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Hovering stabilization of the DarkO tail-sitter
drone with constant wind

Florian Sansou1, Fabrice Demourant2,1, Gautier Hattenberger1, Thomas Loquen2,1, Luca Zaccarian3

Abstract— We present two mathematical models of the
DarkO tail-sitter convertible UAV developed and 3D printed
at the École Nationale de l’Aviation Civile (ENAC), in
Toulouse (France). During a hover flight, the UAV is vertical,
which offers a large wing area facing the wind. Thus, aero-
dynamic disturbances have a strong influence on the non-
linear UAV dynamics. Our models capture this behavior and
allow us to characterize relevant equilibria, in the presence
of a constant wind, and the corresponding wind-dependent
linearized dynamics. Using a parametric family of models,
we design an optimality-based robust static output feed-
back controller that uses two degrees of freedom on the
orientation to stabilize the UAV in a hovering condition in
spite of an unknown constant wind. This control law has
been implemented in the Paparazzi autopilot software to
obtain experimental results that validate our theory.

Index Terms— Unmanned aerial vehicles, Nonlinear dy-
namical systems, Linearization, Application of robust con-
trol

I. INTRODUCTION

C onvertible drones have the ability to take off or land
vertically and fly like an airplane. They are promising

architectures providing energy efficient flight capabilities for
strong endurance, as compared with classical coplanar UAVs,
like quadcopters. This high degree of autonomy is highly desir-
able in visual detection applications (e.g., surveillance, aerial
photography, etc.), but also for environmental exploration and
physical interaction.

Several organizations and researchers have worked on dual-
rotor tail-sitter aerial vehicles. One example is a dual-rotor
tail-sitter named ”T-Wing” [1], [2], another tail-sitter named
”MavIon” [3], or the ”JLion” and ”KH-Lion” [4]. These UAVs
share a similar architecture based on a wing supporting two
motors on the leading edges and blowing two elevons located
on the trailing edge. This architecture provides greater robust-
ness than tilt rotors, which require more moving parts, making
them more fragile, and a powerful actuator to turn the engine
and propeller assembly. Nevertheless, the electromechanical
design and the ensuing control system of dual rotor tail-sitters
is still an active research area. As the studies show [5], [6], the
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inherent complexity of these architectures requires modelling
work due to the many non-linearities and couplings involved,
especially in terms of modelling the aerodynamic effects. In
this context, the aerodynamic interference between the fixed
wing and rotors has been modeled in [7]–[9], and the propeller
forces and moments generated at high angles of attack is
addressed in [10]. However, these models are complex and
only partially usable for control design.

Another important point is the representation of the drone
attitude. It is possible to represent its orientation with Euler
angles [11]–[13], which allows for an intuitive understanding,
but a singularity appears in certain flight phases. Given the
high degree of maneuverability, it is preferable to represent
the attitude with a unit quaternion, eliminating any singularity
[14]. Numerous publications model the aerodynamic effects as
a function of the angle of attack and sideslip generated by the
propellers [15], [16]. It is possible to choose another model
for the aerodynamic interactions between the engines, wings,
and elevons, as presented in [17]. The modelling technique in
[17] allows having a global model covering the whole flight
envelope, thanks to the so-called Φ-theory approach. Although
the Φ-theory approach fails to predict the abrupt drop in the
lift force with an increasing angle of attack (AoA) (which
is caused by turbulent airflow) [18] it allows representing
the drone accurately enough to capture the behavior during
aggressive maneuvers.

Typical tailsitter UAV control methods are based on the
separation of flight modes: hovering and forward flight. The
critical part is in the transition between the two flight modes,
where the drone has to remain balanced by transitioning
through a succession of equilibria. A PID feedback is used
in [19], [20] to stabilize the attitude in hovering mode, then
switch to another controller for transitioning and finally to
a third forward flight controller. However, the wind effect
is not directly addressed and is seen as an external distur-
bance. Another strategy for controlling UAVs is based on two
decoupled speed and attitude controllers [21], which can be
extended by a cascaded hierarchical controller [22], [23] for
increased robustness, but due to the lack of a hierarchical
actuator structure, these controllers are not associated with a
stability proof for the full model. Also, [24] proposes a non-
linear controller with a command allocation method, enabling
the drone to be controlled over the entire flight envelope,
but once again their method does not come with a proof.
Finally, [25] proposed an L1 adaptive control scheme taking
into account saturation in a linearised setting. However, the
impact of wind on the dynamics is not addressed directly in
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any of these schemes.
A model-free control technique has been used in [26], which

allows avoiding the cumbersome modelling effort, but is prone
to the well-known improvements stemming from an accurate
model-aware solution. When the model is taken into account,
one may rely on nonlinear dynamic inversion (NDI) and
incremental nonlinear dynamic inversion (INDI) techniques
(see, e.g., [18], [27], [28]). One of the limitations of this type
of control is the lack of a proof of convergence.

