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Abstract
The HQC post-quantum cryptosystem enables two parties to share noisy versions of a com-
mon secret binary string, and an error-correcting code is required to deal with the mismatch
between both versions. This code is required to deal with binary symmetric channels with
as large a transition parameter as possible, while guaranteeing, for cryptographic reasons, a
decoding error probability of provably not more than 2-128. This requirement is non-standard
for digital communications, and modern coding techniques are not amenable to this setting.
This paper explains how this issue is addressed in the last version of HQC: precisely, we
introduce a coding scheme that consists of concatenating a Reed–Solomon code with the
tensor product of a Reed–Muller code and a repetition code. We analyze its behavior in
detail and show that it significantly improves upon the previous proposition for HQC, which
consisted of tensoring a BCH and a repetition code. As additional results, we also provide a
better approximation of the weight distribution for HQC error vectors, and we remark that
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the size of the exchanged secret in HQC can be reduced to match the protocol security which
also significantly improves performance.

Keywords Post-quantum cryptography · Code-based cryptography · Public-key
encryption · HQC · NIST

Mathematics Subject Classification 94A60 · 11T71 · 14G50

1 Introduction

Post-quantum cryptography, which aims at providing schemes resistant against quantum
computers, has been a growing topic of study for the last decade and has been given an enor-
mous boost by the NIST standardization competitive process [13]. One of the approaches to
devising post-quantum cryptosystems is code-based cryptography. Code-based cryptography
is arguably the oldest post-quantum approach, since it includes the McEliece cryptosystem
[11], originally proposed in 1978 (though its post-quantum appeal was of course not apparent
at the time) and still considered by NIST for standardization at the time of writing [13].

The McEliece scheme provides a general public-key framework that can in principle be
instantiated with any family of error-correcting codes having an efficient decoding algorithm:
indeed, the scheme’s simple and attractive main idea is to encrypt messages as noisy code-
words and hide the decoding algorithm from anyone but the legitimate receiver. However, the
security of the cryptosystem is highly dependent on the choice of the family of codes being
used. Even though the original instantiation, based on binary Goppa codes, has time-tested
security, many others (for example using reducible rank codes [5] or Reed–Solomon codes
[12]) have been broken by recovering the hidden structure of the code from the public key.
The very nature of this framework makes it difficult to reduce the security of the scheme to
the difficulty of a well-established problem such as decoding random linear codes.

In [2], the authors propose a framework that can be instantiated in different metrics to
derive code-based cryptosystems with a built-in security reduction to a decision version of
the decoding problem for random quasi-cyclic codes. The instantiation of this framework in
the Hamming metric is HQC (Hamming Quasi Cyclic), which was submitted to the NIST
Post-Quantum standardization process and is one of the three remaining candidates in the
fourth round of the competition. Thanks to the quasi-cyclic structure, the scheme features
compact key sizes (about 3kB for a security of 128 bits) as well as fast key generation,
encryption, and decryption operations.

At the heart of the HQC scheme is a key-exchange mechanism which enables the sender
and the receiver to share a random binary string: this binary string could then in principle be
one-time padded to a plaintext to create a ciphertext. However, the communicating parties
do not have exactly the same random binary string: the receiver has a noisy version of the
sender’s. Therefore, a structured public error-correcting code C is needed to encode the
plaintext and remove the noise inherent to the decryption process. To ensure the underlying
problems are hard enough, the error weight is counted in thousands of bits in the HQC
scheme, but the message to be transported is generally small (between 128 and 256 bits).
As the most communication-efficient solution is to be obtained, this leads to a setting in
which low transmission-rate codes in a high error-rate channel are needed. Moreover, it is
required that the resulting cryptographic scheme successfully decrypts with overwhelming
probability. This additional constraint is inherited from two considerations: first, as exhibited
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by Guo et al. [6], decryption failures can yield secret key recovery attacks and second, it is
a pre-requisite to the generic HHK transform of [7] for resisting against active adversaries
(this transform is described in more details in Sect. 3, and the resulting KEM is pictured in
Appendix A). In the rest of this paper, this notion is referred to as the Decryption Failure Rate
(DFR), which is defined as the decoding error probability for the code C. Choosing the most
appropriate code is therefore a purely coding-theoretic problem, since its role is solely to
correct errors and it has no cryptographic requirement, apart from implementation concerns.
However, figuring out what is the best suited error-correcting code is an unusual challenge
from a coding theory point of view. In particular, the required decoding error probability
rules out decoder simulations, and it also requires large minimum distances together with
the absence of small-weight or average-weight pseudo-codewords, which leaves out of the
picture modern decoding techniques for LDPC codes or polar codes, for example.

In [2], the authors proposed tensor products of BCH and repetition codes: this was a
natural suggestion, because intuition suggests that repetition is hard to beat in a very high
noise setting, and its simplicity allows for fast encoding and precise DFR analysis. The
analysis consists of two steps: first, the weight distribution of the error vector is studied, and
then the DFR of the chosen codes for given weights is analyzed.

The contribution of the present paper is the proposal and analysis of an alternative coding
scheme aimed at the high-noise low-rate scenario of HQC, and which is now integrated in
the current upgraded version of the NIST submission. It consists of the concatenation of a
Reed–Solomon code with an inner code that is the tensor product of a Reed–Muller code and
a small repetition code. We will call the inner code a duplicated Reed–Muller code for short.
We provide a fine-grained analysis of the DFR of duplicated Reed–Muller codes; we prove
that the DFR of these concatenated codes is cryptographically small for codes that are shorter
and faster to decode than the original BCH/repetition construction. This leads to shorter keys
and ciphertexts and faster encryption/decryption operations in HQC. Concatenated coding
schemeshavebeen extensively studied and applied, andfirst-orderReed–Muller codes are one
of the oldest, simplest, andmost studied codes: however, using duplicatedReed–Muller codes
in a concatenated scheme is non-standard, and we do not know of any previous experiments
with these codes. Not every code has the same decoding complexity, and it is also important
to consider their effective performance. In our case, replacing BCH and repetition codes by
Reed–Solomon and Reed–Muller codes turns out to be more efficient, as noted in the round
2 submission of HQC to the NIST standardization process.

