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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Introduction

Introduction

Problem

We are 15 in this room. What is the probability that at least two of us
share the same birth date?

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 5 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Introduction

Introduction

Solution

Complementary event: P (A) + P
(
A
)
= 1

A = {at least two people share the same birth date}
A = {no one share the same birth date}
We take two persons: the first has a fixed birth date, the second can be
born during 364 among 365 possible dates to realize the event A. The
probability of this happening is therefore 364

365
The third one 363 among 365 possible dates to realize the event A, so the
new probability is 364

365 × 363
365

We deduce P
(
A
)
= 364

365 × · · · × 365−15+1
365 = 364!

(365−15)!36515−1 ≈ 0.75

P (A) = 1− P
(
A
)
≈ 0.25

With 35 persons : P (A) ≈ 0.8
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Introduction

Introduction

• Probability is necessary when the outcome of an experiment cannot
be predicted with certainty

• One way to define probabilities is to define it as the relative
frequencies of the outcomes when the experiment is repeated an
infinite number of times

• Exemple of die tossing
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Sets

A set is a collection of items or elements. If the set A contains the
elements a1, · · · , an, we write

A = {a1, · · · , an}
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of sets

• the set of colours in a deck of cards {♡,♢,♣,♠} = {♠,♢,♣,♡}

• the set of natural numbers N = {0, 1, 2, · · · }
• the set of integers Z = {· · · ,−2,−1, 0, 1, 2, · · · }
• the set of rational numbers Q
• the set of real numbers R
• closed intervals [a, b] of R with a ≤ b

• open intervals (a, b) of R with a < b

• semi-open intervals [a, b) or (a, b] of R with a < b

• the set of complex numbers C
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Sets with conditions

We can also define a set by mathematically stating the properties satisfied
by its elements. In that case, we write

A = {x |x satisfies some property}

where “|” is read as “such that”

We can also use various properties using a comma

A = {x |x satisfies property 1, x satisfies property 2}

The comma is thus read as “and”
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of sets with conditioning

•
{
x2|x ∈ N

}
= {0, 1, 4, 9, · · · }

• N = {x |x ∈ Z, x ≥ 0}
• Q =

{
a
b |a ∈ Z, b ∈ N, b ̸= 0

}
• for a < b, (a, b] = {x ∈ R|a < x ≤ b}
• C = {x + iy |x ∈ R, y ∈ R}
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Inclusion

We say that A is a subset of B if every element of A is also an element of
B. We note A ⊂ B

A ⊂ B ⇔ x ∈ A ⇒ x ∈ B

Equivalently, we say that B is a superset of A, and we note B ⊃ A
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of inclusions

• {♡,♠} ⊂ {♠,♢,♣,♡}

• N ⊂ Z
• R ⊃ Q
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Equality

Two sets are equal if they have the exact same elements

A = B ⇔ x ∈ A ⇔ x ∈ B ⇔ A ⊂ B and B ⊂ A

The null set

The set with no elements is called the null set or the empty set, and is
denoted ∅

Trivial inclusions

For any set A, we always have A ⊂ A and ∅ ⊂ A
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of equal sets

• {1, 2, 3} = {2, 1, 3}

• {x , x , y} = {x , y}
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Universal set

The universal set is the set of all elements in a given context. Therefore,
every set A is a subset of the universal set. The universal set is denoted Ω
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of universal sets

• when considering the color of card, Ω = {♠,♢,♣,♡}

• when considering the roll of a die, Ω = {1, 2, 3, 4, 5, 6}
• when considering the toss of a coin, Ω = {head, tail}
• when considering the value of a bit of a telecommunication signal

Ω = {0, 1}
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Power set

The power set of a set A is the set of all the subsets of A, including the
empty set and A itself. It is denoted P(A)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of power set

• if A = {0, 1, 2}, we have

P(A) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2},A}
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Venn diagrams and set operations

• Useful to represent sets and their relations

• A set is represented as a closed region

A

Ω
A

B
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Union of two sets

The union of two sets A and B is the set containing all the elements that
are in A or B, eventually both. It is denoted A ∪ B

A ∪ B = {x |x ∈ A or x ∈ B}

An example of the union of two sets

{♡,♢} ∪ {♣,♠} = {♠,♢,♣,♡}

Property

A ∪ B = B ∪ A

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 22 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Union of two sets

The union of two sets A and B is the set containing all the elements that
are in A or B, eventually both. It is denoted A ∪ B

A ∪ B = {x |x ∈ A or x ∈ B}

An example of the union of two sets

{♡,♢} ∪ {♣,♠} = {♠,♢,♣,♡}

Property

A ∪ B = B ∪ A

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 22 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Union of two sets

The union of two sets A and B is the set containing all the elements that
are in A or B, eventually both. It is denoted A ∪ B

A ∪ B = {x |x ∈ A or x ∈ B}

An example of the union of two sets

{♡,♢} ∪ {♣,♠} = {♠,♢,♣,♡}

Property

A ∪ B = B ∪ A

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 22 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Venn diagram of an union
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Union of n sets

A1 ∪ · · · ∪ An is the set containing all the elements that are at least in one
of any of the sets A1, · · · ,An

A1 ∪ · · · ∪ An =
n⋃

i=1

Ai

An example of the union of three sets

If A1 = {x , y , z} ,A2 = {v , y} and A3 = {x , u}, then
A1 ∪ A2 ∪ A3 =

⋃3
i=1 Ai = {x , y , z , u, v}
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Review of Set Notations

Notations and definitions

Venn diagram of an union

A B

C

A ∪ B ∪ C
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Intersection of two sets

The intersection of two sets A and B is the set containing all the elements
that are in A and B. It is denoted A ∩ B

A ∩ B = {x |x ∈ A and x ∈ B}

An example of the intersection of two sets

{♡,♢,♣} ∩ {♣,♠} = {♣}.

Property

A ∩ B = B ∩ A
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Intersection of n sets

A1 ∩ · · · ∩ An is the set containing all the elements that are in all sets
A1, · · · ,An

A1 ∩ · · · ∩ An =
n⋂

i=1

Ai

An example of the intersection of three sets

If A1 = {x , y , z} ,A2 = {x , y ,w} and A3 = {v , x , y ,w , z}, then
A1 ∩ A2 ∩ A3 =

⋂3
i=1 Ai = {x , y} .
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Complement of a set

The complement of a set A is the set containing all the elements that are
in the universal set Ω, but not in A. It is denoted A (or sometimes Ac).

An example of a complementary set

In the universe of card colors {♡,♢} = {♣,♠}.
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Venn diagram of a complementary set

Ω

A

A

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 31 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Difference of sets

The difference of two sets A and B is defined as the elements that are in
one of the two sets but not in the other. For instance, A−B is constituted
of the elements that are in A but not in B. In general, A− B ̸= B − A

An example of a complementary set

In the universe of card colours {♡,♢,♣} − {♣} = {♡,♢}.

Property

A− B = A ∩ B.
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Venn diagram of a difference of two sets
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Disjoint sets

Two sets A and B are said to be disjoint (or mutually exclusive) if they do
not share any elements, i.e., if A ∩ B = ∅. More generally, several sets are
said to be disjoint if they are pairwise disjoint, i.e., none of them share a
common element

An example of a disjoint sets

• {♡,♢} and {♣,♠}
• (−∞, 0) and (0,+∞)

• for all set A, A and A
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Review of Set Notations

Notations and definitions
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Partitions

A partition of a set A is a collection of disjoint and non-empty sets
A1, · · · ,An such that their union is A

n⋃
i=1

Ai = A,Ai ̸= ∅,Ai ∩ Aj = ∅, ∀i ̸= j

An example of partitions

• the set of all the states of the US is a partition of the US

• red cards and black cards is a partition of playing cards

• for any set A of a universal set Ω, A and A is a partition of Ω
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Review of Set Notations

Notations and definitions

Venn diagram of a partition
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Properties of set operations

De Morgan’s law

For any sets A1, · · · ,An we have

• ⋃n
i=1 Ai =

⋂n
i=1 Ai

• ⋂n
i=1 Ai =

⋃n
i=1 Ai

Distributive law

For any sets A,B and C we have

• A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )

• A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C )
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Exercise

Consider the universal set Ω = {1, 2, 3, 4, 5, 6}, and the the subsets
A = {1, 6}, B = {2, 4, 6}, C = {1, 4, 5} and D = {1, 3, 5}.