The wind effect is rarely addressed in the above-mentioned
solutions. The main problem lies in the complexity of wind
measurements, wich is adressed in [29] by employing a wind
estimation method for tail-sitter vehicles in any flight phase,
and also in [30] where a disturbance observer is proposed
to enhance the hovering accuracy in the presence of external
disturbances such as crosswinds. Wind estimation is well
illustrated in [31], which describes a test campaign conducted
in two locations: an indoor wind generator in a controlled
environment and an outdoor setting where the wind conditions
are unknown.

In this context, the contributions of this paper extend
our preliminary works [32]–[34] and can be summarized
as follows. First, we derive two models: an accurate non
linear model partially presented in the Master thesis [32] and
exploiting the modeling approach of [17], [26], and an input-
affine model generalize the one discussed in [33], [34] for the
case with zero wind. Secondly, for the case of constant wind,
we charaterize a set of equilibria that generalize the zero-wind
findings of [32], [33] and also explain the undesirable experi-
mental results reported in [34]. Then, for any such equilibrium,
we explicitly compute the linearized dynamics of a suitably
rotated motion, whose essential bahavior is parametrized by
a two parameters, associated with the horizontal and vertical
wind intensity. Based on this parametric linearized dynamics,
we then design a robust static output feedback controller
combined with a specific integral action, capable of stabilizing
the hovering condition in the presence of an unknown constant
wind. Our solution extends the longitudinal-only (3 DOF)
scheme of [34] to the full 6 DOF pose, where the UAV
naturally turns so as to face the wind and attains the hovering
condition.

The paper is organized as follows. In Section II, we discuss
the models, desirable equilibria, and the ensuing linearizations.
Then in Section III we describe the control law and two
tuning methods illustrating via simulation the importance of
our parametrized linearizations. Finally, in Section IV, we
validate the controller with experimental indoors flight tests
of the DarkO prototype in front of an open-air wind tunnel.
Notation. Given two vectors x1 and x2, we often denote their
juxtaposition as (x1,x2) := [x⊤

1 x⊤
2 ]

⊤. Given any vectors
u,v ∈ R3, the skew-symmetric matrix [u]× ∈ R3×3 satisfies
[u]× v = u×v. The symbol In denotes the identity matrix of
dimension n and diag(x1, · · · , xp) denotes a diagonal matrix
whose diagonal elements are x1, · · · , xp. We introduce the
classical notation for a transfer matrix s 7→ Tv→z(s) from a
certain input v to a certain output z.

II. MODEL OF THE DARKO UAV

The DarkO UAV, designed and developed at the Ecole
Nationale de l’Aviation Civile (ENAC) in Toulouse (France),
is a clear example of a convertible UAV with a so-called
tail-sitter architecture. DarkO is assembled from multiple
3D printed Onyx parts (a highly robust material comprising
omnidirectional carbon fibres). All surfaces are interlocked on
a single axis, so that the drone can be easily disassembled for
parts replacement or to gain access to the on-board electronics.
The on-board autopilot is an Apogee 1 board manufactured
at ENAC, see Fig. 1. The autopilot provides the option of

Fig. 1. Apogee v1.00 top view.

recording the on-board data on an SD memory card, at the
control frequency of 500 Hz, thus allowing for effective post-
processing of acquired data. The communication protocol used
between the autopilot and the Electronic Speed Controllers
(ESCs) is Dshot 600. The ESCs are AIKON AK32 35A flash
with an AM32 firmware. The ground-to-board communication
is performed via a bidirectional channel based on XBee-
PRO S1 modules. DarkO’s actuators consist in two propellers

Fig. 2. DarkO body frame with a schematic representation of the
actuators (image taken from [34]).

(T-Motor T5147) symmetrically placed at the front of the
wing (shown in black in Fig. 2) powered by two T-Motor
F30 2300kv electric motors and two elevons, placed at the

1https://wiki.paparazziuav.org/wiki/Apogee/v1.00

https://wiki.paparazziuav.org/wiki/Apogee/v1.00
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back of the wing (shown in blue in Fig. 2) and acting as
control surfaces. The elevons are driven by two MKS DS65K
servomotors. Fig. 2 shows the DarkO model, together with
a north, east, down (NED) inertial reference frame (or world
frame) “i” linked to the Earth’s surface, and a body reference
frame “b” attached to the drone, with x[b] corresponding to the
longitudinal axis (the propellers axes lay in the z[b] = 0 plane),
y[b] the pitch axis (the direction of the wings), z[b] the axis to
create an orthonormal frame. Using the same notation as in
[17], the left and right propeller/elevon are denoted by using
subscripts i = 1 (left) and i = 2 (right). The sign convention
will be defined positive for the elevons positions δ1, δ2 when
they create a pitch-up moment with the propellers rotating in
opposite directions with angular speeds ω1 > 0 and ω2 < 0,
respectively.