Beside these contributions, we also derive formal lower bounds for the HQC framework
using a sphere packing argument: the lower bounds show that there is not very much room
for significant improvements to the error-correcting scheme. These bounds also provide an
implicit metric between different codes for this construction (the ratio between the code size
and the lower bound), which we use to measure the impact of our contributions over HQC.
We also provide a better analysis of the distribution of the weight of the error vector in HQC,
which leads to a better DFR analysis regardless of which public code is used to decode it.
Finally, we note that it is possible to reduce the number of bits of the exchanged message
without lowering security, which provides a significant improvement on the code size when
using the encryption scheme for key exchange.
Paper organization. In Sect. 2 we introduce notation and describe the HQC scheme. Sec-
tion3 provides lower bounds on the length of the public code for HQC in order to reach
a negligible DFR. We then provide an improvement of the previous analysis of the distri-
bution of the error weight in HQC in Sect. 4 and then apply this analysis to the original
BCH/repetition construction and to the new Reed–Muller/Reed–Solomon one in Sect. 5.
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2 Preliminaries

In this section, we introduce the basic notation and the description of the HQC scheme. For
more details on the protocol and the security proof, we refer the reader to [2].

Throughout this document, Z denotes the ring of integers and F2 the binary field. Addi-
tionally, we denote by ω(·) the Hamming weight of a vector i.e. the number of non-zero
coordinates, and by Sn

w (F2) the set of words in F
n
2 of weight w. Formally:

Sn
w (F2) = {

v ∈ F
n
2, such that ω(v) = w

}
.

Elements of Fn
2 can be interchangeably considered as row vectors or polynomials in the ring

F2[X ]/ (Xn − 1). Vectors/Polynomials (resp. matrices) will be represented by lower-case
(resp. upper-case) bold letters. For a vector v, vk denotes its k-th coordinate. For the sake of
conciseness, we will say that a prime integer n is primitive if 2 is a primitive n-th root of
unity or equivalently, if the polynomial (Xn − 1)/(X − 1) is irreducible in F2[X ].

For u, v ∈ F
n
2, we define their product similarly as in F2[X ]/ (Xn − 1), i.e. uv = w ∈ F

n
2

with

wk =
∑

i+ j≡k mod n

uiv j , for k ∈ {0, 1, . . . , n − 1}. (1)

HQC takes great advantage of matrices with a cyclic structure. Following [2], rot(v)
for v ∈ F2[X ]/ (Xn − 1) denotes the circulant matrix whose i-th column is the vector
corresponding to vXi . This is captured by the following definition.

Definition 1 (Circulant Matrix) Let v = (v0, . . . , vn−1) ∈ F
n
2. The circulant matrix induced

by v is defined and denoted as follows:

rot(v) =

⎛

⎜⎜⎜
⎝

v0 vn−1 . . . v1
v1 v0 . . . v2
...

...
. . .

...

vn−1 vn−2 . . . v0

⎞

⎟⎟⎟
⎠

∈ F
n×n
2 . (2)

As a consequence, it is easy to see that the product of any two elements u, v ∈
F2[X ]/ (Xn − 1) can be expressed as a usual vector–matrix (or matrix–vector) product using
the rot(·) operator as

u · v = u × rot(v)�

=
(
rot(u) × v�)�

= v × rot(u)�

= v · u.

(3)

We now recall the HQC scheme in Fig. 1. In [2], the code C used for decoding is a tensor
product of BCH and repetition codes. But since this code is public, its structure has no
incidence on security as long as its DFR is cryptographically low, and one can choose any
code family, influencing only the DFR and the parameter sizes.

Wehavev−uy = mG+xr2−r1y+e = mG+e′ for some e′. Therefore, for the correctness
property to hold, the error vector e′ inside v−uymust be small enough to successfully decode
with overwhelming probability. The next section gives a binary symmetric channel model
and establishes bounds for a decoding error event so as to obtain lower bounds on the code
length.
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Fig. 1 Description of HQC

3 Lower bounds on the code length to achieve negligible DFR

In this section, we provide lower bounds on the lengths of the public codes that are needed for
HQC and compare these lower bounds to the code lengths obtained with the BCH/repetition
proposal and with the present work. In order to define the lower bounds, we consider the
fixed error weights w,we, wr (defined in Fig. 1) that are needed to achieve respectively
λ = 128, λ = 192 and λ = 256 bits of security in HQC, ensuring in particular that the
best-known attacks (see [2, Sects. II.D & VII.A]) will have a complexity at least 2λ. What is
then required is an error-correcting code C that can deal with a Binary Symmetric Channel
(BSC) of a certain parameter p� that is a function of n, w,we, wr and that we will compute
explicitly in Sect. 4. The assumption that codewords of C are submitted to a BSC will also
be discussed at length in Sect. 4. Below, we derive a lower bound on the code length for any
code C to achieve a DFR of 2−λ when submitted to the above BSC: this bound enables us to
give a measure of the performance of codes C and associated decoding schemes for HQC.

To this end, we provide two figures: one in which the code is required to transport λ bits
and the other one in which the code is always required to transport 256 bits, irrespective
of the security level, for comparison. These requirements must be met to use HQC for key
exchange, which is the main application of public key encryption schemes. Indeed, a key
exchange schememust be able to transport keys of the same size as its security parameter and
in [2], the authors propose to use the HHK transformation [7] to obtain IND-CCA security1.
This transformation extends the Fujisaki-Okamoto approach, and allows to turn any One-
Way Public Key Encryption scheme secure against Chosen Plaintext Attacks (OW-CPA PKE
for short) into an IND-CCA Key Encapsulation Mechanism in the Random Oracle Model.
This transformation is detailed in Appendix A. In order to apply this transform, the PKE
scheme has to satisfy the correctness property, with overwhelming probability in the security
parameter. Hence, as stated before, the DFR constraint is a pre-requisite that stems from
that transformation, but also from the fact that decryption failures could yield key recovery
attacks [6].

