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This paper investigates the design of airspace blocks using Voronoi diagrams and simulated annealing. This
approach aims to optimize the layout of airspace blocks by minimizing the complexity gap between them. The
algorithm is tested with different complexity metrics. By using Voronoi diagrams, which partition the airspace into
regions around specified points, and simulated annealing, which iteratively refines solutions to find near-optimal
configurations, the algorithm provides a systematic method for airspace design. The study focuses specifically on
the French airspace, providing a real-world application of the proposed methodology. Through experimentation and
evaluation, the algorithm demonstrates its ability to generate airspace block configurations that balance complexity.
This research contributes to ongoing efforts in airspace management and optimization by providing insights and
techniques for designing airspace structures that meet the evolving needs of air traffic control systems.
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1. Introduction

As air traffic continues to grow and resources such as air
traffic controllers remain limited, there is an strong need
to reduce airspace congestion. The existing airspace layout
must be adapted to the changing traffic demands to mitigate
airspace congestion. Currently, airspace is segmented into
3D volumes called sectors to ensure safe and efficient air
traffic management. The Dynamic Airspace Configuration
(DAC) concept is a key element in both the current and future
European air traffic systems, enabling the increase of airspace
capacity. The SESAR Concept of Operations [18] empha-
sizes DAC as the primary solution for balancing demand and
capacity, positioning it as a central pillar in the envisaged
architecture of European airspace outlined in the Airspace
Architecture Study. Increasing airspace capacity is essential
to address the significant capacity constraints experienced in
recent years and to accommodate the expected growth in air
traffic while maintaining safety standards, improving flight
efficiency, and mitigating environmental impacts. The de-
sign of basic volumes is at the core of the DAC process. As
such, the design of basic volumes is key for defining sec-
tors and sector configuration plans that are both efficient and
resilient. Those basic volumes can be classified into the fol-
lowing classes or types: Elementary Sectors (ES), Airspace
Blocks (AB), and Shareable Airspace Blocks (SAB). Ele-
mentary Sectors (ES) are sectors that are controllable on
their own. To form a controllable sector, Airspace Blocks
(AB) need to be attached to another AB or ES, while Share-
able Airspace Blocks (SAB) are non-workable volumes that
need to be dynamically attached to any ES or AB to build an
operational sector. This work is part of the European project
SMARTS (Smart Sectors) [19], which aims to provide the
right amount of capacity at the right time with maximum
efficiency to better meet air traffic demand. This paper fo-

cuses on the design of AB by comparing different complexity
metrics.

This paper is organized as follows: Section 2. presents
an overview of related works. In Section 3., a mathematical
model of airspace blocks is proposed. In Section 4., the
solution algorithm based on the Simulated Annealing and
Voronoi diagram is described. Finally, results on French
airspace are presented in Section 5..

2. Previous related works

This section presents some previous related works on the
Dynamic Airspace Configuration problem and complexity
metrics.
2.1. Dynamic Airspace Configuration

To date, only a handful of studies have addressed DAC. In
fact, DAC represents a relatively recent paradigm shift within
airspace systems. This concept revolves around the alloca-
tion of airspace as a resource to meet the evolving needs of
airspace users. For a deeper understanding of the DAC con-
cept, interested readers may refer to the works of Kopardekar
et al. [13], Zelinski and Lai [21]. The DAC concept should
not be confused with the current operational airspace con-
figuration. While such an airspace configuration focuses
on adapting the airspace to the changing needs of airspace
users by creating new sector configurations for different time
periods throughout the day [3, 7, 15], DAC is concerned
with allocating airspace as a resource to meet these changing
needs. Existing approaches to DAC adopt a model where
the airspace is initially partitioned into functional 2D or 3D
airspace blocks [6, 12, 21]. This setup transforms the DAC
problem into a combinatorial problem. Configurations are
assembled using controlled sectors constructed from prede-
fined airspace blocks. However, some studies utilize already
established and operationally functional ATC sectors to cre-
ate configurations [10], or even entire configurations [20], to
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devise an opening scheme. The design of airspace blocks is
an important part of DAC. Bichot and Durand [2] compare
different methods for generating functional airspace blocks.
They show that fusion-fission metaheuristics seem to be bet-
ter at solving this problem. Sergeeva et al. [17] propose
to use the Voronoı̈ diagram to build the airspace blocks,
guided by a k-means that computes the position of the cen-
ters. Schultz et al. [16] also propose to build a Voronoı̈
diagram, but this time guided by fuzzy clustering. As in
the two previously presented works, we propose to use a
Voronoi diagram, guided by Simulated Annealing in order
to minimize the complexity gap between the blocks. In the
literature, several complexity metrics have already been de-
fined.
2.2. Complexity metrics