Parameter or coefficient Value Units
m (drone mass) 0.519 kg
b (wingspan) 0.542 m
c (aerodynamic cord) 0.13 m
B = diag(b, c, b) diag(0.542, 0.13, 0.542) m
S (wing area) 0.026936 m2

Swet (wet area) 0.0180 m2

Sp (propeller area) 0.0127 m2

J = diag(Jx, Jy , Jz) diag(0.0067, 0.0012, 0.0082) kgm2

kf (propeller thrust) 1.7800e-8 kgm
km(propeller torque) 2.1065e-10 kgm2

px (propeller x location) 0.065 m
py (propeller y location) 0.162 m
ay (lift y position) 0.1504 m
ξf (elevons lift) 0.2 –
ξm (elevons torque) 1.4 –
ρ (air density) 1.225 kgm−3

Cd (drag ) 0.1644 –
Cy (lateral ) 0 –
Cℓ (lift ) 5.4001 –
∆r (UAV centering) -0.0145 m

TABLE I
IDENTIFIED NUMERICAL PARAMETERS OF THE DARKO MODEL.

A. Full nonlinear model

Exploiting the modelling method reported in [17] and [26],
an accurate model of the DarkO dynamics describes the
position p ∈ R3 of the origin of the body frame and its velocity
v = ṗ ∈ R3, in addition to its orientation, well represented
by a quaternion q ∈ S3 := {q ∈ R4 : |q| = 1} and its angular
velocity ωb represented in the body frame, which satisfy
q̇ = 1

2q ⊗
[

0
ωb

]
, where ⊗ denotes the quaternion product

(see [17], [26] or the tutorial [35] for the details). Selecting
the overall state as x := (p, v, q, ωb), the mathematical
model derived in [17], depends on a set of parameters listed in
Table I, where we also report the value obtained from a system
identification procedure reported in the MS Thesis [32]. The
dynamical model can be written as{

mv̇=−mg +R(q)F b,

Jω̇b=− [ωb]× Jωb +M b,

(1a)
(1b)

where g := [ 0 0 9.81 ]
⊤ denotes the gravity vector, m ∈ R

is the mass, J ∈ R3×3 is the diagonal moment of inertia

(see Table I) and, partitioning the quaternion q ∈ S3 as q :=[
η ϵ⊤

]⊤
, the corresponding rotation matrix R(q) ∈ SO(3) :=

{R ∈ R3×3 : R⊤R = I3,det(R) = 1} is defined as (see
[35])

R(q) := I3 + 2η [ϵ]× + 2 [ϵ]
2
× . (2)

According to [17] the force and moment vectors F b and
M b in (1) depend on (i) the state x, (ii) the disturbance
w ∈ R3, representing the wind speed in the world frame,
and (iii) the actuators commands (see Figure 2), comprising
the two propellers’ rotational speeds ω1, ω2 ∈ R and the
two elevons’ deflections δ1, δ2 ∈ R. Let us first consider the
actuators commands’ effect. Each propeller generates a thrust
T i oriented in the x direction of the body frame and a moment
N i about the same axis:

T i :=

τi0
0

 :=
kfω

2
i

0
0

, N i :=(−1)i
km

kf
T i, i = 1, 2. (3)

Each elevon’s position δi ∈ R is assigned by a servo-motor that
imposes an efficiency level (in terms of airstream deflection)
quantified by two skew-symmetric matrices:

∆f
i :=

 0 0 ξfδi
0 0 0

−ξfδi 0 0

, ∆m
i :=

 0 0 ξmδi
0 0 0

−ξmδi 0 0

, (4)

i = 1, 2. The constant parameters kf, km, ξf, ξm appearing in
(3) and (4) are listed in Table I.
With the above actuation quantities, we may rearrange the
dynamics given in [17, eqns (97), (98)] (see also [32]) and
express F b and M b in (1) as

F b := T 1 + T 2 +
Swet

4Sp
Φ(fv)

(
(∆f

1 − I3)T 1 + (∆f
2 − I3)T 2

)
+

1

4
ρSΦ(fv)

