method for creating emergency
trajectories. Each step, including the computation time, is meticulously detailed in the
following Table 7:

Table 7. Time computations(s) of each step, based on the number of computed trajectories.

Number of Computed
Trajectories

Paths
Planning (s)

Paths Smoothing
(s)

Continuous
Trajectories (s)

3 1.2 0.06 15
4 1.5 0.2 20
5 12.3 1.8 25
6 13.8 2.1 30
7 25.2 7.5 35
8 40.7 10.4 40
9 51.2 11.2 45

10 65.4 13.6 50

4. Conclusions
This article introduces a novel approach for producing multiple emergency trajectories.

By creating a comprehensive system that incorporates both path-planning and trajectory-
planning algorithms (see Figure 11 below), we enable the planner to swiftly compute
several trajectories towards different known sites while considering the environment and

Aerospace 2025, 12, 21 18 of 20

the UAV’s motion constraints. This unique method combines the RRT and NURBS to obtain
smooth paths in a 3D cluttered environment. The path-planning part generates numerous
reference paths used in the trajectory-planning section. Based on a collocation method,
this part is dedicated to trajectory planning. The approach uses a motion equation system
based on 5D Dubin’s vehicle dynamics to output the expected trajectories.

Figure 11. Emergency landing planner architecture.

Looking ahead, our future work holds several extensions. We plan to implement
multi-trajectories in a 3D dynamic environment, incorporating wind data and non-constant
speed in the dynamics. The approach could also be expanded to large-scale multi-path
systems by appropriately parallelizing the computation to reduce computational time. This
opens up avenues for further research. Lastly, the challenge of real-time analysis presents a
significant opportunity for improvement, sparking excitement and motivation for potential
future advancements.

Aerospace 2025, 12, 21 19 of 20

Author Contributions: Writing—original draft, M.O.-O.; Writing—review, M.O.-O., D.G., D.D. and
P.-L.G.; Writing—editing, M.O.-O. and D.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: Author Maëva Ongale-Obeyi was employed by the company Thales Avionics
France. Author Damien Goubinat was employed by the company Thales Canada Inc. The remaining
authors declare that the re-search was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

References
1. Tomlin, C.J.; Mitchell, I.; Bayen, A.M.; Oishi, M. Computational techniques for the verification of hybrid systems. Proc. IEEE 2003,

91, 986–1001. [CrossRef]
2. Alam, M.S.; Oluoch, J. A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs).

Expert Syst. Appl. 2021, 179, 115091. [CrossRef]
3. Yu, J.; LaValle, S.M. Optimal multi-robot path planning on graphs: Structure and computational complexity. arXiv 2015,

arXiv:1507.03289.
4. Zaytoon, J. Hybrid Dynamic Systems: Overview and discussion on verification methods. In Informatics in Control, Automation and

Robotics II; Springer: Dordrecht, The Netherlands, 2007; pp. 17–26.
5. Girard, A. Reachability of uncertain linear systems using zonotopes. In International Workshop on Hybrid Systems: Computation and

Control; Springer: Berlin/Heidelberg, Germany, 2005; pp. 291–305.
6. Botchkarev, O.; Tripakis, S. Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In

International Workshop on Hybrid Systems: Computation and Control; Springer: Berlin/Heidelberg, Germany, 2000; pp. 73–88.
7. Ortlieb, M.; Adolf, F.M. Rule-based path planning for unmanned aerial vehicles in non-segregated air space over congested areas.

In Proceedings of the 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October
2020; pp. 1–9.

8. Khachumov, M. The problems of multi-point route planning and rule-based trajectory tracking for an autonomous UAV under
wind loads. In Proceedings of the 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan,
9–11 March 2018; pp. 204–208.

9. Wang, G.; Ge, S.S. General fight rule-based trajectory planning for pairwise collision avoidance in a known environment. Int. J.
Control. Autom. Syst. 2014, 12, 813–822. [CrossRef]

10. Rösmann, C.; Hoffmann, F.; Bertram, T. Planning of multiple robot trajectories in distinctive topologies. In Proceedings of the
2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015; pp. 1–6.

11. Gasparetto, A.; Zanotto, V. A new method for smooth trajectory planning of robot manipulators. Mech. Mach. Theory 2007, 42,
455–471. [CrossRef]

12. Legrand, K.; Puechmorel, S.; Delahaye, D.; Zhu, Y. Robust aircraft optimal trajectory in the presence of wind. IEEE Aerosp.
Electron. Syst. Mag. 2018, 3, 30–38. [CrossRef]

13. Kalmár-Nagy, T.; D’Andrea, R.; Ganguly, P. Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle.
Robot. Auton. Syst. 2004, 46, 47–64. [CrossRef]

14. Werling, M.; Ziegler, J.; Kammel, S.; Thrun, S. Optimal trajectory generation for dynamic street scenarios in a frenet frame.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, 3–8 May 2010;
pp. 987–993.

15. Damerow, F.; Eggert, J. Risk-aversive behavior planning under multiple situations with uncertainty. In Proceedings of the
2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015;
pp. 656–663.