1 Express the following sets: A ∪ B, A ∩ B, A, B

2 What is a partition of Ω?

3 Check De Morgan’s law for A ∪ B

4 Check the distributive law for A ∩ (B ∪ C )
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Solution

1 • A ∪ B = {1, 2, 4, 6}
• A ∩ B = {6}
• A = {2, 3, 4, 5}
• B = {1, 3, 5} = D

2 B ∪ D = Ω

3 A ∪ B = {1, 2, 4, 6} = {3, 5} and
A ∩ B = {2, 3, 4, 5} ∩ {1, 3, 5} = {3, 5} so A ∪ B = A ∩ B

4 B ∪ C = {1, 2, 4, 5, 6} so
A ∩ (B ∪ C ) = {1, 6} ∩ {1, 2, 4, 5, 6} = {1, 6}. On the other side,
A ∩ C = {1},so (A ∩ B) ∪ (A ∩ C ) = {6} ∩ {1} = {1, 6}.So
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C ).
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Cartesian product

The cartesian product of two sets A and B is the set containing ordered
pairs of elements from A and B, and it is denoted A× B

A× B = {(x , y)|x ∈ A, y ∈ B}

Property: non-symmetry

The pairs are ordered A× B ̸= B × A

Property: number of elements

If a finite set A has M elements and another finite set B has N elements,
then A× B has M × N elements
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples of cartesian products

• {1, 2, 3} × {a, b} = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

• deck of cards = {1, 2, · · · , 10, J,Q,K} × {♣,♠,♡,♢}
• R2 = R× R
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Cardinality of finite sets

If a set A is finite, its cardinality is its number of elements, and it is
denoted |A|

Property: inclusion-exclusion principle

• |A ∪ B| = |A|+ |B| − |A ∩ B|
• |A∪B ∪C | = |A|+ |B|+ |C |− |A∩B|− |A∩C |− |B ∩C |+ |A∩B ∩C |
• |

⋃n
i=1 Ai | =

∑n
i=1 |Ai | −

∑
i<j |Ai ∩ Aj |+

∑
i<j<k |Ai ∩ Aj ∩ Ak | −

· · ·+ (−1)n+1 |
⋂n

i=1 Ai |
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Exercise

In a class, there are 12 students with black hair and 9 with blond hair. 6
students have a beard and black hair, and 2 students have a beard and
blond hair. The total number of students with black hair or blond hair or a
beard is 23. How many students have a beard?
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Solution

We denote A the set of students with black hair, B the set of students
with blond hair, and C the set of students with a beard. We have

• |A| = 12

• |B| = 9

• |A ∩ C | = 6

• |B ∩ C | = 2

• |A ∪ B ∪ C | = 23

We want to find |C |. First, remark that we have A and B disjoint, i.e.,
|A ∩ B| = 0 and thus |A ∩ B ∩ C | = 0. We apply the previous
inclusion-exclusion principle to have

|A ∪ B ∪ C | = 23

= |A|+ |B|+ |C | − |A ∩ B| − |A ∩ C | − |B ∩ C |+ |A ∩ B ∩ C |
= 12 + 9 + |C | − 0− 6− 2 + 0
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Solution

Finally, we have |C | = 10.
Another way to solve this problem, is to use a Venn diagram
representation, as represented hereafter.

A B
C

6 2x

12 9

Here we have 12+ x +9 = 23, where x represents |C | − |A∩C | − |B ∩C |.
We therefore have x = 2. On the other hand, we have
|C | = 6 + x + 2 = 10, yielding the same results.
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Infinite sets

If A has an infinite number of elements, there are two situations

• it is countable

• it is not

Countable set

A set A is said to be countable if one of the following conditions is
satisfied

• A is a finite set (|A| < +∞)

• A is an infinite set and there is a bijection between A and N (namely,
A can be put in one to one correspondence with N)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z

is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3 1 0 2 4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3 1 0 2 4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3 1

0

2 4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3

1 0

2 4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3

1 0 2

4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5

3 1 0 2

4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5

3 1 0 2 4

6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7

5 3 1 0 2 4

6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7

5 3 1 0 2 4 6

8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3 1 0 2 4 6

8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• N obviously countable, the bijection being the identity

• Z is countable: we define φ such as φ(n) = 2n for n ∈ Z, n ≥ 0 and
φ(n) = −2n − 1 for n ∈ Z, n < 0

n

-4 -3 -2 -1 0 1 2 3 4

7 5 3 1 0 2 4 6 8

... ...

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 48 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

N2 is also countable. The mathematical expression of the bijection is
φ(n1, n2) =

1
2(n1 + n2)(n1 + n2 + 1) + n2.

n1

n2

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

17

18

19

23

24

25

31

32 40
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N2 is also countable. The mathematical expression of the bijection is
φ(n1, n2) =

1
2(n1 + n2)(n1 + n2 + 1) + n2.
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Notations and definitions

Exemples

• Q

is countable: each element x of Q can be expressed as x = p
q ,

where p ∈ Z, q ∈ N∗ and gcd(p, q) = 1.
We define φ(x) : x ∈ Q 7→ (p, q) ∈ Z× N∗.
This function is injective (two elements of Q can’t have the same
image by φ), so it is bijective on its image, which is a subset of
Z× N∗. Using a same reasoning as before, we can show that Z× N∗

is countable, hence a subset of it clearly is. Hence Q is countable

• Any interval of R is uncountable. The proof is omitted, but you can
check Cantor’s diagonal argumenta.

ahttps://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Properties of countable and uncountable sets

Subsets and supersets

• any subset of a countable set is countable

• any superset of an uncountable set is uncountable

Countable union of countable sets

If A1,A2, · · · is a list of countable sets, then their union
⋃

i Ai is countable

Product of countable sets

If A and B are countable sets, then A× B is countable
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Review of Set Notations

Properties of countable and uncountable sets

Exemples

• 2N = {2n|n ∈ N} ⊂ N is countable

• C ⊃ R is uncountable
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Introduction

In this section, theoretical definition of probabilities
• random experiment: the result is unknown

• rolling a die

• outcome: result of a random experiment

• the face that is up

• events: possible outcome

• get a 6, get an odd number

• sample space: the set of all outcomes

• Ω = {1, 2, 3, 4, 5, 6}

• trial: realization of a random experiment

• the roll of a die
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Exemples of sample spaces

• Roll a die

• Ω = {1, 2, 3, 4, 5, 6}
• Toss a coin

• Ω = {H,T}

• Draw a card in a deck

• Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K} × {♠,♢,♣,♡}

• Observe the number of planes arriving at Toulouse Blagnac Airport at
a given day

• Ω = {0, 1, 2, · · · }
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Events

The goal is to assign each event a probability

Rolling a die

Event “getting an even number”

• if the outcome belongs to {2, 4, 6}, the event occurs

• half of the possible outcomes

• each outcome has the same chance of realization

• intuitively: 50% probability

Correspondance between the events and the outcomes: an event A is a
subset of the sample space

A ⊂ Ω
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Set of events

Definition

The set of events F must verifies

• F ⊂ P(Ω)

• Ω ∈ F (sure event)

• if A ∈ F , then A ∈ F (contrary event)

• if Ai ∈ F , i ∈ I with I countable, then
⋃

i Ai ∈ F

Such F is called a σ-algebra. We will assume in the rest of this class that
we always deal with such event sets.
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Set of events

Property

The set of events F is stable by intersection and union: let A ∈ F and
B ∈ F be two events. Then A ∪ B and A ∩ B are also events

All previous results about sets apply:

• A ∪ B occurs if A or B occurs

• A ∩ B occurs if both A and B occur

• A1 ∪ · · · ∪ An occurs if at least one of the Ai occurs

• A1 ∩ · · · ∩ An occurs only if all of the Ai occur

Remember: “or” and “at least” go with unions, and “and” and “all of” go
with intersection
Note: ∅ ⊂ F
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Elementary and compound events

Elementary event

If a ∈ Ω, then {a} is called an elementary event. It is thus an event which
contains only a single outcome of the sample space

Compound event

An event which is not elementary is called a compound event

Exemples: when rolling a die

• the event “obtain 1” corresponds to the outcome 1 and is an
elementary event

• the event “obtain an even number” corresponds to the outcomes
{2, 4, 6} and is a compound event

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 59 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Elementary and compound events

Elementary event

If a ∈ Ω, then {a} is called an elementary event. It is thus an event which
contains only a single outcome of the sample space

Compound event

An event which is not elementary is called a compound event

Exemples: when rolling a die

• the event “obtain 1” corresponds to the outcome 1 and is an
elementary event

• the event “obtain an even number” corresponds to the outcomes
{2, 4, 6} and is a compound event

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 59 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Elementary and compound events

Elementary event

If a ∈ Ω, then {a} is called an elementary event. It is thus an event which
contains only a single outcome of the sample space

Compound event

An event which is not elementary is called a compound event

Exemples: when rolling a die

• the event “obtain 1” corresponds to the outcome 1 and is an
elementary event

• the event “obtain an even number” corresponds to the outcomes
{2, 4, 6} and is a compound event

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 59 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Elementary and compound events

Elementary event

If a ∈ Ω, then {a} is called an elementary event. It is thus an event which
contains only a single outcome of the sample space

Compound event

An event which is not elementary is called a compound event

Exemples: when rolling a die

• the event “obtain 1” corresponds to the outcome 1 and is an
elementary event

• the event “obtain an even number” corresponds to the outcomes
{2, 4, 6} and is a compound event

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 59 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Probability measure

Kolmogorov axioms

A probability measure P is an application that has the following properties

• ∀A ∈ F ,P(A) ≥ 0

• P(Ω) = 1

• if A1, · · · ,An are disjoint events, than P (
⋃n

i=1 Ai ) =
∑n

i=1 P(Ai )
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Exercise

Using the probability axioms, what is the probability of 1 or 6 when rolling
a fair die?