(
∆f

1 +∆f
2 − 2I3

)
∥vb∥vb (5)

+
1

4
ρSΦ(mv)

(
∆f

1 +∆f
2 − 2I3

)
B∥vb∥ωb,

M b : = N1 +N2 +
[ px
py
0

]
×
T 1 +

[ px
9py
0

]
×
T 2 (6)

− Swet

4Sp

(
BΦ(mv)(∆m

1 − I3) +
[

0
ay
0

]
×
Φ(fv)(∆m

1 + I3)

)
T 1

− Swet

4Sp

(
BΦ(mv)(∆m

2 − I3) +
[

0
9ay
0

]
×
Φ(fv)(∆m

2 + I3)

)
T 2

+
1

4
ρS

(([
0
ay
0

]
×
Φ(fv) +BΦ(mv)

)
∆m

1

+
( [

0
9ay
0

]
×
Φ(fv) +BΦ(mv)

)
∆m

2 − 2BΦ(mv)
)
∥vb∥vb

+
1

4
ρS

(([
0
ay
0

]
×
Φ(mv)+BΦ(mω)

)
∆m

1

+
([

0
9ay
0

]
×
Φ(mv)+BΦ(mω)

)
∆m

2 − 2BΦ(mω)
)
B∥vb∥ωb,

where vb := R⊤(q)(v −w) represents the air speed seen by
the drone, represented in the body frame. In [17], the scalars
∥vb∥ appearing in the expressions of F b and M b are replaced
by the scalar η =

√
∥vb∥2 + µc2∥ωb∥2, with µ ∈ R being a
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parameter related to the model identification, but in the case
of DarkO [32], the identification provides µ = 0, therefore
we present a simplified description here. The constant aerody-

namic coefficients’ matrix Φ :=

[
Φ(fv) Φ(mv)⊤

Φ(mv) Φ(mω)

]
∈ R6×6, is

defined in [26, eqs. (6)–(9)] as Φ(fv) :=diag(Cd, Cy, Cℓ) and[
Φ(mv) Φ(mω) ] := 0 0 0 0.1396 0 0.0573
0 0−∆r

c Cℓ 0 0.6358 0
0 0 0 0.0405 0 0.0019

 ,
the numerical values of the constants being reported in Table I
(these numerical values were not reported in [17] and [26] and
are given here to allow reproducing our simulation results).
The numerical values in Table I have been obtained by a
model identification campaign [32]. In particular, coefficient
kf was identified from equation (3), which links the motor
rotation speed ωi with the generated traction, the minimum
and maximum rotation speed and the time constant of the
motor actuation chain (see the experiments reported in Fig. 3).
The diagonal elements of the inertia J were measured using
a bifilar pendulum system. This method is widely used in the
drone field [36], and is based on the period of oscillation about
each one of the three axes (x[b],y[b],z[b]) of the drone suspended
by two wires, which forms a torsion pendulum as shown in
Fig. 4. It is interesting to note that the surface area blown by
the propellers represents 67 percent of the drone’s total surface
area.

Fig. 3. Input-output response of the Esc-Motor-Propeller assembly.

B. Simplified nonlinear low-speed model

Since we focus in this paper on the hovering phase, where
the speed is small, we may simplify the DarkO full nonlinear
model (1) by neglecting the aerodynamic effects, namely all
the terms that are quadratic in the speed vb and ωb in (5) and
(6). Neglecting those terms and defining the input vector

u :=
[
τ1 τ2 δ1 δ2

]⊤
, (7)

Fig. 4. Bifilar pendulum mounting for the identication of J .

allows us to write an approximate low-speed model retaining
the most important nonlinear wind effects

ṗ = v, (8a)

mv̇ =9mg+R(q)
(
M f(u)+Df(u)∥w∥R⊤(q)(v9w)

)
, (8b)

q̇ =
1

2
q ⊗

[
0
ωb

]
, (8c)

Jω̇b = 9 [ωb]× Jωb+Mm(u)+Dm(u)∥w∥R⊤(q)(v −w),
(8d)

where vectors M f(u) and Mm(u), and matrices Df(u)
and Dm(u) stem from setting to zero the angular velocity-
dependent terms in (5) and (6). After some manipulations,
they can be written as

M f(u) := T 1+T 2+
Swet

4Sp
Φ(fv)

(
(∆f

1 9 I3)T 1 + (∆f
2 9 I3)T 2

)

=


(
1− Swet

4Sp
Cd

)
(τ1 + τ2)

0

−Swet
4Sp

Cℓξf (δ1τ1 + δ2τ2)

 (9)

