A survey on reinforcement learning in aviation applications - ENAC - École nationale de l'aviation civile
Article Dans Une Revue Engineering Applications of Artificial Intelligence Année : 2024

A survey on reinforcement learning in aviation applications

Pouria Razzaghi
Amin Tabrizian
  • Fonction : Auteur
Wei Guo
  • Fonction : Auteur
Shulu Chen
  • Fonction : Auteur
Abenezer Taye
  • Fonction : Auteur
Ellis Thompson
  • Fonction : Auteur
Ali Baheri
  • Fonction : Auteur
Peng Wei

Résumé

Reinforcement learning (RL) has emerged as a powerful tool for addressing complex decision making problems in various domains, including aviation. This paper provides a comprehensive overview of RL and its applications in the aviation industry. We begin by introducing the fundamental concepts and algorithms of RL, highlighting their unique advantages in learning from interaction and optimizing decision-making processes. We then delve into a detailed examination of the successful implementation of RL methods in aviation, covering areas such as flight control, air traffic management, airline revenue management, aircraft maintenance scheduling, etc. Furthermore, we discuss the potential benefits of RL in enhancing safety, and sustainability within the aviation sector. Finally, we identify and explore open challenges and areas for future research, emphasizing the need for continued innovation and collaboration between the fields of reinforcement learning and aviation.
Fichier non déposé

Dates et versions

hal-04719764 , version 1 (03-10-2024)

Identifiants

Citer

Pouria Razzaghi, Amin Tabrizian, Wei Guo, Shulu Chen, Abenezer Taye, et al.. A survey on reinforcement learning in aviation applications. Engineering Applications of Artificial Intelligence, 2024, 136, pp.108911. ⟨10.1016/j.engappai.2024.108911⟩. ⟨hal-04719764⟩

Collections

ENAC
8 Consultations
0 Téléchargements

Altmetric

Partager

More