Fair die: P({1}) = P({2}) = · · · = P({6})
Events {1}, {2}, · · · , {6} are disjoint:
P ({1} ∪ {2} ∪ · · · ∪ {6}) = P({1}) + P({2}) + · · ·+ P({6}) = 6P({1})
{1} ∪ {2} ∪ · · · ∪ {6} = Ω so P ({1} ∪ {2} ∪ · · · ∪ {6}) = 1 leading

P ({1}) = P ({2}) = · · · = P ({6}) = 1

6
.

Finally, the event we are looking for corresponds to the outcomes
{1, 6} = {1} ∪ {6}, which are two disjoint events, so

P {1, 6} = P ({1}) + P ({6}) = 1

3
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Probability measures

Properties
If P is a probability measure on F , and A and B are two elements of F

• monotonicity: if A ⊂ B, then P(A) ≤ P(B)

• empty set: P(∅) = 0

• complement rule: P
(
A
)

= 1 − P (A)

• numeric bound: P(A) ∈ [0, 1]

• union: P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

For probabilities, we denote

• probability of the intersection1: P (A ∩ B) = P (A, B)

• probability of an elementary event: P({a}) = P(a)

1When you are referring to events, no problem if you use ∩, but later, for random variables,
please use the comma
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Exercise

Suppose that you want to travel without stopovers from Toulouse to
London. The companies proposing this trip are Ryanair, EasyJet, and
British Airways. Suppose that there is a 42% probability that you take
Ryanair and 30% that you take British Airways. Suppose that someone
booked your flight without telling you which company you’re travelling
with. What is the probability that you fly with a low cost company?
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Probability Triple

Solution

We denote

• R = “flying with Ryanair” P(R) = 0.42

• E = “flying with EasyJet”

• B = “British Airways” P(B) = 0.3

• L = “flying with a low cost company”

Sample space Ω = {R,E ,B}
Low cost companies: Ryanair and EasyJet: L = R ∪ E
R and E are disjoint events: P(L) = P(R) + P(E )
Complement rule: P(E ) = 1− P(E )
E = {R,B} = R ∪ B, so P(E ) = P(R) + P(B)
P(L) = P(R) + 1− (P(R) + P(B)) = 1− P(B) = 1− 0.3 = 0.7
Another way to solve this is to compute P(L) = P(B), which leads
P(L) = 1− P(B), and we find the same result.
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Probability Triple

Definition

Probability triple

The triple (Ω,F ,P) is called a probability triple or a probability space
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Definition

Conditional probability

For two events A and B, we define

P(A|B) = P(A ∩ B)

P(B)
=

P(A,B)

P(B)

A B
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Exercice

Suppose that having a girl has the same probability as having a boy.
Someone has two children

1 what is the probability that both are girls given that the first one is a
girl?

2 what is the probability that both children are girls given that we know
at least one of them is a girl?
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Conditional Probabilities

Solution

The sample space is {(g , g), (g , b), (b, g), (g , g)}. We denote
A = {“both children are girls”} = {(g , g)}
B = {“the first child is a girl”} = {(g , g), (g , b)}
C = {“at least one child is a girl”} = {(g , g), (g , b), (b, g)}

1 P(A|B) = P(A∩B)
P(B) = P(A)

P(B) =
1
4
1
2

= 1
2

2 P(A|C ) = P(A∩C)
P(C) = P(A)

P(C) =
1
4
3
4

= 1
3
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Independence

Consider A = {“it will rain tomorrow”} and
B = {‘‘the result of a coin flip”}. What about P(A|B)?

Definition

Two events A and B are independent if and only if

P(A,B) = P(A)P(B)

Property

If A and B are two independent events

P(A|B) = P(A)
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Conditional Probabilities

Law of Total Probability

Theorem

If A1,A2 · · · is a partition of
Ω, then for any event B

P(B) =
∑
i

P(B|Ai )P(Ai )
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Conditional Probabilities

Exercise

I have three bags that each contain 100 marbles

• bag 1 has 75 red and 25 blue marbles

• bag 2 has 60 red and 40 blue marbles

• bag 3 has 45 red and 55 blue marbles

I choose one of the bags at random and then pick a marble from the
chosen bag, also at random. What is the probability that the chosen
marble is red?
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Conditional Probabilities

Solution

We have

P(R|B1) =
75

100
= 0.75

P(R|B2) =
60

100
= 0.60

P(R|B3) =
45

100
= 0.45

{B1,B2,B3} is a partition: disjoint, union is sample space, and
P(B1) = P(B2) = P(B3) =

1
3

P(R) = P(R|B1)P(B1) + P(R|B2)P(B2) + P(R|B3)P(B3)

= 0.75
1

3
+ 0.60

1

3
+ 0.45

1

3
= 0.60
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Brainstorming

Medical test for a disease affecting 2‰ of the population

• Positive for 100% of ill people

• Negative for 95% of non ill people

You get tested positive. What is the probability you are indeed ill?

1 0-4.99%

2 5-49.99%

3 50-94.99%

4 95-100%
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Brainstorming

2‰: 500 people → 1 sick

• 100% efficient for sick
people: 1 tested positive

• 5% false alarm for
healthy people:
(500-1)×0.05≈24 tested
positive

• probability of being sick
1

24+1=4%
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Bayes rule

Theorem

For any two events A and B, we have

P(B|A) = P(A|B)P(B)
P(A)

Combination with law of total probability

For any A and partition {B1,B2, · · · }, we have

P(Bj |A) =
P(A|Bj)P(Bj)∑
i P(A|Bi )P(Bi )
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Exercise

Find the previous probability of being sick using Bayes rule

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 77 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Conditional Probabilities

Solution

• P(sick) = 0.002

• P (+|sick) = 1

• P (+|healthy) = 0.05

• we want P (sick|+)

P (sick|+) =
P (+|sick)P(sick)

P (+)

=
P (+|sick)P(sick)

P (+|sick)P(sick) + P (+|healthy)P(healthy)

=
1× 0.002

1× 0.002 + 0.05× (1− 0.002)

= 0.038
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definitions

Random variable

Definition

A random variable X is a function from the sample space Ω to R

X :Ω → R

Usually: capital letter

Range

RX is the set of all possible values of X

Translate the problem to numbers
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definitions

Examples

• For coin tossing: X (head) = 0 and X (tail) = 1, RX = {0, 1}

• For die rolling: Y parity of the results Y (1) = Y (3) = Y (5) = 0 and
Y (2) = Y (4) = Y (6) = 1 , RY = {0, 1}

• T is the time before the next bus arrives: RT = [0,∞)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definitions

Exercise

X is the sum of tails from two coin toss

1 what is the range of X ?

2 what is the probability of each value in that range?
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Definitions

Solution

X is the sum of tails from two coin toss

1 RX = 0, 1, 2

2 4 possible outcomes: {HH,HT ,TH,TT}
• X = 0 corresponds to HH ⇒ P(X = 0) = 1

4
• X = 1 corresponds to HT and TH ⇒ P(X = 0) = 2

4 = 1
2

• X = 2 corresponds to TT ⇒ P(X = 0) = 1
4
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Definitions

Probability Mass Function

X a discrete random variable, RX = {x1, x2, · · · }

Definition

The Probability Mass Function (pmf) of X is given by

PX (xk) = P(X = xk), k = 1, 2, · · ·

We can extend PX (x) = 0 ∀x /∈ RX
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Definitions

Example

From the previous exercise

1

x
0 1 2

1
4

1
2

PX (x)
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Definitions

Probability Mass Function

Properties

It is a probability measure

• 0 ≤ PX (x) ≤ 1

• ∑
x∈RX

PX (x) = 1

• ∀A ⊂ RX ,P(X ∈ A) =
∑

x∈A PX (x)

It can also be referred to as distribution
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Independent Random Variables

Independent discrete random variables

Independent events: P(A ∩ B) = P(A,B) = P(A)P(B)

Definition

Two random variables X and Y are independent if and only if

∀(x , y) P(X = x ,Y = y) = P(X = x)P(Y = y).

More generally

∀(A,B) P(X ∈ A,Y ∈ B) = P(X ∈ A)P(X ∈ B)

When independence P(X = x |Y = y) = P(X = x)
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Independent Random Variables

Exercise

I toss a coin twice, X is the number of heads. Then I toss again the coin
two times, and Y is the number of heads observed this time. What is
P((X < 2) and (Y > 1))
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Independent Random Variables

Solution

X and Y are independent

P((X < 2) and (Y > 1)) = P(X < 2)P(Y > 1)

= (PX (0) + PX (1))PY (2)

=

(
1

4
+

1

2

)
1

4

=
3

16
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Independent Random Variables

Generalisation

Definition

X1, · · · ,Xn discrete random variables are independent if and only if
∀(x1, · · · , xn)

P(X1 = x1, · · · ,Xn = xn) = P(X1 = x1) · · ·P(Xn = xn)
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Independent Random Variables

Exercise

I toss an unfair coin where P(H) = p, 0 < p < 1. I toss it repeatedly until
I obtain a head. Let Y the total number of coin tosses. What is the range
of Y ? What is the probability mass function of Y ?
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Independent Random Variables

Solution

We have RY = N∗. For the PMF, we need PY (xk) for xk ∈ N∗. The
events are independent

P(Y = 1) = P(H) = p

P(Y = 2) = P(TH) = P(T )P(H) = (1− p)p

P(Y = 3) = P(TTH) = P(T )2P(H) = (1− p)2p

...