Mm(u) := N1 +N2 +
[ px
py
0

]
×
T 1 +

[ px
−py
0

]
×
T 2

9
Swet

4Sp

(
BΦ(mv)(∆m

1 − I3)+
[

0
ay
0

]
×
Φ(fv)(I3 +∆m

1 )

)
T 1

9
Swet

4Sp

(
BΦ(mv)(∆m

2 − I3)+
[

0
9ay
0

]
×
Φ(fv)(I3 +∆m

2 )

)
T 2

=


km
kf
(τ1 − τ2) +

Swet
4Sp

ayCℓξf(δ1τ1 − δ2τ2)
Swet
4Sp

∆rCℓξm(δ1τ1 + δ2τ2)(
py +

Swet
4Sp

ayCd

)
(τ1 − τ2)

 (10)

Df(u) :=
1

4
ρSΦ(fv)

(
∆f

1 +∆f
2 − 2I3

)
(11)

=
1

4
ρS

 −2Cd 0 Cdξf(δ1 + δ2)
0 0 0

−Cℓξf(δ1 + δ2) 0 −2Cℓ


Dm(u) :=

1

4
ρS

(([
0
ay
0

]
×
Φ(fv) +BΦ(mv)

)
∆m

1 (12)

+
( [

0
−ay
0

]
×
Φ(fv) +BΦ(mv)

)
∆m

2 − 2BΦ(mv)
)



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

=
1

4
ρS

9ayCdξm(δ1−δ2) 0 0
∆rCℓξm(δ1 + δ2) 0 2∆rCℓ

0 0 9ayCℓξm(δ1−δ2)


where we may appreciate a fundamentally nonlinear effect of
a nonzero-wind, which is nonlinear with q, ∥vb∥ and w. As
in [26, eqn. (10)] and according to Diederich’s formula, we
obtain Cℓ = Cd +

πAR

1+
√

1+(AR2 )
2

were AR = b2

S is the wing

aspect ratio.
Remark 1: Note that a coupling term (δ1τ1 + δ2τ2) of the

actuators effects can be observed in the expressions of the
matrices M f(u) and Mm(u). In Remark 4, we will use a
nonlinear transformation of the control input vector motivated
by this coupling. ◦

For models (1) and (8), we characterize below certain
relevant hovering equilibria induced by input u under the
action of a constant wind, weq =

[wx
wy
wz

]
∈ R3 (expressed

in the world frame) such that [wxwy ] ̸= 0, so that there is some
nonzero horizontal component of the wind. To begin with,
we define the quaternion qeqψ associated with a horizontal
rotation ψ = arctan(wx, wy) of the inertial reference frame
towards the (nonzero) horizontal wind direction:

qeqψ :=
[
cos(ψ2 ) 0 0 sin(ψ2 )

]⊤
. (13)

Then, for each reference position peq ∈ R3, a set
of possible input-state equilibrium pairs (ueq,xeq) =
(ueq,peq,veq, qeq,ωb,eq) is given by

ueq =
[
τ τ δ δ

]⊤
(14a)

qeq = qeqψ ⊗ qeqθ (14b)

ωb,eq = 0, veq = 0, (14c)

where

qeqθ :=
[
cos( θ2 ) 0 sin( θ2 ) 0

]⊤
(15)

and the pitch angle θ, the propeller thrust τ , and the elevons
deflection δ can be constructed as specified in Algorithm 1.
The fact that (13)–(15) with Algorithm 1 provide a suitable
equilibrium is stated and proven next, in our first main result.

Theorem 1: For any constant wind, w = [wx wy wz ]
⊤ ∈

R3 having a nonzero horizontal component [wxwy ], equations
(13)–(15) with θ, τ and δ selected according to Algorithm 1
characterize an equilibrium pair (ueq,xeq) for the nonlinear
dynamics (1) and (8).

Proof: As a first step, let us note that, with the expression
of R (2) and the expression of ψ in step 1 of Algorithm 1,
we may define the rotated equilibrium disturbance wr,eq :=
R⊤
ψweq := R⊤(qeqψ)weq (see (21) in Algorithm 1), which

corresponds to the rotation required to align the x[b] axis of
the body frame with the direction of the wind. Once the drone
is facing the wind, it sees a zero y component and can adjust
its pitch angle θ so as to generate the necessary thrust and
lift to compensate the wind effects in the longitudinal and
vertical direction (the lateral effect is zero due to the specific
ψ orientation).