Figure 2 presents the lower bounds and compares these bounds with the lengths achieved
for the BCH/Repetition approach and with the present work. These results are also presented
numerically for our work together with the lower bounds in Table 1. The last column of this
table presents the ratio between the bounds and our work which shows that we are relatively
close to an optimal solution.

1 IND-CCA and IND-CCA2 used to refer to different security properties, the difference being that in the
latter, the adversary could make additional queries to the decryption oracle after having received the challenge
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Fig. 2 Values of n needed to achieve a DFR of 2−λ and transport keys of 256 (left figure) or λ (right figure)
bits. Note that for λ = 256 the results provided by both figures are the same. For lower values of λ, sending
λ bits instead of 256 results in a noticeable reduction of n. The ratio n/nb , where nb is the lower bound on n
provided in the figures, is a performancemeasure defining the distance to an optimal solution. Replacing HQC-
BCH-REPET with our proposal improves significantly this measure. Basically we reduce the gap between
what is practically feasible and theoretically possible by a factor close to 2

Table 1 Theoretical code length to obtain a DFR < 2−λ, where λ is the security parameter

Security parameter Minimal n Current n Minimal/current

128 13,534 17,669 0.766

192 31,411 35,851 0.876

256 45,064 57,601 0.782

Proof of the lower bounds. As mentioned above, the noisy codeword v − uy of HQC (see
Fig. 1) must be decoded on a memoryless BSC with a Bit Error Rate (BER) p� that depends
on the weights w,we, wr and on n, the length2 of the code. It is relatively straightforward to
justify the existence of lower bounds. For a given security parameter λ the noise weights w,
we and wr are fixed. When n decreases, the BER p� increases according to Eq. (6). Below a
given value of n the error rate will be too high to be corrected with probability 1− 2−λ when
transporting λ bits, thus a lower bound exists. Since the values w,we, wr are determined by
the security parameter λ, let us denote by ber(n, λ) the function that calculates the BER p�

from n and the security parameter λ. We follow a standard packing argument consisting of
saying that if the error vector has a sufficiently large weight t , then the spheres of radius t
centered on the codewords must intersect on many points of the ambient space, and we have
a decoding error event with large probability, see for example [3].

ciphertext. IND-CCA2 being the most commonly required security feature, it is now commonly referred to as
IND-CCA, and we adopt this convention in this paper.
2 Note that, as n must be primitive, for some code parameters we will extend the code by padding it with a
few zeros so that the length is a primitive number. In practice, the length of the initial code and n will be very
close and for simplicity we will consider them equal.
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Theorem 1 Let C[n, k] denote a linear code over F2. Let λ denote the security parameter,
and p = ber(n, λ). Let t0 = t0(n, λ) denote the smallest integer t such that |Sn

t (F2)|=
(n
t

) ≥
2n+1−k . Also denote the probability of having an error e of weight greater than or equal to
t in a memoryless BSC by p≥t (n, p) = Pr[ω(e) ≥ t]:

p≥t (n, p) = Pr[ω(e) ≥ t] =
n∑

i=t

(
n

i

)
pi (1 − p)n−i .

Finally, define nλ as the smallest n such that

1

2
· p≥t0 (n,ber(n, λ)) < 2−λ.

Then nλ is a lower bound on the code length n for the code C to have negligible DFR 2−λ.

Proof |Sn
t (F2)| = (n

t

)
is the number of vectors in F

n
2 on the surface of the sphere of radius

t centered in 0, and thus t0 = t0(n, λ) is the smallest t such that |C| · (n
t

) ≥ 2 · |Fn
2 |. If we

consider all the spheres of radius t0(n, λ) around the codewords of C, on average each vector
in Fn

2 is expected to be on the surface of at least two spheres. Given the code linearity, which
implies that a decoding error event depends only on the error vector and not the transmitted
codeword, we have that a uniformly random error of weight t0(n, λ) (or above) decoded by
maximum likelihood has a probability at least 1/2 of leading to a decoding error.

The probability of having an error e of weight greater than or equal to t in a memoryless
BSC with error rate p is

p≥t (n, p) =
n∑

i=t

(
n

i

)
pi (1 − p)n−i

and therefore LBDFR(n, λ) = (1/2) · p≥t0(n,ber(n, λ)) is a lower bound on the DFR of C.
To find the best lower bound on n for a given λ, it is enough to start at n = 0 and iterate
until the first value nλ such that LBDFR(nλ, λ) < 2−λ is found. (notice that in practice, for
cryptographic reasons, n will have to be primitive: since (Xn − 1)/(X − 1) is irreducible in
F2[X ], it removes all potential structure that could be exploited by attacks such as [9]). ��

In the following section, we study the distribution of the resulting error vector when trying
to decrypt the ciphertext. This will be helpful to set the parameters so that, with overwhelming
probability, the error will have a weight below the error correction capability of the code.

4 Analysis of the error vector distribution for Hamming distance

From the description of the HQC framework (see Fig. 1), decryption corresponds to decoding
the received vector: v−uy = mG+e′ for the error vector e′ = xr2−r1y+e. In this section,
we provide a more precise analysis of the error distribution approximation compared to [2].
We first compute exactly the probability distribution of each fixed coordinate e′

k of the error
vector

e′ = x · r2 − r1 · y + e = (e′
0, . . . e

′
n−1).