P(Y = k) = P(T · · ·TH) = (1− p)(k − 1)p

So
PY (y) = (1− p)y−1p
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Some Discrete Distributions

Bernoulli distribution

Simplest discrete distribution: success (1) or failure (0)

Definition

X is a Bernoulli random variable with parameter p (X ∼ Bernoulli(p)) if
its PMF is

PX (x) =


p if x = 1
1− p if x = 0
0 else

Examples

• pass-fail an exam

• heads or tail

• a satellite has verification before launch
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Some Discrete Distributions

Bernoulli distribution

1

x
0 1

1− p

p

PX (x)
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Some Discrete Distributions

Geometric distribution

Succession of independent Bernoulli trials before success

Definition

X is a geometric random variable with parameter p (X ∼ Geometric(p)) if
its PMF is

PX (x) =

{
(1− p)x−1p if x ∈ N∗

0 else

Examples

• how many time will I try driving license test

• how many heads before tail
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Some Discrete Distributions

Geometric distribution

1

x

(1− p)p

(1− p)2p

0 1 2 3 4 5

p

PX (x)
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Some Discrete Distributions

Binomial distribution

Number of success for n independent Bernoulli trials

Definition

X is a binomial random variable with parameter n and p
(X ∼ Binomial(n, p)) if its PMF is

PX (x) =


(
n
x

)
px(1− p)n−x if x ∈ {0, 1, · · · , n}

0 else

Examples

• number of tails in a series of tossing

• how many students passed the exam
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Some Discrete Distributions

Binomial distribution

n = 6, p = 0.3

0.4

x
0 1 2 3 4 5 6

PX (x)
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Some Discrete Distributions

Binomial distribution

Number of success for n independent Bernoulli trials

Lemma

If X1,X2, · · · ,Xn are independent Bernoulli(p) random variables, then
X = X1 + · · ·+ Xn has a Binomial(n, p) distribution

Exercise: X ∼ Binomial(n, p) and Y ∼ Binomial(m, p) independent.
What is the distribution of Z = X + Y ?
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Some Discrete Distributions

Poisson distribution

Definition

X is a Poisson random variable with parameter λ (X ∼ Poisson(λ)) if its
PMF is

PX (x) =

{
e−λ λx

x! if x ∈ N
0 else

Examples

• counting events during intervals

Exercise: check it is a valid PMF
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Some Discrete Distributions

Poisson distribution

λ = 1.3

0.2

x
0 1 2 3 4 5 6

PX (x)

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 104 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Some Discrete Distributions

Cumulative distribution function

Definition

The cumulative distribution function of a random variable X is defined as

∀x ∈ R FX (x) = P(X ≤ x)

For a discret random variable with range RX = {x1, x2, · · · }

FX (x) =
∑
xk≤x

PX (xk)

Property

∀a ≤ b P(a < X ≤ b) = FX (b)− FX (a)
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Some Discrete Distributions

Example

At the airport security check, at a given time, we assume that the
probability that there are k people at a single check is 1

2k+1 . We consider
the PMF of the random variable X corresponding to the number of people
in the line

• Is it a valid PMF?

• Draw the corresponding CDF.

• What is the probability that there is at least 3 and max 5 people
waiting?

When there are too many people at a single check, a new one is opened.
We suppose that a new line is opened when there are 5 or more people at
a single line.

• What is the probability that a new line is opened?
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Some Discrete Distributions

Solution

Is the probability measure is well defined?

• Ω = N countable
• P(n) = 1

2n+1 ≥ 0 and depends only on n

P(Ω) =
∞∑
n=0

P(n)

=
∞∑
n=0

1

2n+1

=
1

2

∞∑
n=0

1

2n

=
1

2

1

1− 1
2

= 1
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Some Discrete Distributions

Solution

Is the probability measure is well defined?
• Ω = N countable

• P(n) = 1
2n+1 ≥ 0 and depends only on n

P(Ω) =
∞∑
n=0

P(n)

=
∞∑
n=0

1

2n+1

=
1

2

∞∑
n=0

1

2n

=
1

2

1

1− 1
2

= 1
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Some Discrete Distributions

Solution

We have RX = {0, 1, · · · } and

FX (x) = P(X ≤ x)

=
∑
xk≤x

PX (xk )

=

⌊x⌋∑
xk=0

PX (xk )

=

⌊x⌋∑
xk=0

1

2xk+1

=
1

2

⌊x⌋∑
xk=0

1

2xk

=
1

2

1 − 1

2⌊x⌋+1

1 − 1
2

= 1 −
1

2⌊x⌋+1
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Some Discrete Distributions

Solution

So P(3 ≤ X ≤ 5) = P(2 < X ≤ 5) = FX (5)− FX (2) using the property of
CDF. So

P(3 ≤ X ≤ 5) = 1− 1

25+1
−
(
1− 1

22+1

)
= 1− 1

26
− 1 +

1

23

=
23 − 1

26

≈ 0.109
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Some Discrete Distributions

Solution

P(3) = 1
24

= 0.0625 = 6.25%

L = {“A new line is opened”} = P(n ≥ 5) =⋃+∞
n=5P(n)

P(L) =
∞∑
n=5

P(n)

=
∞∑
n=5

1

2n+1

=
∞∑

m=0

1

2m+6

=
1

26

∞∑
m=0

1

2m

=
1

26
1

1− 1
2

=
1

25
= 0.03125
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Some Discrete Distributions

Solution

3.125% chances that a new line is opened

Another way to compute this is

P(L) = 1− P
(
L
)

= 1−
4∑

n=0

P(n)

= 1−
4∑

n=0

1

2n+1

= 1− 1

2

4∑
n=0

1

2n

= 1− 1

2

1− 1
25

1− 1
2

= 1−
(
1− 1

25

)
=

1

25
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

New Tools

Expectation

Statistical mean or expected value

Definition

Let X be a discrete random variable with range RX = {x1, x2, · · · }. The
expectation of X is given by

E [X ] =
∑

xk∈RX

xkP(X = xk) =
∑

xk∈RX

xkPX (xk)

Exercise: find the expectation of a Bernoulli(p) an a Poisson(λ)
distribution
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New Tools

Expectation

Theorem

The expectation is linear

∀a, b ∈ R E [aX + b] = aE [X ] + b

For random variables X1, · · · ,Xn

E [X1 + X2 + · · ·+ Xn] = E [X1] + E [X2] + · · ·+ E [Xn]

Exercise: X is Poisson(λ) and Y is Bernoulli(p). What is the expectation
of Z = 3X + 2Y + 6?
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New Tools

Function of random variable

Property

Let X a random variable and Y = g(X )

RY = {g(x)|x ∈ RX}

and

PY (y) = P(Y = y) = P(g(X ) = y) =
∑

{x∈RX |g(x)=y}

PX (x)

Exercise PX (k) =
1
5 for k = −1, 0, 1, 2, 4. Find the range and PMF of

Y = 2|X |
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New Tools

Function of random variable

Law of the unconscious statistician (LOTUS)

Let X a random variable with RX = {x1, x2, · · · }

E [g(X )] =
∑

xk∈RX

g(xk)PX (xk)

Exercise Let X be a discrete random variable with range
RX = {0, π4 ,

π
2 ,

3π
4 , π}, such that

PX (0) = PX (
π
4 ) = PX (

π
2 ) = PX (

3π
4 ) = PX (π) =

1
5 . Find E [sin(X )]
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New Tools

Variance

The “spread” of the distribution

Definition

The variance of a random variable X is defined as

Var(X ) = E [(X − E (X ))2](= σ2
X )

We also define the standard deviation σX =
√

Var(X )

Property

σ2
X = E [X 2]− E [X ]2

Exercise: prove it
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New Tools

Exercice

Variance of Bernoulli(p) and Poisson(λ)
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New Tools

Variance

Theorem

If X is a random variable and a and b are two real number

Var(aX + b) = a2Var(X )

Exercise: prove it

Theorem

If X1, · · · ,Xn are independent random variables and X = X1 + · · ·+ Xn

Var(X ) = Var(X1) + · · ·+ Var(Xn)
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New Tools

Solution

With the definition

Var(aX + b) = E [(aX + b − E [aX + b])2]

= E [(aX + b − aE [X ] + b)2] prop. of E [·]
= E [(a(X − E [X ]))2]

= E [a2(X − E [X ])2]

= a2E [(X − E [X ])2] prop. of E [·]
= a2Var(X )
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Introduction

Definitions

Continuous random variable

A random variable X with CDF FX (x) if its range is continuous

Property

A continuous random variable X has a continuous CDF
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Introduction

Uniform distribution

Simplest continuous random variable

Definition

A continuous random variable X follows a uniform distribution over the
interval [a, b](a ≤ b) if

FX (x) =


0 if x ≤ a
x−a
b−a if a ≤ x ≤ b

1 if x ≥ b

We note X ∼ U([a, b])
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Introduction

Uniform distribution

Plot of CDF X ∼ U([a, b])