16. Zhang, W.; Kamgarpour, M.; Sun, D.; Tomlin, C.J. A hierarchical flight planning framework for air traffic management. Proc. IEEE
2011, 100, 179–194. [CrossRef]

17. Samaranayake, P.; Kiridena, S. Aircraft maintenance planning and scheduling: An integrated framework. J. Qual. Maint. Eng.
2012, 18, 432–453. [CrossRef]

18. Yang, L.; Qi, J.; Song, D.; Xiao, J.; Han, J.; Xia, Y. Survey of robot 3D path planning algorithms. J. Control. Sci. Eng. 2016, 7426913.
[CrossRef]

http://doi.org/10.1109/JPROC.2003.814621
http://dx.doi.org/10.1016/j.eswa.2021.115091
http://dx.doi.org/10.1007/s12555-013-0006-z
http://dx.doi.org/10.1016/j.mechmachtheory.2006.04.002
http://dx.doi.org/10.1109/MAES.2018.170050
http://dx.doi.org/10.1016/j.robot.2003.10.003
http://dx.doi.org/10.1109/JPROC.2011.2161243
http://dx.doi.org/10.1108/13552511211281598
http://dx.doi.org/10.1155/2016/7426913

Aerospace 2025, 12, 21 20 of 20

19. Chen, X. Smoothing methods for complementarity problems and their applications: A survey. J. Oper. Res. Soc. Jpn. 2000, 43,
32–47. [CrossRef]

20. Trélat, E. Contrôle Optimal: Théorie & Applications; Vuibert: Paris, France, 2005.
21. Sánchez-Ibáñez, J.R.; Pérez-del-Pulgar, C.J.; García-Cerezo, A. Path planning for autonomous mobile robots: A review. Sensors

2021, 21, 7898. [CrossRef] [PubMed]
22. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
23. Souissi, O.; Benatitallah, R.; Duvivier, D.; Artiba, A.; Belanger, N.; Feyzeau, P. Path planning: A 2013 survey. In Proceedings of the

2013 International Conference on Industrial Engineering and Systems Management (IESM), Agdal, Morocco, 28–30 October 2013;
pp. 1–8.

24. Bohlin, R.; Kavraki, L.E. Path planning using lazy PRM. In Proceedings of the 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings, San Francisco, CA, USA, 24–28 April 2000; Volume
1, pp. 521–528.

25. Karaman, S.; Walter, M.R.; Perez, A.; Frazzoli, E.; Teller, S. Anytime motion planning using the RRT. In Proceedings of the 2011
IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1478–1483.

26. Noreen, I.; Khan, A.; Habib, Z. A review of path smoothness approaches for non-holonomic mobile robots. In 2018 Computing
Conference; Springer International Publishing: Cham, Switzerland, 2018; pp. 346–358.

27. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal
positions and tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]

28. Khan, A.; Noreen, I.; Habib, Z. On Complete Coverage Path Planning Algorithms for Non-holonomic Mobile Robots: Survey and
Challenges. J. Inf. Sci. Eng. 2017, 33, 101–121.

29. Gu, W.; Cai, S.; Hu, Y.; Zhang, H.; Chen, H. Trajectory planning and tracking control of a ground mobile robot: A reconstruction
approach towards space vehicle. ISA Trans. 2019, 87, 116–128. [CrossRef]

30. De Boor, C. On calculating with B-splines. J. Approx. Theory 1972, 6, 50–62. [CrossRef]
31. Han, X.A.; Ma, Y.; Huang, X. A novel generalization of Bézier curve and surface. J. Comput. Appl. Math. 2008, 217, 180–193.

[CrossRef]
32. Nguyen, A.D.; Tran, N.H.; Nguyen, T.T.; Nguyen, A.T.; Tran, T.P. A Hybrid Multi-waypoints Path Planning System for Robots

with Minimum Turning Radius Constraint Using GA-B-Spline and Dubins Interpolation. In International Conference on Advanced
Mechanical Engineering, Automation and Sustainable Development; Springer International Publishing: Cham, Switzerland, 2021;
pp. 906–917.

33. Piegl, L.; Tiller, W. The NURBS Book; Springer Science & Business Media: New York, NY, USA, 2012.
34. Shanmugavel, M. Path Planning of Multiple Autonomous Vehicles; Cranfield University: Silsoe, UK, 2007.
35. Trélat, E. Optimal control and applications to aerospace: Some results and challenges. J. Optim. Theory Appl. 2012, 157, 713–758.

[CrossRef]
36. Faulwasser, T. Optimization-Based Solutions to Constrained Trajectory-Tracking and Path-Following Problems; Shaker: Aachen,

Germany, 2013.
37. Wang, X. Solving Optimal Control Problems with MATLAB: Indirect Methods; ISE Dept., NCSU: Raleigh, NC, USA, 2009; p. 27695.
38. Sager, S.; Bock, H.G.; Reinelt, G. Direct methods with maximal lower bound for mixed-integer optimal control problems. Math.

Program. 2009, 118, 109–149. [CrossRef]
39. Kelly, M. Cannon Example. Available online: http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization/canon.html

(accessed on 6 November 2017).
40. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.15807/jorsj.43.32
http://dx.doi.org/10.3390/s21237898
http://www.ncbi.nlm.nih.gov/pubmed/34883899
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1016/j.isatra.2018.11.019
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1016/j.cam.2007.06.027
http://dx.doi.org/10.1007/s10957-012-0050-5
http://dx.doi.org/10.1007/s10107-007-0185-6
http://www.matthewpeterkelly.com/tutorials/trajectoryOptimization/canon.html
http://dx.doi.org/10.1177/0278364911406761

	Introduction
	Literature Review
	Problem Description
	Organization

	Survey of Existing Methods
	Path Planning
	Path Smoothing
	Time Parametrization

	Experiences and Results
	Experiences
	Path Planning Problem
	Path Smoothing
	Time Parametrization
	Synthesis

	Results

	Conclusions
	References