We obtain that every coordinate e′
k is Bernoulli distributed with parameter p� = P[e′

k = 1]
given by Proposition 3.
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To compute the probabilities of decoding errors, we will then need the probability distri-
bution of the weight of the error vector e′ restricted to given sets of coordinates.Wewill make
the simplifying assumption that the coordinates e′

k of e
′ are independent variables, which will

let us work with the binomial distribution of parameter p� for the weight distributions of e′.
This working assumption is justified by remarking that, in the high weight regime relevant to
us, since the component vectors x, y, e have fixedweights, the probability that a given coordi-
nate e′

k takes the value 1 conditioned on abnormally many others equaling 1 can realistically
only be ≤ p�. We support this modeling of the otherwise intractable weight distribution of
e′ by extensive simulations (see Sect. 4.3, and in particular Table 3 and Fig. 3). These back
up our assumption that our computations of decoding error probabilities and DFRs can only
be upper bounds on their real values.

4.1 Analysis of the distribution of the product of two vectors

The vectors x, y, r1, r2, e have been taken uniformly random and independently chosen
among vectors of weight w, wr and we. We first evaluate the distributions of the products
x · r2 and r1 · y.

Proposition 2 Let x = (x0, . . . xn−1) and r = (r0, . . . , rn−1) be independent random vectors
chosen uniformly among all binary vectors of weight w and wr respectively. Then, denoting
z = x · r, we have that, for every k ∈ {0, . . . n − 1}, the k-th coordinate zk of z is Bernoulli
distributed with parameter p̃ = P[zk = 1] equal to:

p̃ = 1
(n
w

)( n
wr

)
∑

1���min(w,wr)
� odd

C�

where C� = (n
�

)(n−�
w−�

)( n−w
wr−�

)
.

Proof In order to evaluate p̃, we have to determine how many pairs of vectors are such that
their product yields 1 on a given coordinate. The total number of ordered pairs (x, r) is(n
w

)( n
wr

)
. Among those, we need to count how many are such that zk = 1. We note that

zk =
∑

i+ j=k mod n
0≤i, j≤n−1

xir j .

We need therefore to count the number of couples (x, r) such that we have xirk−i = 1 an
odd number of times when i ranges over {0, . . . , n − 1} (and k − i is understood modulo
n). Let us count the number C� of couples (x, r) such that xirk−i = 1 exactly � times. For
� > min(w,wr) we must have C� = 0. For � ≤ min(w,wr) we have

(n
�

)
choices for the

set of coordinates i such that xi = rk−i = 1, then
(n−�
w−�

)
remaining choices for the set of

coordinates i such that xi = 1 and rk−i = 0, and finally
( n−w
wr−�

)
remaining choices for the set

of coordinates i such that xi = 0 and rk−i = 1. Hence C� = (n
�

)(n−�
w−�

)( n−w
wr−�

)
. By summing

all possible odd values for �, 1 � � � min(w,wr), we obtain the number of ordered pairs
(x, r) such that zk = 1 and divide this value by the total number of choices for (x, r) to
compute p̃. ��
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4.2 Analysis of the error vector

Let x, y (resp. r1, r2) be independent random vectors chosen uniformly among all binary
vectors of weight w (resp. wr).

By independence of (x, r2) with (y, r1), the k-th coordinates of x · r2 and of r1 · y are
independent, and they are Bernoulli distributed with parameter p̃ given by Proposition 2.
Therefore their modulo 2 sum t = x · r2 − r1 · y is Bernoulli distributed with

{
Pr[tk = 1] = Pr[xr2 = 0 & r1y = 1] + Pr[xr2 = 1 & r1y = 0] = 2 p̃(1 − p̃),

Pr[tk = 0] = Pr[xr2 = 0 & r1y = 0] + Pr[xr2 = 1 & r1y = 1] = (1 − p̃)2 + p̃2.
(4)

Finally, by adding modulo 2 coordinate-wise the two independent vectors e and t, we
obtain the distribution of the coordinates of the error vector e′ = x · r2 − r1 · y + e given by
the following proposition:

Proposition 3 Let x, y (resp. r1, r2, resp. e) be uniformly random vectors of weight w (resp.
wr, resp.we).We suppose furthermore that the randomvectors x, y, r1, r2, e are independent.
Let e′ = x · r2 − r1 · y + e = (e′

0, . . . , e
′
n−1). Then, for every k ∈ {0, . . . , n − 1} we have:

{
Pr[e′

k = 1] = 2 p̃(1 − p̃)(1 − we
n ) + (

(1 − p̃)2 + p̃2
)

we
n ,

Pr[e′
k = 0] = (

(1 − p̃)2 + p̃2
)
(1 − we

n ) + 2 p̃(1 − p̃)we
n .

(5)

Proof The vectors x · r2, r1 · y and e are clearly independent. The k-th coordinate of e is
Bernoulli distributed with parameterwe/n. The random Bernoulli variable e′

k is therefore the
sum modulo 2 of three independent Bernoulli variables of parameters p̃ for the first two and
of parameter we/n for the third one. Equation (5) is obtained in a similar way as Eq. (4). ��

Proposition 3 gives us the probability that a coordinate of the error vector e′ is 1. In our
simulations, which occur in the regime w = α

√
n with constant α, we make the simplifying

assumption that the coordinates of e′ are independent, meaning that the weight of e′ follows
a binomial distribution of parameter p�, where p� is defined as Pr[e′

k = 1] in Eq. (5):

p� = 2 p̃ (1 − p̃)
(
1 − we

n

)
+

(
(1 − p̃)2 + p̃2

) we

n
. (6)

This approximation will give us, for 0 ≤ d ≤ min (2 × w × wr + we, n),

Pr[ω (
e′) = d] =

(
n

d

)(
p�

)d(1 − p�
)(n−d)

. (7)