In the context of operational control, we target to find a
workload metric that precisely measures the difficulty of air
traffic controllers in managing a set of aircraft in a region of
interest. The complexity metric only depends on the geom-
etry of trajectories, Γ, in a region of interest and uncertainty
of positions, speeds, and future positions. It approximates
the difficulty that controllers have in managing aircraft. The
complexity, 𝑤𝑝 , of the discretized spatiotemporal positions,
𝑝 ∈ R4, along the trajectory, 𝛾 ∈ Γ, is the complexity of the
region of interest around this position, 𝑝.

Pairwise convergence metric (PWC) The pairwise con-
vergence metric [5] characterizes the variation of the pair-
wise relative distance, 𝑟𝑖 𝑗 = 𝜕

𝜕𝑡
𝑑𝑖 𝑗 , weighted by the spatial

distribution of aircraft in a region of interest. Grouped sit-
uations with converging aircraft require more attention to
manage, as opposed to more evenly distributed or diverging
aircraft:

𝑤𝑝 =
∑︁

(𝑖, 𝑗 ) ∈{1,...,𝑁𝐴}2

𝑖≠ 𝑗 , 𝑟𝑖 𝑗≤0

−𝑟𝑖 𝑗𝑒−𝛼𝑑2
𝑖 𝑗 . (1)

Dynamical system metrics (LDS/NLDS) The dynamical
system metrics [4] interpolate the vector field of the trajec-
tories of a region of interest, 𝑑 ®𝑝

𝑑𝑡
= ®𝑓 ( ®𝑝), with the space

coordinates, ®𝑝 ∈ R3, minimizing the interpolation criterion:
𝑁∑︁
𝑖=1

 ®𝑣𝑖 − ®𝑓 ( ®𝑝𝑖)
2

2
, where ®𝑣𝑖 is the speed of the aircraft at po-

sition ®𝑝𝑖 , and ®𝑓 ( ®𝑝𝑖) represents the speed of the vector field
at point ®𝑝𝑖 given by the dynamical system. Two possible
types of functions have been used in [4]: an affine function,
®𝑓 ( ®𝑝) = A ®𝑝 + ®𝐵, or a non-linear function minimizing a regu-

larity criterion, ®𝑓 ( ®𝑝) =
∑︁

𝑖∈{1,...,𝑁𝐴}
12∥ ®𝑝𝑖 − ®𝑝∥2 ®𝑎𝑖 +A ®𝑝 + ®𝐵.

In the case of a linear interpolation, complexity is linked
to the stability of the system characterized by the matrix’s
eigenvalues:

𝑤𝑝 =
∑︁

𝜆∈𝑆𝑝 (A) | Re(𝜆)<0
−Re (𝜆) . (2)

In the case of a non-linear interpolation, complexity is
linked to the stability of the system of the affine approxi-

mation at different grid coordinates, 𝑋 , characterized by the
Jacobian matrix’s eigenvalues:

𝑤𝑝 =
∑︁
®𝑥∈𝑋

∑︁
𝜆∈𝑆𝑝(J 𝑓 ( ®𝑥 )) | Re(𝜆)<0

−Re (𝜆) , (3)

where J 𝑓 (®𝑥) is the Jacobian matrix of the vector field at
point 𝑥.
Speed disorder (SD) The speed disorder [5] is the speed
vectors’ disorder and can be expressed as:

𝑤𝑝 =

√√ ∑︁
𝑖∈{1,...,𝑁𝐴}

 ®𝑣𝑖 − ®𝑣
2
, (4)

where ®𝑣 is the mean speed vector and equals:
∑︁

𝑖∈{1,...,𝑁𝐴}
®𝑣𝑖 .