1

x
a b

FX (x)
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Introduction

WARNING

For a continuous random variable

P(X = x) = 0

We rather have P(X ∈ [x1, x2]) = P(x1 ≤ X ≤ x2).
Remark: for continuous random variables, we have
P(X ∈ [x1, x2]) = P(X ∈ (x1, x2]) = P(X ∈ [x1, x2)) = P(X ∈ (x1, x2))
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Introduction

Probability density function

PMF is not defined for continuous random variables

Definition

For a continuous random variable X with an absolutely continuous CDF
FX (x), the probability density function (PDF) of X is defined as

fX (x) =
dFX (x)

dx
= F ′

X (x)

Remark

RX = {x |fX (x) > 0}
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Introduction

Example

For X ∼ U([a, b])

fX (x) =

{
1

b−a if a ≤ x ≤ b

0 else
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Introduction

Remark

For a given CDF FX (x), we have a unique PDF fX (x) = F ′
X (x). So∫ x

−∞
fX (t)dt = FX (x)− FX (−∞)︸ ︷︷ ︸

0

= FX (x)

⇒ for a given PDF, there is a unique CDF and

P(X ≤ x) =

∫ x

−∞
fX (t)dt

Can be generalized

P(a < X ≤ b) =

∫ b

a
fX (t)dt
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Introduction

Probability density function

Properties

• ∀x ∈ R, fX (x) ≥ 0

•
∫ +∞
−∞ fX (u)du = 1

• FX (x) =
∫ x
−∞ fX (t)dt

• P(a < X ≤ b) = FX (b)− FX (a) =
∫ b
a fX (u)du

• P(X ∈ A) =
∫
A fX (u)du

For instance A = [a, b] ∪ [c, d ] with disjoint intervals
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Introduction

Exercise

We consider a continuous random variable X with PDF

fX (x) =

{
ce−x if x ≥ 0
0 else

1 find c

2 find the CDF of X

3 find P(1 < X < 3)
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Expectation and Variance

Expectation of a continuous random variable

Reminder: X discrete, E [X ] =
∑

xk∈RX
xkPX (xk)

Definition

For a continuous random variable X , its expectation is given by

E [X ] =

∫ +∞

−∞
xfX (x)dx

“sum” ↔ “int” and “PMF”↔ “PDF”

Property

Expectation is linear, as in the discrete case

Example: expectation of a uniform distribution
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Expectation and Variance

Expectation of a function of a continuous random variable

The LOTUS generalizes to continuous random variables

LOTUS

For a continuous random variable X , and any function g we have

E [g(X )] =

∫ +∞

−∞
g(x)fX (x)dx

Example: X continuous random variable with PDF

fX (x) =

{
x + 1

2 if 0 ≤ x ≤ 1
0 else

. Find E [X n]
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Expectation and Variance

Variance of a continuous random variable

Same as discrete

Variance of a continuous random variable

For a continuous random variable X ,

σ2
X = E [(X − E [X ])2] = E [X 2]− E [X ]2

Ans we still have Var(aX 2 + b) = a2Var(X ) for any real number a and b,
and if X1, · · · ,Xn are independent random variables,
Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn)
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Expectation and Variance

Exercise

Let X a continuous random variable with PDF

fX (x) =

{
3
x4

if x ≥ 1
0 else

Find the mean and variance of X
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Expectation and Variance

Solution

E [X ] =

∫ +∞

−∞
xfX (x)dx

=

∫ +∞

1

3

x3
dx

=

[
− 3

2x2

]+∞

x=1

= 0−
(
−3

2

)
=

3

2
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Expectation and Variance

Solution

E [X 2] =

∫ +∞

−∞
x2fX (x)dx

=

∫ +∞

1

3

x2
dx

=

[
−3

x

]+∞

x=1

= 0− (−3)

= 3

And

σ2
X = E [X 2]− E [X ]2 = 3− 9

4
=

3

4
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Some Distributions

Uniform distribution

Definition

A continuous random variable X is said to have a uniform distribution over
[a, b] (denoted X ∼ U([a, b])) if its PDF is

fX (x) =

{
1

b−a if a < x < b

0 else

Property

E [X ] =
a+ b

2
Var(X ) =

(b − a)2

12
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Some Distributions

Uniform distribution

Plot of PDF X ∼ U([a, b])

1
b−a

x
a b

fX (x)

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 141 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Some Distributions

Exponential distribution

Definition

A continuous random variable X is said to have an exponential distribution
with parameter λ > 0 (denoted X ∼ E(λ)) if its PDF is

fX (x) =

{
λe−λx if x > 0
0 else

Property

E [X ] =
1

λ
Var(X ) =

1

λ2
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Some Distributions

Exponential distribution

Plot of PDF X ∼ E(λ)

1

x

λ = 0.5

λ = 1

λ = 1.5

fX (x)

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 143 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Some Distributions

Exercise

Let X ∼ E(λ)
• find the CDF of X

• show that X is a memoryless random variable, i.e.,

∀a, x > 0 P(X > x + a|X > a) = P(X > x)
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Some Distributions

Solution

For x < 0
FX (x) = 0

For x ≥ 0

FX (x) =

∫ x

−∞
fX (u)du

=

∫ x

0
λe−λudu

=
[
−e−λu

]x
u=0

= 1− e−λx
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Some Distributions

Solution

P(X > x + a|x > a) =
P(X > x + a,X > a)

P(X > a)

=
P(X > x + a)

P(X > a)

=
1− FX (x + a)

1− FX (a))

=
e−λ(x+a)

e−λa

= e−λ(x+a)

= P(X > x)
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Some Distributions

Normal (or Gaussian) distribution

The most important distribution!

Definition

A continuous random variable X is said to have a standard normal
distribution (denoted X ∼ N (0, 1)) if its PDF is

∀x ∈ R fX (x) =
1√
2π

exp

(
−x2

2

)

Property

E [X ] = 0 Var(X ) = 1
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Some Distributions

Normal (or Gaussian) distribution

General case

Definition

X is said to have a normal distribution with mean µ and variance σ2 (
X ∼ N (µ, σ2)) if its PDF is

∀x ∈ R fX (x) =
1√
2πσ2

exp

{
−(x − µ)2

2σ2

}

Properties

E [X ] = µ Var(X ) = σ2

If Z ∼ N (0, 1), then X = µ+ σZ ∼ N (µ, σ2)
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Some Distributions

Normal (or Gaussian) distribution
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Some Distributions

Gamma distribution

Definition

A continuous random variable X is said to have a gamma distribution with
parameters α > 0 and λ > 0 ( X ∼ G(α, λ)) if its PDF is

fX (x) =

{
λαxα−1

Γ(α) e−λx if x > 0

0 else

where Γ(α) =
∫ +∞
0 xα−1e−xdx

Properties

E [X ] =
α

λ
Var(X ) =

α

λ2

If X ∼ G(1, λ), then X ∼ E(λ)
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Some Distributions

Gamma distribution
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Functions of Continuous Random Variables

Direct calculus

If X is a random variable, Y = g(X ) is also a random variable. How to
find the PDF?
First method: compute CDF then PDF
Example: X ∼ U([0, 1]) and Y = eX
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Functions of Continuous Random Variables

Solution

For X ∼ U([0, 1]), we have

FX (x) =


0 if x < 0
x if 0 ≤ x ≤ 1
1 else

On the other side

P(Y ≤ y) = P(eX ≤ y)

= P(X ≤ ln(y))

RX = [0, 1], so if ln(y) < 0, FY (y) = 0, i.e., for y¡1. More over,
FX (x) = 1 for x > 1, i.e., for y > e. For y ∈ [1, e], we have

P(Y ≤ y) = FX (ln(y))

P(Y ≤ y) = ln(y)
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Functions of Continuous Random Variables

Solution

Finally

FY (y) =


0 if y < 1
ln(y) if 1 ≤ y ≤ e
1 else

so

fY (y) = F ′
Y (y) =

{ 1
y if 1 ≤ y ≤ e

0 else
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Functions of Continuous Random Variables

Method of transformations

Theorem

X is a continuous random variable and g : R → R is a bijective
differentiable function with g−1 also bijective. Let Y = g(X ), then

fY (y) = fX (g
−1(y))

∣∣∣∣dxdy
∣∣∣∣

Example: X ∼ E(1) and Y = 1
X
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Functions of Continuous Random Variables

g : x 7→ 1
x , so g−1 : y 7→ 1

y . x = 1
y ⇒ dx

dy = − 1
y2 . We deduce from the

theorem

fY (y) = fX

(
1

y

) ∣∣∣∣− 1

y2

∣∣∣∣
=

{
1
y2 e

− 1
y if 1

y ≥ 0

0 else
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Introduction

Motivation

In real life application : several random variables are jointly involves

• throw of two dice

• evolution of temperature and pressure
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Couple of Discrete Random Variables

Joint probability mass function

Definition

For two discrete random variables X and Y , the joint PMF is defined as

PXY (x , y) = P(X = x ,Y = y)

Reminder: comma means “and”
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Joint Range

Definition

The joint range is defined as

RXY = {(x , y)|PXY (x , y) > 0}

Property

If RX = {x1, x2, · · · } and RY = {y1, y2, · · · }, then

RXY ⊂ RX × RY = {(xi , yj)|xi ∈ RX , yj ∈ RY }

Sometimes to simplify: RXY = RX × RY (some elements might have a
probability of 0)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Joint probability mass function