4.3 Supporting elements for our modelization

Figure 3 shows the results of the simulations on the distribution of the weight of the error
vector, together with the distribution of the associated binomial law of parameter p�. It is
important to notice that error vectors are more likely to have a weight closer to the mean than
predicted by the binomial distribution. This in turn, implies that the error is less likely to be
of larger weight than if it was binomially distributed. This is for instance illustrated on the
parameter set corresponding to real parameters used for 128 bits security. For cryptographic
purposes we are mainly interested in large weight occurrences which are the ones that may
induce decoding errors. These results show that the probability of obtaining a large weight
is closer but smaller for the error weight distribution of e′ rather than for the binomial
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Table 2 Parameters used for
simulation, see Fig. 3

Parameter set w we = wr n n1n2 p�

hqc-128 66 75 17,669 17,664 0.3398

Table 3 Simulated probabilities
of large weights for hqc-128 for
the distributions of the error
vector and the binomial
approximation

0.1% 0.01% 0.001% 0.0001%

Error vectors 6169 6203 6232 6257

Binomial approximation 6197 6237 6272 6301

Fig. 3 Comparison of the weight of an error vector e′ generated using hqc-128 parameters (Table 2) and the
binomial distribution of parameter p� (Eq. (6))

approximation. This supports our modelization and the fact that computing the decoding
failure probability with this binomial approximation permits to obtain an upper bound on
the real DFR. This will be confirmed in the next sections by simulations with real weight
parameters (but smaller lengths).
Examples of simulations. We consider a parameter set that corresponds to cryptographic
parameters and for which we simulate the error distribution versus the binomial approxima-
tion together with the probability of obtaining large error weights. We computed vectors of
length n, where n is the smallest primitive prime greater than n1n2, and then truncated the
last l = n − n1n2 bits before measuring the Hamming weight of the vectors.
Simulation results. Simulation results are shown Fig. 3. We computed the weights such that
0.1%, 0.01%, 0.001% and 0.0001% of the vectors are of weight greater than this value, to
study how often extreme weight values occur. Results are presented in Table 3.

As we can see from these, extreme weight values happen more often in the case of the
binomial approximation. Since these cases are the ones that may lead to decoding failure,
this approximation leads to conservative DFR estimations.
Comparison with the previous analysis in [2]: in the case of decoding with BCH and
repetition codes for security parameter 128 bits, the present analysis is sharper, and leads to
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a DFR in 2−154 when the previous one lead to 2−128. In practice, this allows to reduce by
3% the key size in the case of the BCH-repetition code decoder of [2].

The distribution of the error vector being established, next section studies different possi-
bilities for the auxiliary error-correcting code in order to obtain better overall parameters.

5 Analysis of different auxiliary error-correcting codes

In this section, we discuss different possibilities for the public code used in HQC encryp-
tion, starting with the original proposition of BCH with repetition codes, then switching to
concatenated Reed–Muller and Reed–Solomon codes. We analyze their respective DFR, and
refine the original analysis. Finally, we propose new sets of parameters, improving on the
original proposal.

5.1 Tensor product of BCH and repetition codes

Section 4 allowed us to determine the distribution of the weight of the error vector e′. Now,
in the decryption part, we need to decode this error vector e′. At this point any decodable
code can be used. In this section we are going to study tensor product codes of BCH and
repetition codes, as in [2].

First we recall the definition of tensor product codes.

Definition 2 (Tensor Product Code) Let C1 (resp. C2) be an [n1, k1, d1] (resp. [n2, k2, d2])
linear code over F2. The Tensor Product Code of C1 and C2 denoted C1 ⊗ C2 is defined as
the set of all n2 × n1 matrices whose rows are codewords of C1 and whose columns are
codewords of C2.

More formally, if C1 (resp. C2) is generated by G1 (resp. G2), then

C1 ⊗ C2 =
{
G�

2 XG1 for X ∈ F
k2×k1
2

}
(8)

Remark 1 Using the notation of the above definition, the tensor product of two linear codes
is an [n1n2, k1k2, d1d2] linear code.

Specifying the tensor product code In order to provide strong guarantees on the decryption
failure probability of the HQC cryptosystem, the authors of [2] choose to restrict to a tensor
product code C = C1 ⊗ C2, where C1 is a BCH(n1, k1, δ1) code of length n1, dimension
k1, and correcting capability δ1 (i.e. it can correct any pattern of δ1 errors), and C2 is the
repetition code of length n2 and dimension 1, denoted 1n2 (notice that 1n2 can decode up to
δ2 = � n2−1

2 ).
In HQC, a message m ∈ F

k1
2 is first encoded into m1 ∈ F

n1
2 with a BCH(n1, k1 = k, δ1)

code, then each coordinate m1,i of m1 is re-encoded into m̃1,i ∈ F
n2
2 with a repetition code

1n2 . This encoding method is known as a tensor product code in the literature [10, Chap. 18].
We denote n1n2 the length of the tensor product code3 (its dimension is k = k1 × 1), and by
m̃ the resulting encoded vector, i.e. m̃ = (

m̃1,1, . . . , m̃1,n1

) ∈ F
n1n2
2 .

In the original HQC scheme, we have C = C1⊗C2 where C1 is a BCH(n1, k1 = k, d1) code
and C2 = 1n2 the [n2, k2 = 1, d2 = n2] repetition code, that can decode up to δ2 = � n2−1

2 .

3 In practice, the length is the smallest primitive prime n greater than n1n2 to avoid algebraic attacks.
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The efficient algorithm used for the repetition code is the majority decoding. Formally:

1n2 .Decode(m̃1, j ) =
{
1 if

∑n2−1
i=0 m̃1, j,i ≥ � n2+1

2 �,
0 otherwise.

(9)

The decoding of BCH codes is discussed in the next section.

5.1.1 BCH codes

For any positive integers m ≥ 3 and t ≤ 2m−1, there exists a binary BCH code with the
following parameters [8]:

• block length n = 2m − 1;
• number of parity-check digits n − k ≤ mδ, with δ, the correcting capacity of the code

and k the number of information bits;
• and minimum (designed) distance dmin ≥ 2δ + 1.