With this ψ rotation, it is possible to express the wind w
in the body frame as

wb
eq :=

wb
x

0
wb
z

=R⊤(qeqθ)wr,eq (16)

=

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⊤wrx
0
wrz

=
wrx cos θ − wrz sin θ

0
wrx sin θ + wrz cos θ


We emphasize that wb

x is always negative and never zero,
because the drone is oriented in the direction of the wind
thanks to the rotation induced by qeqψ , and because of the
assumption [wxwy ] ̸= 0.

Continuing, equation (8a) shows that veq = 0 is necessary
for an equilibrium. By pre-multiplying (8b) by R(qeq) given
in (16), we express it in the body frame. Since, we apply the
same input τ1 = τ2 = τ to the two propellers and the same
input to the elevons δ1 = δ2 = δ, for both models (1) and (8),
the force balance in the x[b]-axis direction gives

(2− Swet

2Sp
Cd)τ −

1

2
ρS∥weq∥Cd

(
wb
x − ξfδw

b
z

)
−mg sin(θ) = 0 (17)

and the force balance in the z[b]-axis direction gives

−Swet

2Sp
ξfCℓτδ −

1

2
ρS∥weq∥Cℓ

(
wb
z + ξfδw

b
x

)
+mg cos(θ) = 0

(18)

Similarly, from (1b) and (8d), the moment balance about the
y[b]-axis provides

Swet

2Sp
∆rξmCℓτδ +

1

2
ρS∆r∥weq∥Cℓ

(
wb
z + ξmδw

b
x

)
= 0.

(19)

To compute a solution (θ,τ ,δ) of the three balance equations
(17)–(19), let us add (18) multiplied by ∆rξm, to (19) multi-
plied by ξf, so as to cancel out the first term, and obtain

∆rξm

(
−1

2
ρS∥weq∥Cℓ(wb

z + ξfδw
b
x) +mg cos(θ)

)
+ ξf

(
1

2
ρS∆r∥weq∥Cℓ(wb

z + ξmδw
b
x)

)
= 0,

which is equivalent to

1

2
ρS∆r∥weq∥Cℓ(ξf − ξm)w

b
z + ∆rξmmg cos(θ) = 0,

where (wb
x,wb

z) are the first and third components of wb in
(16). Then, using (16) and rearanging, we get

− 1

2
ρS∆r∥weq∥Cℓ(ξf − ξm)wrx sin θ +

(
− 1

2
ρS∆r

∥weq∥Cℓ(ξf − ξm)wrz +∆rξmmg

)
cos θ = 0,

which is satisfied by

θ = − tan−1

(
ρS∥weq∥Cℓ(ξf − ξm)wrz − 2ξmmg

ρS∥weq∥Cℓ(ξf − ξm)wrx

)
. (20)
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This last expression coincides with selection (22) in Algo-
rithm 1 after some manipulations.

Based on (22), we may now compute the equilibrium input
by substituting (17) into (18). After some simplifications, the
necessary propeller traction τ to maintain the equilibrium
position corresponds to expression (23). Finally, with the value
of τ in (23), we may obtain the required elevon deflection δ
from equation (18), which provides the value (24).

Algorithm 1 Design of the equilibrium parameters in (14).

Input: Wind vector weq = [wx wy wz ]
⊤

Output: Parameters ψ, θ, τ , δ in (14)
1: Determine the angle ψ = atan2(wx, wy) so as to deter-

mine qeqψ from (13)
2: Determine the rotated disturbance wr with zero y compo-

nent, using Rψ :=
[ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

]
, as follows

wr,eq :=
[wrx

0
wrz

]
:= R⊤(qeqψ)weq = R⊤

ψweq (21)

3: Select the pitch angle θ so as to determine qeqθ from (14b):

θ = − tan−1

(
wrz

wrx
+

2mg

ρS∥weq∥Cℓ(1− ξf
ξm
)wrx

)
(22)

4: For notational convenience, define the scalars[
a b
c d

]
:=

[
2SwetCℓmg sin θξf 2SwetCdCℓρ∥weq∥wb

x

−4SSpCℓρ∥weq∥wb
xξf

bξf
2

]
and based on scalars (a, b, c, d), select the propeller trac-
tion τ in (14a) as

τ =
Sp

2SwetCℓξf(4Sp − SwetCd)

(
a+ b+ c+ d

+

[
(a+ b+ c− d)2 − 4(d2 + ac− bd) (23)

− 4wb
z
2
d

wb
x
2 (d+ c) +

4wb
zad cos θ

wb
xCℓ sin θ

(
Cd −

4Sp

Swet

)] 1
2
)
,

where [
wb
x

wb
z

]
=

[
wrx cos θ − wrz sin θ
wrx sin θ + wrz cos θ

]
.