Properties

For two discrete random variables X and Y , we have

• ∑
(xi ,yj )∈RXY

PXY (xi , yj) = 1

• ∀A ⊂ R2,P((X ,Y ) ∈ A) =
∑

(xi ,yj )∈(A∩RXY ) PXY (xi , yj)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Marginal probability mass function

Definition

For two discrete random variables X and Y , we have

PX (x) =
∑
yj∈RY

P(X = x ,Y = yj)

=
∑
yj∈RY

PXY (x , yj)

Similarly PY (y) =
∑

xi∈RX
PXY (xi , y)

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 165 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Example

We define two discrete random variables X and Y with PMF
Y = 0 Y = 1 Y = 2

X = 0 1
6

1
4

1
8

X = 1 1
8

1
6

1
6

• Find P(X = 0,Y ≤ 1)

• Find the marginal PMF of X and Y

• Find P(Y = 1|X = 0)

• Are X and Y independent?
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution

• P(X = 0,Y ≤ 1) = PXY (0, 0) + PXY (0, 1) =
1
6 + 1

4 = 5
12

• RX = {0, 1} and RY = {0, 1, 2}. We have

PX (0) = PXY (0, 0) + PXY (0, 1) + PXY (0, 2)

=
1

6
+

1

4
+

1

8

=
13

24
PX (1) = PXY (1, 0) + PXY (1, 1) + PXY (1, 2)

=
11

24
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Couple of Discrete Random Variables

Solution

PY (0) = PXY (0, 0) + PXY (1, 0)

=
7

24
PY (1) = PXY (0, 1) + PXY (1, 1)

=
5

12
PY (2) = PXY (0, 2) + PXY (1, 2)

=
7

24
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution

P(Y = 1|X = 0) =
P(X = 0,Y = 1)

P(X = 0)

=
PXY (0, 1)

P(X = 0)

=
1
4
13
24

=
6

13
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution

X and Y independent ⇔ ∀(xi , yj) ∈ RXY ,P(Y = yj |X = xi ) = P(Y = yj).
Here,P(Y = 1|X = 0) = 6

13 and

P(Y = 1) =
5

12

̸= 6

13
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Joint cumulative distribution function

Definition

The joint CDF of two random variables is defined as

FXY (x , y) = P(X ≤ x ,Y ≤ y)

Marginal CDF

The marginal CDF are defined as

FX (x) = FXY (x ,+∞) FY (y) = FXY (+∞, y)

Example: X ∼ Bernoulli(p) and Y ∼ Bernoulli(q) independent. Find the
joint PMF and CDF
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution

We have
RXY = {(0, 0), (0, 1), (1, 0), (1, 1)}

Independence
PXY (i , j) = PX (i)PY (j)

PMF

PXY (0, 0) = PX (0)PY (0) = (1− p)(1− q)

PXY (0, 1) = PX (0)PY (1) = (1− p)q

PXY (1, 0) = PX (1)PY (0) = p(1− q)

PXY (1, 1) = PX (1)PY (0) = pq
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution

CDF

FXY (x , y) = P(X ≤ x ,Y ≤ y)

We have 0 ≤ X ,Y ≤ 1 so

FXY (x , y) = 0 if x < 0

FXY (x , y) = 0 if y < 0

FXY (x , y) = 1 if x ≥ 1, y ≥ 1

If 0 ≤ x < 1 and y ≥ 1

FXY (x , y) = P(X ≤ x ,Y ≤ y)

= P(X = 0, y ≤ 1)

= P(X = 0)

= 1− p
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution

If 0 ≤ y < 1 and x ≥ 1

FXY (x , y) = P(X ≤ x ,Y ≤ y)

= P(X ≤ 1,Y ≤ y)

= P(Y = 0)

= 1− q

If 0 ≤ x < 1 and 0 ≤ x < 1

FXY (x , y) = P(X ≤ x ,Y ≤ y)

= P(X = 0,Y = 0)

= P(X = 0)P(Y = 0)

= (1− p)(1− q)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Solution
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Conditional PMF and CDF

Conditional PMF

For a discrete random variable X and an event A, we define the
conditional PMF of X given A as

∀xi ∈ RX ,PX |A(xi ) = P(X = xi |A)

Conditional CDF

Similarly, we define the conditional CDF of X given A

FX |A(x) = P(X ≤ x |A)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Conditional PMF

Conditional PMF

For discrete random variables X and Y , we define the conditional PMF of
X given Y as

∀(xi , yj) ∈ RXY ,PX |Y (xi |yj) = P(X = xi |Y = yj)

PY |X (yj |xi ) = P(Y = yj |X = xi )
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Independent random variables

Properties

Two discrete random variables X and Y are independent if and only if

∀(x , y) PXY (x , y) = PX (x)PY (y)

or

∀(x , y) FXY (x , y) = FX (x)FY (y)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Conditional expectation

Definition

For two discrete random variables X , Y , and an event A, we can define
the two conditional expectations

E [X |A] =
∑
xi∈RX

xiPX |A(xi )

E [X |Y = yj ] =
∑
xi∈RX

xiPX |Y (xi |yj)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Exercise

Let G = {(x , y) ∈ Z2||x |+ |y | ≤ 2}, with uniform distribution

• find the joint and marginal PMF of X and Y

• find the PMF of X given Y = 1

• are X and Y independent?

• find E [X |Y = 1]
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Law of total probability

Law of total probability

For two discrete random variables X Y , and any set A, we have

P(X ∈ A) =
∑
yj∈RY

P(X ∈ A|Y = yj)PY (yj)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Law of total expectation

Law of total expectation

• if B1,B2, · · · is a partition of Ω

E [X ] =
∑
i

E [X |Bi ]P(Bi )

• for two discrete random variables

E [X ] =
∑
yj∈RY

E [X |Y = yj ]PY (yj)

Example: X ∼ Geometric(p), find E [X ] by conditioning on the first toss
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Functions of two random variables

Definition

For two discrete random variables X Y , and a function g , we define
Z = g(X ,Y ). Then

PZ (z) =
∑

(xi ,yj )∈Az

PXY (xi , yj)

where Az = {(xi , yj) ∈ RXY , g(xi , yj) = z}

LOTUS

For two discrete random variables X Y , and a function g , we have

E [g(X ,Y )] =
∑

(xi ,yj )∈RXY

g(xi , yj)PXY (xi , yj)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Discrete Random Variables

Conditional expectation

Property

For any y ∈ RY , we have defined E [X |Y = y ]. We can then define

E [X |Y ] = g(Y )

which is a function of the random variable Y

Example: X = aY + b then E [X |Y = y ] = ay + b = g(y) so
E [X |Y = y ] = aY + b

Law of total expectation

E [X ] = E [E [X |Y ]]
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Couple of Discrete Random Variables

Expectation of independent random variables

Properties

For two independent random variables X and Y we have

• E [X |Y ] = E [X ]

• E [g(X )|Y ] = E [g(X )]

• E [XY ] = E [X ]E [Y ]

• E [g(X )h(Y )] = E [g(X )]E [h(Y )]

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 185 / 240



Plan

1 Basis

2 Discrete Random Variables

3 Continuous Random Variables

4 Multivariate Probability Distributions
Introduction
Couple of Discrete Random Variables
Couple of Continuous Random Variables

5 Gaussian Vectors

6 Convergence and Limit Theorems



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Joint probability density function

Definition

Two random variables X and Y are jointly continuous if there exists a
function fXY : R2 → R such that for any set A ⊂ R2 we have

P((X ,Y ) ∈ A) =

∫ ∫
A
fXY (x , y)dxdy

Property

If fXY is a joint PDF ∫ +∞

−∞

∫ +∞

−∞
fXY (x , y)dxdy = 1
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Example

fXY (x , y) =

{
x + cy2 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 else

1 find c

2 find P
(
0 ≤ X ≤ 1

2 , 0 ≤ Y ≤ 1
2

)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Marginal PDF

Definition

We define the marginal distributions of two continuous random variables X
and Y as

fX (x) =

∫ +∞

−∞
fXY (x , y)dy

fY (y) =

∫ +∞

−∞
fXY (x , y)dx

Example: compute the marginal PDF of the previous example
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Joint cumulative distribution function

Definition

The joint CDF of two continuous random variables X and Y is defined as

FXY (x , y) = P(X ≤ x ,Y ≤ y)

Properties

• marginal CDF of x : FX (x) = FXY (x ,∞)

• marginal CDF of y : FY (y) = FXY (∞, y)

• FXY (∞,∞) = 1

• FXY (x ,−∞) = FXY (−∞, y) = 0

Example: X and Y independent and uniform on [0, 1]. Find FXY
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Joint cumulative distribution function

Link with the joint PDF

For two continuous random variables X and Y we have

FXY (x , y) =

∫ y

−∞

∫ x

−∞
fXY (u, v)dudv

fXY (x , y) =
∂2

∂x∂y
FXY (x , y)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Conditioning