We denote this code by BCH(n, k, δ). Let α be a primitive element in F2m , the generator
polynomial g(x) of the BCH(n, k, δ) code is given by:

g(x) = LCM {φ1(x), φ2(x), · · · , φ2δ(x)}
with φi (x) being the minimal polynomial of αi (refer to [8] for more details on generator
polynomial) and LCM being the least common multiple.

Depending on the security level, we construct shortened BCH codes4 from the following
BCH codes:

• a [511, 241, 36] BCH code shortened to [398, 128, 36] for λ = 128;
• a [1023, 513, 57] BCH code shortened to [702, 192, 57] for λ = 192;
• a [1023, 483, 60] BCH code shortened to [796, 256, 60] for λ = 256.

5.1.2 Decryption failure probability

With a tensor product code C = BCH(n1, k1, δ)⊗1n2 as defined above, a decryption failure
occurs whenever the decoding algorithm of the BCH code does not succeed in correcting
errors that would have arisen after wrong decodings by the repetition code. Therefore, the
analysis of the decryption failure probability is again split into three steps: evaluating the
probability that the repetition code does not decode correctly, the conditional probability of
a wrong decoding for the BCH code given an error weight and finally, the decryption failure
probability using the law of total probability.

We first focus on the probability that an error occurs while decoding the repetition code.
As shown in Sect. 4, the probability for a coordinate of e′ = xr2 − r1y + e to be 1 is p�

(see Eq. (5)). As mentioned above, 1n2 can decode up to δ2 = � n2−1
2  errors. Therefore, the

probability that 1n2 does not decode correctly for odd n2 is given by:

pi =
n2∑

i=�n2/2�

(
n2
i

)
p�i (1 − p�)n2−i . (10)

4 Shortening a code can be seen as expurgating (removing codewords) then puncturing it (removing columns
from the generator matrix). This operation keeps the n − k redundancy bits and decreases k and n at the same
pace. In this case, shortening BCH codes does not affect the designed distance.
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For n2 even, when the error has weight n2
2 , the probability of not decoding correctly is

1/2. We choose the arbitrary convention to decode the word as 0 in such a case. It follows
that the probability of not decoding correctly becomes:

pi = 1

2

(
n2
n2
2

)
p�

n2
2 (1 − p�)

n2
2 +

n2∑

i= n2
2 +1

(
n2
i

)
p�i (1 − p�)n2− j . (11)

Notice that in practice (except for simulations) we only consider odd n2 in our parameters.
We now focus on the BCH(n1, k1, δ1) code, and recall that it can correct any pattern of

δ1 errors. Now, the probability pe that the BCH(n1, k1, δ1) code fails to decode correctly the
encoded messagem1 back tom is given by the probability that an error occurred on at least
δ1 + 1 blocks of the repetition code. Therefore, we have the following theorem:

Theorem 4 The probability pe that the BCH(n1, k1, δ1) code does not decode correctly is
given by:

pe =
n1∑

l=δ1+1

(
n1
l

)
pli (1 − pi )

n1−l . (12)

5.2 Concatenated Reed–Muller and Reed–Solomon codes

In this section we study the impact of using a new family of auxiliary error-correcting codes:
instead of the tensor product codes used in theHQC framework [2] we propose to consider the
concatenation of Reed–Solomon and duplicated first order Reed–Muller codes. We denote
this instantiation of the HQC framework by HQC-RMRS.

5.2.1 Construction

Definition 3 (Concatenated codes) A concatenated code consists of an external code
[ne, ke, de] over Fq and an internal code [ni , ki , di ] over F2, with q = 2ki . We use a bijection
between elements of Fq and the words of the internal code, this way we obtain a transforma-
tion:

F
ne
q → F

N
2

where N = neni . The external code is thus transformed into a binary code of parameters
[N = neni , K = keki , D � dedi ].

For the external code, we chose Reed–Solomon codes of dimensions 16, 24 or 32 over
Fq = F256, depending on whether we want to achieve a total dimension of 128, 192, or
256. For the internal code, we chose the Reed–Muller code [128, 8, 64] that we are going
to duplicate between 2 and 6 times (i.e. duplicating each bit to obtain codes of parameters
[256, 8, 128], [512, 8, 256], [786, 8, 384]).

Decoding:We perform maximum likelihood decoding (MLD) on the internal code. This
yields a vector of Fne

q that we then decode using an algebraic decoder for the Reed–Solomon
code.

Decoding the internal Reed–Muller code: The Reed–Muller code of order 1 and length
2m can be decoded using a fast Hadamard transform [10, Chap. 14]. Recall that for any
function F : Fm

2 → Z the Hadamard (or Walsh-Hadamard) transform computes the function
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F̂ : Fm
2 → Z defined by F̂(x) = ∑

y∈Fm2 F(y)(−1)x·y. Recall also that, for n = 2m , vectors
of Fn

2 can be viewed as functions f : Fm
2 → F2, and that decoding the Reed–Muller code

involves applying the fast Hadamard transform to F = (−1) f and finding x that maximizes
|F̂(x)|.

The decoding algorithm needs to be slightly adapted when decoding duplicated codes. For
example, if the Reed–Muller of length 2m is duplicated three times, we create the function F :
F
m
2 → {3, 1,−1,−3} (which can be thought of as a 2m-tuple of symbols from {3, 1,−1,−3})

by transforming every block of three bits y1y2y3 of the received vector of length 3.2m to

(−1)y1 + (−1)y2 + (−1)y3 .

More generally, when duplicating t times we transform the received function F into a
function taking its values in the set of all integer even values between −t and t when t is
even and all odd values between −t and t when t is odd.