Conflict duration for heading maneuvers (CDH) The
conflict duration sensitivity [14] to heading maneuvers is the
pairwise conflict duration for heading changes between the
minimal, −Ψ, and maximal heading change, Ψ:

𝑤𝑝 =

∫ Ψ

−Ψ

��[𝑡𝑥𝑦− , 𝑡
𝑥𝑦
+ ] ∩ [𝑡𝑧− , 𝑡𝑧+]

�� 𝑑𝜓, (5)
where [𝑡𝑥𝑦− , 𝑡

𝑥𝑦
+ ] (resp. [𝑡𝑧− , 𝑡𝑧+]) is the interval of time when

aircraft are horizontally (resp. vertically) in conflict.
Conflict duration for heading maneuvers with continuous
time uncertainty (CDHU) The conflict duration sensitiv-
ity [14] to heading maneuvers with continuous time uncer-
tainty is the total conflict duration for heading maneuvers
between −Ψ and Ψ, integrating all possible positions of air-
craft 𝑖 and 𝑗 around the reference with a constant speed and
a continuous time uncertainty:

𝑤𝑝 =

∫ Ψ

−Ψ
T𝑖 𝑗 (𝜓) 𝑑𝜓, (6)

where T𝑖 𝑗 (𝜓) is the integral for a specific heading change
and equals:

T𝑖 𝑗 (𝜓) = 𝑘𝑇 (𝑧(𝑢)) − 𝑘𝑇
(
𝑧(𝑢)

)
,

where 𝑘 is the conflict duration’s ellipse area divided by 𝜋,
𝑧(𝑢) (resp. 𝑧(𝑢)) is linked to the minimal (resp. maximal)
time uncertainty and:

𝑇 (𝑧) =


0 if 𝑧 ≤ −1
2+𝑧2

3
√

1 − 𝑧2 + 𝑧 𝜋
2 + 𝑧 arcsin (𝑧) if 𝑧 ∈ (−1, 1)

𝜋𝑧 if 𝑧 ≥ 1
More details about this metric may be found in [14]. All

these metrics extract different features of air traffic situations,
such as traffic flow and crossing. The described metrics will
be used in the dynamic airspace configuration.

3. Mathematical model

This section presents the mathematical model: the space
representation, the decision variables, the objective function
and the way to build the blocks.
3.1. Grid discretization

In this study, we propose to discretize the space with a
grid to define the center’s position of the blocks. Moreover,
this grid is used to store the complexity values. The grid is
composed of 𝑛 rows and𝑚 columns. Each grid cell is defined
by a unique number 𝑛𝑖, 𝑗 , which is computed as follows:

𝑛𝑖, 𝑗 = 𝑖 · 𝑛 + 𝑗 . (7)
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After creating the grid, we project all the trajectory 4D
points on this grid and assign to each cell (𝑖, 𝑗) a complexity
𝑤𝑖, 𝑗 equal to the sum of the complexities of the points con-
tained in the cell. This complexity is therefore calculated as
follows:

𝑤𝑖, 𝑗 =
∑︁

𝑝∈𝜒𝑖, 𝑗
𝑤𝑝 , (8)

where 𝜒𝑖, 𝑗 is the space of the cell (𝑖, 𝑗) defined as follows:

𝜒𝑖, 𝑗 = {(𝑥, 𝑦) | 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1, 𝑦𝑖 ≤ 𝑦 < 𝑦𝑖+1}, (9)
where (𝑥𝑖 , 𝑦𝑖) is the position of the bottom left corner of the
cell (𝑖, 𝑗). Fig. 1 shows an example with three trajectories
crossing a grid. These trajectories are discretized in time.
Where the trajectories cross, the complexity will likely be
high if they cross at close times.

Fig. 1. Example of a complexity grid: the redder the cell, the higher its
complexity.

3.2. Decision variables
The first decision variable is the number of centers 𝑛𝑏 i.e.

the number of blocks. It is defined as follows:

𝑛𝑏 ∈ [𝑛𝑏,𝑚𝑖𝑛, 𝑛𝑏,𝑚𝑎𝑥], (10)
where 𝑛𝑏,𝑚𝑖𝑛 and 𝑛𝑏,𝑚𝑎𝑥 are the minimum and maximum
numbers of cells respectively. With this number of blocks,
the set of positions can be defined as follows:

𝑃 = {𝑝𝑏 = (𝑥𝑏, 𝑦𝑏) | (𝑥𝑏, 𝑦𝑏) ∈ N2, 𝑏 ∈ {1, ..., 𝑛𝑏}}, (11)
where 𝑝𝑏 is the center position of the block 𝑏. As presented
in the previous subsection, the Voronoi cell center positions
are some of the centers of the grid cells. The number of
possible state 𝑛𝑠 is therefore:

𝑛𝑠 =

𝑛𝑏,𝑚𝑎𝑥∑︁
𝑛𝑏=𝑛𝑏,𝑚𝑖𝑛

(𝑛 · 𝑚)!
𝑛𝑏!(𝑛 · 𝑚 − 𝑛𝑏)!