Definition

If X is a continuous random variable and A is the event a < X < b, then

FX |A(x) =


1 if x ≥ b
FX (x)−FX (a)
FX (b)−FX (a)

if a ≤ x < b

0 if x < a

fX |A(x) =

{
fX (x)
P(A) if a ≤ x < b

0 else

N.B., P(A) = P(a < X < b) = FX (b)− FX (a)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Conditioning

Conditional expectation

If X is a continuous random variable and A is the event a < X < b, then

E [X |A] =
∫ +∞

−∞
xfX |A(x)dx

E [g(X )|A] =
∫ +∞

−∞
g(x)fX |A(x)dx
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Conditioning on other random variables

Definitions

For jointly continuous random variables X and Y , we define

• conditional PDF of X given Y = y

fX |Y (x |y) =
fXY (x , y)

fY (y)

• leading
fXY (x , y) = fX |Y (x |y)fY (y)
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Couple of Continuous Random Variables

Conditioning on other random variables

Definitions

For jointly continuous random variables X and Y , we define

• conditional probability that X ∈ A given Y = y

P(X ∈ A|Y = y) =

∫
A
fX |Y (x |y)dx

• conditional CDF of X given Y = y

FX |Y (x |y) = P(X ≤ x |Y = y) =

∫ x

−∞
fX |Y (x |y)dx
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Couple of Continuous Random Variables

Conditioning on other random variables

Conditional expectation

For jointly continuous random variables X and Y , we define

• expected value of X given Y = y

E [X |Y = y ] =

∫ +∞

−∞
xfX |Y (x |y)dx

• conditional LOTUS

E [g(X )|Y = y ] =

∫ +∞

−∞
g(x)fX |Y (x |y)dx
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Couple of Continuous Random Variables

Independent random variables

Properties

Two continuous random variables X and Y are independent if

∀(x , y) fXY (x , y) = fX (x)fY (y)

or equivalently
∀(x , y) FXY (x , y) = FX (x)FY (y).

If X and Y are two continuous independent random variables then

E [XY ] = E [X ]E [Y ]

E [g(X )h(Y )] = E [g(X )]E [h(Y )]
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Law of total probability

Law of total probability

For two continuous random variables X and Y and any set A, we have

P(X ∈ A) =

∫ +∞

−∞
P(X ∈ A|Y = y)fY (y)dy

Law of total expectation

E [X ] = E [E [X |Y ]]

Example: Y ∼ U([1, 2]) and X |Y = y ∼ E(y). Find E [X ]
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Covariance matrix

Covariance

For two random variables X and Y we define their covariance as

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])] = E [XY ]− E [X ]E [Y ]

Covariance matrix

For two random variables X and Y we define their covariance as

Σ2
XY =

[
Var(X ) cov(X ,Y )

cov(X ,Y ) Var(Y )

]
For independent random variables cov(X ,Y ) = 0
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Couple of Continuous Random Variables

Functions of two continuous random variables

LOTUS

If X and Y are two continuous random variables

E [g(X ,Y )] =

∫ +∞

−∞

∫ +∞

−∞
g(x , y)fXY (x , y)dxdy

Example: fXY =

{
x + y if 0 ≤ x , y ≤ 1
0 else

. Find E [XY 2]
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Couple of Continuous Random Variables

Functions of two continuous random variables

Method of transformations

If X and Y are two jointly continuous random variables and
(Z ,W ) = g(X ,Y ) = (g1(X ,Y ), g2(X ,Y )) with g : R2 → R2 continuous
and invertible function with continuous partial derivatives. Let h = g−1

such as (X ,Y ) = h(Z ,W ) = (h1(Z ,W ), h2(Z ,W )). Then Z and W are
jointly continuous with joint PDF

fZW (z ,w) = fXY (h1(z ,w), h2(z ,w))|J|

where J = det

[
∂h1
∂z

∂h1
∂w

∂h2
∂z

∂h2
∂w

]
= ∂h1

∂z
∂h2
∂w − ∂h2

∂z
∂h1
∂w

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 201 / 240



Plan

1 Basis

2 Discrete Random Variables

3 Continuous Random Variables

4 Multivariate Probability Distributions

5 Gaussian Vectors
Definition
Properties

6 Convergence and Limit Theorems



Plan

1 Basis

2 Discrete Random Variables

3 Continuous Random Variables

4 Multivariate Probability Distributions

5 Gaussian Vectors
Definition
Properties

6 Convergence and Limit Theorems



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definition

Gaussian vector

Definition

A vector X = (X1, · · · ,Xn)
T follows a Gaussian distribution in dimension

n, denoted X ∼ Nn(m,Σ) if the joint PDF is

fX1,··· ,Xn (x1, · · · , xn) = fX (x) =
1√

(2π)ndet(Σ)
exp

(
−
1

2
(x −m)TΣ−1(x −m)

)

where

• m ∈ Rn is the mean: E [X ] = m

• Σ ∈ Rn×n symmetric definite positive is the covariance: Cov(X ) = Σ

Examples:

• n = 1

• Σ diagonal
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Definition

Exercise

Write the general pdf in dimension 2.
Let X and Y with PDF

fXY (x , y) ∝ exp

(
−x2 − 1

2
y2 − xy + 4x + 6y

)
What is the distribution (X ,Y )?
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definition

Solution

We have

fXY (x , y) ∝ exp

(
−x2 − 1

2
y2 − xy + 4x + 6y

)
∝ exp

(
−1

2

[
2x2 + y2 + 2xy − 8x − 12y

])
and in the general case

fXY (x , y) ∝ exp

(
−1

2
(x −m)TΣ−1(x −m)

)
We denote

x =

[
x
y

]
m =

[
mx

my

]
Σ−1 =

[
a b
b c

]
(for Σ−1: Σ is symmetric, so its inverse is)
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definition

Solution

Therefore

fXY (x , y) ∝ exp

(
−1

2

[
x −mx y −my

] [a b
b c

] [
x −mx

y −my

])
∝ exp

(
−1

2

[
x −mx y −my

] [a(x −mx) + b(y −my )
b(x −mx) + c(y −my )

])
∝ exp

(
−1

2

[
(x −mx)

2a+ (y −my )
2c

+2b(x −mx)(y −my )])
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definition

Solution

We develop the previous expression and forget the terms that do not
depends in x or y in the exponential as we are interested in the PDF up to
a multiplicative constant

p(x , y) ∝ exp

(
−1

2

[
x2a− 2mxxa+ y2c − 2ymyc

+2bxy − 2bxmy − 2bymx ])

∝ exp

(
−1

2

[
ax2 + cy + 2bxy

− x(2mxa+ 2bmy )− y(2myc + 2b2mx)
])

∝ exp

(
−1

2

[
2x2 + 1y2 + 2xy − 8x − 12y

])
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definition

Solution


a = 2
c = 1
2b = 2
(2mxa+ 2bmy ) = 8
(2myc + 2bmx) = 12

⇔


a = 2
c = 1
b = 1
4mx + 2my = 8
2my + 2mx = 12

⇔


a = 2
c = 1
b = 1
2mx = −4
2my + 2mx = 12

⇔


a = 2
c = 1
b = 1
mx = −2
my = 8
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Definition

Solution

So

m =

[
−2
8

]
and

Σ−1 =

[
2 1
1 1

]
⇒ Σ =

1

2− 1

[
1 −1
−1 2

]
=

[
1 −1
−1 2

]
And we conclude

(x , y) ∼ N2

([
−2
8

]
,

[
1 −1
−1 2

])
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Properties

Gaussian vector

Property: affine transformation

Let X ∼ Nn(m,Σ), A ∈ Rp×n (p ≤ n) with full rank and b ∈ Rp, and let
Y = AX + b. Then

Y ∼ Np(Am+ b,AΣAT )
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Properties

Gaussian vector

Property: marginal distributions

Let X ∼ Nn(m,Σ), such as

• X =

[
X1

X2

]
,m =

[
m1

m2

]
,Σ =

[
Σ1 M
MT Σ2

]
• X1,m1 ∈ Rp and X2,m2 ∈ Rq, Σ1 ∈ Rp×p, Σ2 ∈ Rq×q, M ∈ Rp×q,
and p + q = n

Then
X1 ∼ Np(m1,Σ1) and X2 ∼ Nq(m2,Σ2)
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Properties

Gaussian vector

Property: independence

Let X ∼ Nn(m,Σ), such as

• X =

[
X1

X2

]
,m =

[
m1

m2

]
,Σ =

[
Σ1 M
MT Σ2

]
• X1,m1 ∈ Rp and X2,m2 ∈ Rq, Σ1 ∈ Rp×p, Σ2 ∈ Rq×q, M ∈ Rp×q,
and p + q = n

Then
X1 and X2 are independent if and only if M = 0
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Properties

The χ2 distribution

Definition

Let X1, · · · ,Xn be n independent random variables with distribution
N (0, 1). Then Y =

∑n
i=1 X

2
i has a χ2 distribution with n degrees of

freedom (Y ∼ χ2
n)

Properties

• PDF: fY (y) =
y
n
2−1e−

y
2

2
n
2 Γ( n

2 )
if y ≥ 0, and fY (y) = 0 else

• mean and variance: E [Y ] = n and Var(Y ) = 2n

• additivity: if Y ,Z independent with Y ∼ χ2
n and Z ∼ χ2

m, then
Y + Z ∼ χ2

n+m
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Properties

The Student distribution

Definition

Let X ,Y independent random variables with distributions X ∼ N (0, 1)
and Y ∼ χ2

n. Then

Z =
X√
Y
n

∼ tn

Properties

• PDF: fZ (z) =
Γ( n+1

2 )
√
nπΓ( n

2 )