We then apply the Hadamard transform to the function F , yielding F̂ . We take the max-
imum value of F̂ and x ∈ F

m
2 that maximizes the value of |F̂(x)|. If F̂(x) is positive, then

the closest codeword is xGH where GH is the generator matrix of the duplicated Hadamard
code (without the all-one-vector). If F̂(x) is negative, then we need to add the all-one-vector
to it.

5.2.2 Decoding failure rate analysis

We now consider the decoding failure rate of the concatenated code. We first provide two
bounds on the MLD error probability of the duplicated Reed–Muller code: a first simple
union bound and a second more accurate one. These bounds can then be plugged into the
decoding error probability for the bounded distance decoder of the Reed–Solomon code.

Proposition 5 (Simple Upper Bound for the DFR of the internal code) Over a BSC of
transition probability p the DFR of a duplicated Reed–Muller code of dimension 8 and
minimal distance di can be upper bounded by:

pi = 255
di∑

j=di /2

(
di
j

)
p j (1 − p)di− j .

Proof For any linear code C of length n, when transmitting a codeword c, the probability that
the channel makes the received word y at least as close to a word c′ = c + x as c (for x a
non-zero word of C and w = ω(x) the weight of x) is:

∑

j�w/2

(
w

j

)
p j (1 − p)n− j .

By the union bound applied on the different non-zero codewords x of C, we obtain that
the probability of a decoding failure can thus be upper bounded by:

∑

x∈C,x �=0

∑

j�w/2

(
w

j

)
p j (1 − p)n− j .

There are 255 non-zero words in a [128,8,64] Reed–Muller code, 254 of weight 64 and
one of weight 128. The contribution of the weight 128 vector is smaller than the weight 64
vectors, hence by applying the previous bound to duplicated Reed–Muller codes we obtain
the result.
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Fig. 4 The binomial distribution vs the actual weight distribution of the HQC error vector restricted to the
support of a Reed–Muller code. Parameters correspond to 128 bits of security, thus the support length is 384

Fig. 5 Comparison between the DFR from 7 (Theoretical) and the actual DFR of concatenated codes against
approximation by a BSC (binomial) and against HQC error vectors (HQC). Parameters simulated are derived
from those of HQC for 128 security bits: w = 66, wr = we = 75, a [384, 8, 192] duplicated Reed–Muller
code for internal code and a [NRS, 16] Reed–Solomon code for external code

Better upper bound on the decoding error probability for the internal code.The previous
simple bound pessimistically assumes that decoding fails when more than one codeword
minimizes the distance to the received vector. The following bound improves the previous
one by taking into account the fact that decoding can still succeed with probability 1/2 when
exactly two codewords minimize the distance to the received vector. ��
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Proposition 6 (Improved Upper Bound for the DFR of the internal code) Over a BSC of
transition probability p, the DFR of a duplicated first-order Reed–Muller code of dimension
8 and minimal distance di can be upper bounded by:

pi =
n∑

w=di /2

Aw pw(1 − p)n−w

where

Aw = min

[(
n

w

)
,
1

2
255

(
di
di/2

)(
di

w − di/2

)

+ 255
di∑

j=di /2+1

(
di
j

)(
di

w − j

)

+ 1

2

(
255

2

) di /2∑

j=0

(
di/2

j

)3( di/2

w − di + j

)]
.

Proof Let E be the decoding error event. Let e be the error vector.

• Let A be the event where the closest non-zero codeword c to the error is such that
d(e, c) = d(e, 0) = ω(e).

• Let B be the event where the closest non-zero codeword c to the error vector is such that
d(e, c) < ω(e).

• Let A′ ⊂ A be the event where the closest non-zero codeword c to the error vector is
such that d(e, c) = ω(e) and such a vector is unique, meaning that for every c′ ∈ C, c′ �=
c, c′ �= 0, we have d(e, c′) > ω(e).

• Finally, let A′′ be the event that is the complement of A′ in A, meaning the event where
the closest non-zero codeword c to the error is at distance ω(e) from e, and there exists
at least one codeword c′, c′ �= c, c′ �= 0, such that d(e, c′) = d(e, c) = ω(e).

The probability space is partitioned as 	 = A ∪ B ∪ C = A′ ∪ A′′ ∪ B ∪ C , where
C is the complement of A ∪ B. When C occurs, the decoder always decodes correctly, i.e.
P(E |C) = 0. We therefore write:

P(E) = P(E |A′)P(A′) + P(E |A′′)P(A′′) + P(E |B)P(B).

When the event A′ occurs, the decoder chooses at random between the two closest code-
words and is correct with probability 1/2, i.e. P(E |A′) = 1/2. We have P(E |B) = 1 and
writing P(E |A′′) � 1, we have:

P(E) � 1

2
P(A′) + P(A′′) + P(B)

= 1

2
(P(A′) + P(A′′)) + 1

2
P(A′′) + P(B)

P(E) � 1

2
P(A) + 1

2
P(A′′) + P(B). (13)

Now for X = A, A′, A′′, E , let us denote by Xw the intersection of event X with the event
“ω(e) = w”.

We shall write

P(E) =
n∑

w=di /2

P(Ew). (14)
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Similarly to (13) we have

P(Ew) � 1

2
P(Aw) + 1

2
P(A′′

w) + P(Bw). (15)

It now remains to evaluate P(Aw), P(Bw) and P(A′′
w). For P(Bw) and P(Aw) we have

the straightforward union bounds:

P(Bw) � 255
di∑

j=di /2+1

(
di
j

)(
di

w − j

)
pw(1 − p)n−w (16)

with n = 2di the length of the inner code, and where we use the convention that a binomial
coefficient

(
�
k

) = 0 whenever k < 0 or k > �.

P(Aw) � 255

(
di
di/2

)(
di

w − di/2

)
pw(1 − p)n−w (17)

and it remains to find an upper bound on P(A′′
w).