. (12)

This value can be extremely high if the grid is large. There-
fore, we decide to use a metaheuristic: Simulated Annealing.
3.3. Objective function

The optimization process aims to balance the complexity
of air traffic between airspace blocks, while limiting the
highest complexity among them. Let 𝑤𝑏 be the complexity
of the block 𝑏. This complexity is defined as the sum of the
complexity of all grid cells in the block as follows:

𝑤𝑏 =
∑︁

(𝑖, 𝑗 ) ∈𝜒𝑏

𝑤𝑖, 𝑗 , (13)

where 𝑤𝑖, 𝑗 is the complexity of the grid cell (𝑖, 𝑗) and 𝜒𝑏 is
the space defined by the block 𝑏.

The expected balanced complexity is then defined by:

𝑊𝑒 =
𝑊

𝑛𝑏
, (14)

where 𝑊 is the total complexity of the space computed as
follows:

𝑊 =

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑤𝑖, 𝑗 . (15)

The objective function is composed of two different func-
tions. The first one represents the imbalance of complexity
between blocks and is defined as follows:

𝑓 𝑏 =

𝑛𝑏∑︁
𝑏=1

|𝑤𝑏 −𝑊𝑒 |
𝑊𝑒

. (16)

The second objective is to minimize the maximum com-
plexity of blocks. This function is defined as follows:

𝑓 𝑐 =
max𝑏∈{1,...,𝑛𝑏 } 𝑤𝑏 · 𝑛𝑏,𝑚𝑖𝑛 · 𝑛𝑏,𝑚𝑖𝑛

𝑊
(17)

The constant values 𝑊 and 𝑛𝑏,𝑚𝑖𝑛 have been integrated
into this function to have the same unit and order of mag-
nitude as the imbalance function at the beginning of the
optimization process. Finally, the bi-objective function 𝑓 is
defined by:

𝑓 = 𝜆 𝑓 𝑏 + (1 − 𝜆) 𝑓 𝑐 (18)
where 𝜆 ∈ [0, 1] is a compromise coefficient between the
two criteria.
3.4. Airspace blocks design

To construct the blocks, we use the Voronoi diagram. A
Voronoi diagram [1] is a way of dividing a plane into regions
that are close to each of a given set of objects. It is often
categorized as a mosaic. In its simplest form, these objects
are a finite number of points on the plane called seeds, sites,
or generators. Each seed corresponds to a region called a
Voronoi cell, which contains all points on the plane closer
to that seed than any other. The Voronoi diagram of a set
of points is complementary to the Delaunay triangulation
[9] of the same set. The process begins by constructing
a Voronoi diagram in two dimensions, then expanded into
the third dimension (see Fig. 2). This expansion results in a
series of airspace units collectively covering the entire desig-
nated airspace. While these units maintain a consistent shape
across layers, their complexity varies at different altitudes.

Fig. 2. Construction of the Voronoi diagram and 3-dimensional projection.

4. Resolution algorithm

This section presents the proposed algorithm based on
Voronoi diagram and Simulated Annealing.
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4.1. Simulated Annealing
This work proposes the use of the Simulated Annealing

(SA) algorithm, originally introduced by Kirkpatrick et al.
[11], inspired by the physical annealing process of materials.
The SA algorithm consists of two main phases: a heating
phase that brings the solid into a high temperature, followed
by a gradual cooling phase to achieve a solid state with
minimal energy [8].

A notable feature of Simulated Annealing is its ability
to accommodate transitions that may degrade the objective
function. Initially, the algorithm operates at a high tempera-
ture 𝑇 , which allows it to accept transitions with significant
degradation in the criterion, thus allowing a thorough explo-
ration of the state space. As the temperature 𝑇 decreases,
only transitions that improve the criterion or those with min-
imal degradation are accepted. Finally, as 𝑇 approaches
zero, no deterioration of the criterion is tolerated, and the
SA algorithm behaves much like a Monte Carlo algorithm.
4.2. Solution generation

The proposed algorithm generates a solution by selecting
the cell centers.