5: Select the elevon deflection δ as follows

δ =
2mg sin θ

ρS∥weq∥Cdξfwb
z

+
wb
x

ξfwb
z

−
(4− Swet

Sp
Cd)

ρS∥weq∥Cdξfwb
z

τ.

(24)

Return: ψ, θ, τ , δ

With the analytical expression (14) of the drone’s equilib-
rium for different wind conditions w, we report in Fig. 5 the
corresponding values of θ, δ, τ for horizontal wind speed
values ranging from 0 to −20m s−1 and for vertical wind
speed values ranging from −6 to 6m s−1. The angle of inci-
dence θ decreases from 90◦ to −4.65◦. The traction τ attains
its minimum at wrx = −12.8m s−1, which corresponds to a
flight condition that minimizes the power consumption.

Fig. 5. Parameters (θ, δ, τ ) of the equilibrium point (surface) estab-
lished in Theorem 1 and Algorithm 1 for constant horizontal and vertical
wind (wrx,wrz), and actuators saturation levels (pink).

Remark 2: (About the values of θ and τ in Algorithm 1) It
is interesting to note that for each pair of wind components
(wrz ,wrx) the corresponding equilibrium orientation (14b), (22)
is independent of the input ueq. Moreover, it should be em-
phasized that throughout the reasonable wind values of Fig. 5,
equation (23) corresponds to the positive root of a second
order polynomial with the other root being always negative,
and leading to an unreasonable negative thrust condition. ◦

Remark 3: (Plant input saturation) The DarkO actuators
have dynamics that limit their actions both in terms of am-
plitude and rate. For electric motors generating traction by
propellers, there are two causes of saturation. A high-speed
saturation related to the motor’s maximum voltage, and a low-
speed saturation related to the motor’s minimum coil switching
speed to maintain rotation. In addition, these saturations enable
us to obtain a realistic finite-energy model. It corresponds
to the following constraint ωi ∈ [2500, 16000] rpm =
[262, 1675] rad s−1, i = 1, 2. In terms of dynamics, we have
represented the motor actuation chain (consisting of the ESC,
the motor and the propeller) by a first order filter having a time
constant equal to 0.0125 s, which provides a fairly aggressive
actuation system.

The saturation levels characterizing the elevons stem from
the servo motors type of actuation. The elevons input is
limited in displacement by the shape of the UAV and the
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physical limits of the servo motors, which translate into a
saturation of the control surface deflection δi ∈ [−30 ; 30]°,
i = 1, 2. Perhaps the most relevant saturation here is the
actuator bandwidth (due to the servo-motor actuation), which
is modelled by a first order filter with time constant 0.05 s.
These saturation effects are taken into account in the control
design and are explicitly considered in our simulation results.

◦
Remark 4: (Special case with zero-wind) We already char-

acterized in our preliminary work [34] the equilibria with zero-
wind weq = 0. In particular, with the input transformation
unowind :=

[
τ1 τ2 δ1τ1 δ2τ2

]⊤
, the following model is

derived from (8) by setting w = 0,

ṗ = v, mv̇ = −mg +R(q)Funowind, (25a)

q̇ =
1

2
q ⊗

[
0
ωb

]
Jω̇b =9 [ωb]×Jωb+Munowind, (25b)

with matrices

[
F M

]
:=

 af af 0 0 am −am bm −bm
0 0 0 0 0 0 cm cm
0 0 bf bf dm −dm 0 0


and scalars af bf

am bm

cm dm

=
 1− Swet

4Sp
Cd −Swet

4Sp
Cℓξf

km
kf

Swet
4Sp

ayCℓξf
Swet
4Sp

∆rCℓξm py +
Swet
4Sp

ayCd

 .
This special case of (8) coincides with the model in [34,
eqn. (1)]. All the possible equilibrium pairs (unowind,x) =
(unowind,eq,xeq) are parametrized by an arbitrary angle along

the z[i] axis, β ∈
[
−
√

1
2 ,
√

1
2

]
as follows

unowind,eq =
mg

(1− Swet
4Sp

Cd)
[1 1 0 0]⊤ (26a)

qeq = [ηeq ϵ⊤eq]
⊤ =

[√
1
2−β β

2β2−1

2
√

1
2
−β

β
]⊤

. (26b)

As compared to the wind-induced equilibrium pairs character-
ized in Theorem 1, we see that, in the presence of nonzero-
wind, the additionnal degree of freedom β (characterizing a
rotation about the vertical axis of the inertial frame) only
makes sense when the UAV does not need a nonzero θ in (14).
In fact, a nonzero θ is required for compensating a nonzero
wind effect, and in this case the drone must face the wind,
thereby requiring a specific heading, associated with angle ψ
in (13). ◦