We have:

P(A′′
w) �

∑

c,c′
P(Aw

c,c′)

where the sum is over pairs of distinct non-zero codewords and where:

Aw
c,c′ = {d(e, c) = d(e, c′) = ω(e) = w}.

This event is equivalent to the error meeting the supports of c and c′ on exactly half
of their coordinates. All codewords except the all-one vector have weight di , and any two
codewords of weight di either have non-intersecting supports or intersect in exactly d/2
positions. P(Aw

c,c′) is largest when c and c′ have weight d and non-zero intersection. In this
case we have:

P(Aw
c,c′) =

di /2∑

j=0

(
di/2

j

)3( di/2

w − di + j

)
pw(1 − p)n−w. (18)

Hence

P(A′′
w) �

∑

c,c′
P(Ac,c′)

�
(
255

2

) di /2∑

j=0

(
di/2

j

)3( di/2

w − di + j

)
pw(1 − p)n−w.

(19)

Plugging Eqs. (17), (16) and (19) into (15), and then applying (14) we obtain the result. ��
Remark 2 The previous formula permits to obtain a lower bound on the correct decoding
probability of the duplicated Reed–Muller code; when the error rate gets smaller the bound
becomes closer to the real value of the decoding probability. For cryptographic parameters
the approximation is less precise, which means that the DFR obtained will be conservative
compared to what happens in practice. We performed simulations to compare the real DFR
with the theoretical one from Proposition 6 for [384, 8, 192] and [640, 8, 320] duplicated
Reed–Muller codes using p� values from actual parameters. Simulation results are presented
in Table 4.
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Table 4 Comparison between the observed DFR and the formula from Proposition 6

Security level p� Reed–Muller code DFR from Proposition (6) Observed DFR

128 0.3398 [384, 8, 192] −10.79 −10.96

192 0.3618 [640, 8, 320] −14.14 −14.39

256 0.3725 [640, 8, 320] −11.30 −11.48

Results are presented as log2(DFR)

Remark 3 Propositions 5 and 6 have been derived with a BSC model for the distribution of
the HQC error vector restricted to the support of a (duplicated) Reed–Muller code. Figure4
compares the actual weight distribution of the error vector to the binomial distribution when
restricted to this relatively small number of bits. We observe that they are virtually identical,
meaning that a small proportion of HQC bits do behave as independent and identically
distributed Bernoulli variables.

Theorem 7 (Decoding failure rate of the concatenated code) Using a Reed–Solomon code
[ne, ke, de]F256 as the external code, the DFR of the concatenated code can be upper bounded
by:

ne∑

l=δe+1

(
ne
l

)
pli (1 − pi )

ne−l

Where de = 2δe + 1 and pi is defined as in Proposition 5.

5.2.3 Simulation results

In Fig. 5, we tested the DFR of the concatenated codes against both symmetric binary chan-
nels and HQC vectors, and compared the results with the theoretical value obtained using
propositions 6 and 7.

5.3 Proposed parameters

From the DFR analysis we derive new parameters for the HQC cryptosystem and for the
HQC-RMRS variant introduced in section 5.2. These are described on Table 5 and Table 6.

The values ofw,wr andwe were chosen such that the best known attacks against the HQC
cryptosystem have a complexity > 2λ. The best algorithms to solve the syndrome decoding
problem are the information set decoding (ISD) algorithms, which have been studied in
[4]. Moreover, because of the quasi-cyclic structure in HQC, we also need to consider the
decoding one out of many (DOOM) attack [14]. More details on how the weight values were
computed can be found in the HQC submission to the NIST standardization process [1].

6 Conclusion

In this work, we proposed better parameters for the HQCpost-quantum cryptosystem submit-
ted to the NIST standardization process. These parameters have been investigated thoroughly
thanks to the observation that the codes used in the original submission (BCH and repetition
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Table 5 New proposed parameters for the HQC cryptosystem (security is in bits)

Instance n1 n2 δ n k w wr = we security λ pfail

HQC-128 398 51 36 20,323 128 66 75 128 < 2−128

HQC-192 702 61 57 42,829 192 100 114 192 < 2−192

HQC-256 796 85 60 67,679 256 131 149 256 < 2−256

The tensor product code used consists of a 1n2 repetition code and a [n1, k] shortened BCH code with a
decoding capacity of δ errors

Table 6 New proposed parameters for the HQC-RMRS cryptosystem (security is in bits)

Instance n1 n2 n k w wr = we security λ pfail

HQC-RMRS-128 46 384 17,669 128 66 75 128 < 2−128

HQC-RMRS-192 56 640 35,851 192 100 114 192 < 2−192

HQC-RMRS-256 90 640 57,637 256 131 149 256 < 2−256

The concatenated codeused consists of a [n2, 8, n2/2]Reed–Muller code as the internal code, and a [n1, k, n1−
k + 1] Reed–Solomon code as the external code

codes) are far from being optimal. We have derived theoretical bounds on the optimal code
length in order for the resulting scheme to have negligible DFR. This requirement is crucial
both to avoid key-recovery attacks exploiting decryption failures, and to apply the generic
HHK transform that turns an IND-CPA public key encryption scheme into an IND-CCA
KEM. We also provided a finer analysis of the error weight distribution, that matches sim-
ulation more closely, resulting in lower DFR. Finally, we suggested an alternative auxiliary
code forHQC, namely concatenatedReed–Muller andReed–Solomon codes, that yield better
overall parameters together with an efficient implementation. The improvements suggested
in this work have been integrated in the current version of the NIST submission, still in
consideration in the fourth round of the standardization process.

A HHK transform applied to HQC

Let E be an instance of the HQC public key encryption scheme, as described in Fig. 1, and
let G, H, and K be hash functions. The KEM-DEM version of the HQC cryptosystem is
described in Fig. 6.

123



4530 C. Aguilar-Melchor et al.

Fig. 6 Description of our proposal HQC.KEM
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