At the beginning of the algorithm, a list of all grid positions
(all 𝑛𝑖, 𝑗 ) is generated. This list is then shuffled to get a random
order of positions. Finally, a number 𝑛𝑏 corresponding to
the selected centers is chosen (See Fig. 3). The order of
the positions and the number 𝑛𝑏 are then modified during
optimization.

𝑛𝑏

13 25 54 29 0 41 . . .

Fig. 3. Example of solution: the centers 13, 25, and 54 are selected to
build the Voronoi diagram.

Finally, the Voronoi diagram is created from these acti-
vated points (see Fig. 4). The example in this figure will be
the common thread of the method explanation. This solu-
tion is evaluated in the optimization process. This solution is
then modified by generating a neighbor to try to find a better
solution.

Fig. 4. Example of a Voronoı̈ diagram built from 3 activated points in
green. The next three points in the list are in red.

4.3. Neighborhood
A neighborhood operator is necessary to explore the state

space efficiently. The algorithm generates a neighbor by
modifying the decisions by one of the following operators:

• The first one consists in modifying the number of se-
lected centers. This number can be decreased or in-
creased by 1 at each iteration. In the example of Fig. 5,
the number is increased by 1, and point 29 is now con-
sidered as a selected center. This change implies a
modification of the Voronoi diagram (see Fig. 6).

𝑛𝑏

13 25 54 29 0 41 . . .

𝑛𝑏 + 1

13 25 54 29 0 41 . . .

Fig. 5. Change the number of considered centers.

Fig. 6. New Voronoi diagram after modifying the point 𝑝2.

• The second one consists of exchanging two centers in
the decision list (see Fig. 7). First, an index lower
than 𝑛𝑏 is generated, and the corresponding point is
exchanged with another one in the second part of the
list i.e. one of the points that are not selected. This
cell can be selected randomly (see Fig. 8) or it can be
a neighbor of the considered cell (see Fig. 9). The
random selection is mainly done at the beginning of the
optimization process to visit as much of the space as
possible. On the other hand, the neighbor selection is
mainly done at the end of the optimization to adjust the
solution.

The second neighborhood operator is performed more of-
ten than the first one, since the diversity of solutions is mainly
due to the choice of centers.

5. Results

This section presents the results of the proposed method
tested on the French airspace and with several complexity
metrics.
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13 25 54 29 0 41 . . .

13 29 54 25 0 41 . . .

Fig. 7. The exchange of two points.

Fig. 8. New Voronoı̈ diagram after an exchange with a random point.

Fig. 9. New Voronoı̈ diagram after an exchange with a neighbor point.

5.1. Case study
The proposed algorithm was tested on French airspace data

containing 2,600 generated trajectories (see Fig. 10). The
computer used for the experiments is equipped with an Intel
Core-i9 processor, with 64 Go RAM. The input parameters
of the algorithm are given in Table 1. With these parameters,

the number of iterations is 46 × 106 =

(
500 × log 10−4

log 0.999

)
.

𝑛𝑏,𝑚𝑖𝑛 75
𝑛𝑏,𝑚𝑎𝑥 125

Grid size 200 × 200
Transition number 500

Temperature decay coefficient 0.999
Final Temperature 10−4× Initial Temperature

Table 1. Algorithm input parameters.

5.2. Comparison of complexity metrics
All the results with 𝜆 = 0.4 for the different metrics are

shown in Figs. 12 to 17 . In all figures, the green polygon
corresponds to the French airspace boundary. A red gra-
dient represents the associated complexity. For all metrics,

Fig. 10. French airspace trajectories.

the computation time is around 2 hours. Table 2 shows the
values of the complexity imbalance, maximum complexity
function and the number of airspace blocks after the opti-
mization process for each of the complexity metrics. This
table shows that the evolution of the various functions is
similar regardless of the metric used. However, it seems
easier to find a balance with a rather low maximum with the
LDS and NLDS metrics. This table shows that the higher
the weight on the complexity balance, the lower the num-
ber of blocks generated. Conversely, the greater the weight
on maximum complexity, the greater the number of blocks
generated. Fig. 11 shows the complexity imbalance and the
maximum complexity function values for different 𝜆 values.
It seems that a 𝜆 value between 0.2 and 0.4 is a good compro-
mise between complexity balance and maximum complexity.
However, this value can be chosen by the user according to
his preferences.
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Fig. 11. Maximum complexity and complexity imbalance values depend-
ing on 𝜆 value.