(
1 + z2

n

)− n+1
2

• mean and variance: E [Z ] = 0 and Var(Z ) = n
n−2
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Properties

Gaussian samples

iid: independent identically distributed

Definition

Let X = (X1, · · · ,Xn)
T iid with N (m, σ2)

We define the two random variables

• the sample mean: X n = 1
n

∑n
i=1 Xi

• the sample variance: S2
n = 1

n−1

∑n
i=1(Xi − X )2

Properties

One can show that X and S2 are independent and

• X n ∼ N
(
m, σ

2

n

)
• n−1

σ2 S2
n ∼ χ2

n−1
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Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Convergence types

Convergence in law

Definition

A sequence of random variables X1, · · · ,Xn converges in law to a random
variable X if and only if

Fn(x) −−−−→
n→+∞

F (x) at each x ∈ R where F is continuous

We denote
Xn

L−−−−→
n→+∞

X

N.B., the limit X can be deterministic
Example: PXn(1) =

1
n and PXn(0) = 1− 1

n
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Convergence types

Solution

Let X = 0. Then

FX (x) =

{
0 if x < 0
1 else

On the other hand

FXn(x) =

{
1− 1

n if x < 0
1 else

Therefore
FXn(x) −−−−→n→+∞

FX (x)
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Convergence types

Convergence in law

Property

If Xn
L−−−−→

n→+∞
X and g : R → R is continuous

g(Xn)
L−−−−→

n→+∞
g(X )
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Convergence types

Convergence in probability

Definition

A sequence of random variables X1, · · · ,Xn converges in probability to a
random variable X if and only if

∀ε > 0, P(|Xn − X | > ε) −−−−→
n→+∞

0

We denote
Xn

P−−−−→
n→+∞

X

Example: show that Xn with PDF fXn(x) =
ne−nx

(1+e−nx )2
for x ∈ R converges

in probability to 0
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Convergence types

Solution

We have

P(|Xn| > ε) = 1− P(|Xn| ≤ ε)

= 1−
∫ ε

−ε
fXn(t)dt

= 1−
∫ ε

−ε

ne−nt

(1 + e−nt)2
dt

= 1−
[

1

1 + e−nt

]ε
t=−ε

= 1− 1

1 + e−nε
+

1

1 + enε

−−−−→
n→+∞

0

Xn
P−−−−→

n→+∞
0
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Convergence types

Convergence in probability

Property

If Xn
P−−−−→

n→+∞
X and g : R → R is continuous

g(Xn)
P−−−−→

n→+∞
g(X )
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Convergence types

Convergence in mean square

Definition

A sequence of random variables X1, · · · ,Xn converges in mean square to a
random variable X if and only if

E [(Xn − X )2] −−−−→
n→+∞

0

We denote
Xn

m.s.−−−−→
n→+∞

X

Example: PXn(n) =
1
np and PXn(0) = 1− 1

np with p = 2 and p = 3
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Convergence types

Solution

E [X 2
n ] =

∑
k∈RXn

k2PXn(k)

= n2
1

np

=
1

np−2

So

• p = 2 ⇒ E [X 2
n ] = 1 so Xn does not converge in mean square to 0

• p = 3 ⇒ E [X 2
n ] =

1
n −−−−→

n→+∞
0 so Xn

m.s.−−−−→
n→+∞

0
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Convergence types

Almost sure convergence

Definition

A sequence of random variables X1, · · · ,Xn converges almost surely to a
random variable X if and only if

∀ω ∈ Ω, Xn(ω) −−−−→
n→+∞

X (ω)

We denote
Xn

a.s.−−−−→
n→+∞

X

Relation
a.s.−−−−→

n→+∞
m.s.−−−−→

n→+∞

 ⇒ P−−−−→
n→+∞

⇒ L−−−−→
n→+∞
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Limit theorems

The weak law of large numbers

Definition

Let X1, · · · ,Xn iid. The sample mean is defined as

X n =
1

n

n∑
k=1

Xk

Law

Let X1, · · · ,Xn iid random variables with E [Xk ] = m < ∞. Then

X n
P−−−−→

n→+∞
m

(
⇔ P

(∣∣X n −m
∣∣ ≥ ε

)
−−−−→
n→+∞

0

)
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Limit theorems

The strong law of large numbers

Law

Let X1, · · · ,Xn iid random variables with E [Xk ] = m < ∞ and
Var(Xk) = σ2 < ∞. Then

X n
m.s.−−−−→

n→+∞
m

(
⇔ E

[(
X n −m

)2] −−−−→
n→+∞

0

)
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Limit theorems

The central limit theorem

Theorem (CLT)

Let X1, · · · ,Xn iid random variables with E [Xk ] = m < ∞ and
Var(Xk) = σ2 < ∞. Then

Yn =
X n −m√

σ2

n

=

∑n
k=1 Xk − nm√

nσ2

L−−−−→
n→+∞

N (0, 1)

Julien LESOUPLE - SIGNAV Probabilities ASNAT23 232 / 240



Basis Discrete Continuous Multivariate Gaussian Convergence Table of distributions

Limit theorems

Example

Let Xk iid with Bernoulli
(
1
3

)
. Then E [Xi ] = p and Var(Xi ) = p(1− p).

The CLT ensures

Yn =

∑n
k=1 Xk − np√
np(1− p)

L−−−−→
n→+∞

N (0, 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-4 -3 -2 -1 0 1 2 3 4
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Limit theorems

Example

Let Xk iid with Bernoulli
(
1
3

)
. Then E [Xi ] = p and Var(Xi ) = p(1− p).

The CLT ensures

Yn =

∑n
k=1 Xk − np√
np(1− p)

L−−−−→
n→+∞
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Limit theorems

Example

Let Xk iid with Bernoulli
(
1
3

)
. Then E [Xi ] = p and Var(Xi ) = p(1− p).

The CLT ensures

Yn =
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Limit theorems

Example

Let Xk iid with Bernoulli
(
1
3

)
. Then E [Xi ] = p and Var(Xi ) = p(1− p).

The CLT ensures

Yn =

∑n
k=1 Xk − np√
np(1− p)

L−−−−→
n→+∞

N (0, 1)
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Limit theorems

Example

Let Xk iid with Bernoulli
(
1
3

)
. Then E [Xi ] = p and Var(Xi ) = p(1− p).

The CLT ensures

Yn =

∑n
k=1 Xk − np√
np(1− p)

L−−−−→
n→+∞

N (0, 1)
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Limit theorems

Example

Let Xk iid with Bernoulli
(
1
3

)
. Then E [Xi ] = p and Var(Xi ) = p(1− p).

The CLT ensures

Yn =

∑n
k=1 Xk − np√
np(1− p)

L−−−−→
n→+∞

N (0, 1)

0

0.005

0.01

0.015

0.02

0.025

0.03

-4 -3 -2 -1 0 1 2 3 4
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Discrete Distributions

Table of discrete distributions

Name Parameters Range PMF Mean Variance

Uniform n ∈ N∗ {1, · · · , n} PX (x) = 1
n

n+1
2

n2−1
12

Bernoulli p ∈ (0, 1) {0, 1} PX (x) = px (1 − p)1−x p p(1 − p)

Geometric p ∈ (0, 1) N∗ PX (x) = p(1 − p)x−1 1
p

1−p

p2

Binomial p ∈ (0, 1), n ∈ N {0, · · · , n} PX (x) =

(
n
x

)
px (1 − p)n−x np np(1 − p)

Poisson λ > 0 N PX (x) = e−λ λx

x!
λ λ

Notes:

• the PMF is given for x inside the range. Outside, PX (x) = 0

•
(
n
x

)
= n!

x!(n−x)!
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Continuous Distributions

Table of continuous distributions

Name Parameters Range PDF Mean Variance

Uniform
(a, b)
a < b

(a, b) fX (x) = 1
b−a

a+b
2

(b−a)2

12

Gamma
ν > 0
θ > 0

R+ fX (x) = θν

Γ(ν)
xν−1e−θx ν

θ
ν
θ2

Univariate
Normal

m ∈ R
σ2 > 0

R fX (x) = 1√
2πσ2

e
− (x−m)2

2σ2 m σ2

Multivariate
Normal

m ∈ Rp

Σ ∈ Rp×p Rp fX (x) = Ke
− 1

2
(x−m)TΣ−1(x−m)

K = 1√
(2π)ndet(Σ)

m Σ

Chi-square ν ∈ N∗ R+ fX (x) = 1

2
ν
2 Γ

(
ν
2

) x
ν
2
−1

e
− x

2 ν 2ν

Notes:

• the exponential distribution with parameter θ is equivalent to a Gamma distribution with ν = 1 and θ

• the PDF is given for x inside the range. Outside, fX (x) = 0

• Γ(x) =
∫ +∞
0 tx−1e−tdt and ∀n ∈ N, Γ(n + 1) = n!

• for multivariate, Σ must be symmetric definite positive
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