Fig. 12 shows the result obtained with the pairwise conver-
gence metric (PWC). As expected, it shows that this metric
focuses on convergence points. This implies the creation of
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Metric PWC LDS NLDS SD CDH CDHU
PPPPP𝜆

Values
𝑓 𝑏 𝑓 𝑐 𝑛𝑏 𝑓 𝑏 𝑓 𝑐 𝑛𝑏 𝑓 𝑏 𝑓 𝑐 𝑛𝑏 𝑓 𝑏 𝑓 𝑐 𝑛𝑏 𝑓 𝑏 𝑓 𝑐 𝑛𝑏 𝑓 𝑏 𝑓 𝑐 𝑛𝑏

0 2.83 46.4 125 1.72 46 125 1.54 45.8 125 1.70 46 125 2.35 46.2 125 2.43 46.1 125
0.2 1.63 46.5 125 1.18 45.9 125 1.35 45.9 125 1.37 46 125 1.67 46.1 125 1.50 46.5 125
0.4 1.38 50.7 115 1.06 48 120 1.10 46.5 124 1.07 53.2 108 1.03 56 103 1.26 56.1 103
0.6 0.87 75 77 0.62 64.3 89 0.65 67.3 85 0.74 75.2 76 0.81 71.8 80 0.54 74.6 77
0.8 0.63 77.4 75 0.44 76.1 75 0.56 76.3 75 0.54 76.1 75 0.55 76.4 76 0.51 76.1 76
1 0.54 77.7 75 0.41 77 75 0.38 76.9 75 0.49 78.6 75 0.44 76.7 75 0.48 77.6 75

Table 2. The values of the complexity imbalance, maximum complexity function and the number of airspace blocks after the optimization process for each
of the complexity metrics.

small blocks around Paris, which is a place of strong con-
vergence. In contrast, LDS and NLDS metrics (see Figs. 13
and 14) are more nuanced, as they also seem to detect flows
(e.g. Toulouse-Paris or Madrid-Paris). For these two met-
rics, complexity is fairly uniform throughout French airspace.
This explains why the imbalance value is lower than that of
other complexities. In fact, with an ”almost” uniform com-
plexity in space, it is easier for the algorithm to find a bal-
anced decomposition. This implies the creation of blocks of
similar size. Speed disorder and CDH metrics (see Figs. 15
and 16 seem to focus more on flows. In fact, complexity
peaks in the west and southeast of France. On the other
hand, near Paris or Reims, the complexity is a bit lower (es-
pecially for CDH), resulting in the creation of larger blocks.
This does not seem adapted for areas with very heavy traf-
fic and different flow directions. Finally, the CDHU metric
appears to detect both high traffic flows (Madrid-Paris and
Madrid-London mainly) and areas of strong convergence
with significant differences in complexity from other areas
(see Fig. 17). This implies the creation of truly diverse block
sizes. This metric seems most appropriate for the next step:
sector design. However, due to the very high complexity
values, the resulting decomposition is less balanced than the
other metrics. These conclusions remain to be confirmed
during future work.

Fig. 12. Results with the pairwise convergence metric (PWC) and 𝜆 = 0.4.

Fig. 13. Results with the linear dynamical system metric (LDS) and
𝜆 = 0.4.

Fig. 14. Results with the non-linear dynamical system metric (NLDS) and
𝜆 = 0.4.

6. Conclusion

This paper deals with the automatic design of airspace
blocks. The proposed solution algorithm is based on the
Voronoi diagram and Simulated Annealing. The aim was to
limit the complexity gap between the airspace blocks. Sev-
eral complexity metrics have been compared to show their
impact on the design. The algorithm has been tested on the
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Fig. 15. Results with the speed disorder metric (SD) and 𝜆 = 0.4.

Fig. 16. Results with the CDH metric and 𝜆 = 0.4.

Fig. 17. Results with the CDHU metric and 𝜆 = 0.4.

French airspace, and the results have shown that the proposed
algorithm seems efficient in generating complexity-balanced
blocks. A comparison of the metrics showed that the CDHU
metric seems to be the most effective as it identifies strong
flows as well as areas of convergence. This remains to be con-
firmed in future works using generated airspace blocks. In
the future, it could be interesting to combine the metrics stud-
ied in this article in the objective function. Future projects
will include the integration of the Shareable Airspace Block
concept into the optimization process. This study paves the
way for the development of a complete tool for dynamic
airspace configuration.
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