C. Linearized dynamics with constant wind
For each one of the equilibria characterized in Theorem 1,

we derive here some linearized equations of motion with
respect to the simplified nonlinear low-speed model (8). A
direct approach would lead to linearized equations that depend
on the ψ angle characterized in step 1 of Algorithm 1. Instead,
we define here the incremental coordinates in a suitably rotated
inertial reference frame, so that the linearized dynamics is
independent of the ψ angle . More specifically, for each
equilibrium wind condition weq and the ensuing equilibrium
(ueq,peq,veq, qeq,ωb,eq) characterized in (13)–(15), denoting

the scalar and vector components of the quaternion in (14b)
as qeq = (ηeq, ϵeq), and based on the rotation matrix Rψ :=
R(qeqψ) introduced at the beginning of the proof of Theo-
rem 1, we study here the approximate linear dynamics of the
rotated incremental input-state vector:

x̃ := (p̃, ṽ, ϵ̃, ω̃b) =
(
R⊤
ψ (p9peq),R

⊤
ψv,R

⊤
ψ (ϵ9ϵeq),ωb

)
,

ũ := u− ueq, w̃ := R⊤
ψ (w −weq). (27)

Note that the rotation in (27) enjoys the useful property that
R⊤
ψ ϵeq = [ 0 sin( θ2 ) 0 ]

⊤, a fact that greatly simplifies the
linearized motion.

Exploiting the fact that the translational and rotational
speeds (veq, ωb,eq) must be zero at the equilibrium (see (14)),
we prove below that the approximate linearized dynamics for
the state in (27) is given by

˙̃x = Awx̃+Gwũ+Eww̃ (28)

=

[
03 I3 03 03

03 Avv Avϵ 03

03 03 03 Aϵω

03 03 Aωϵ 03

]
x̃+

[
03×4

Gv
03×4

Gω

]
ũ+

[
03×3

Ev
03×3

Eω

]
w̃,

with matrices Avv , Avϵ, Aϵωb , Aωϵ, Gv , Gω Ev , Eω

constructed by following Algorithm 2.
Theorem 2: For any constant wind, w = [wx wy wz ]

⊤ ∈ R3

having a nonzero horizontal component [wxwy ], and the ensuing
equilibrium pair (ueq,xeq) of dynamics (8), as characterized
in (13)-(15), the linearized dynamics of the incremental input-
state vector (27) is given by (28) with the matrices constructed
as in Algorithm 2.

Proof: To begin with, by exploiting the rotation matrix
Rψ := R(qeqψ) used in (27), we transform the nonlinear
dynamics (8) into rotated coordinates

(pr,vr, qr) :=
(
R⊤
ψp,R

⊤
ψv, q

−1
eqψ ⊗ q

)
, wr := R⊤

ψw (29)

while ωb remains unchanged because it is expressed in
the body frame. A few observations allow simplifying the
transformed dynamics (8): (i) first, we have R⊤

ψmg = mg
because the rotation of ψ is about the z[i] axis; (ii) secondly,
since qr = q−1

eqψ ⊗ q, then R⊤
ψR(q) = R(qr); (iii) since

vb := R⊤(q)(v − w) (as defined after equation (6)), then
∥vb∥ = ∥v − w∥ − ∥vr − wr∥ (iv) finally, R⊤(q)w =
R⊤(qr)R

⊤
ψRψwr = R⊤(qr)wr. Based on the observations

above, we can derive the rotated version of equations (8) as

ṗr = vr, (30a)

mv̇r =9mg+R(qr)
(
M f(u)+Df(u)∥wr∥R⊤(qr)(vr9wr)

)
,

(30b)

q̇r =

(
1

2
qr ⊗

[
0
ωb

])
, (30c)

Jω̇b = 9 [ωb]× Jωb+Mm(u)+Dm(u)∥wr∥R⊤(qr)(vr9wr)
(30d)

With these new coordinates, the incremental input-state vectors
in (27) can be expressed as

x̃ =
(
pr9R

⊤
ψpeq,vr, ϵr9R

⊤
ψ ϵeq,ωb

)
,

ũ := u− ueq, w̃ := wr −wr,eq (31)
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where wr,eq = R⊤
ψweq =

[wrx
0
wrz

]
, already defined in (21),

and R⊤
ψ ϵeq = [ 0 sin( θ2 ) 0 ]

⊤ have both a convenient sparse
structure.

By focusing on the rotated dynamics (30) and the expression
(31) of the incremental variables, the proof of the theorem
amounts to showing that the linearization of (30) about the
rotated equilibrium

xr,eq =
(
pr,eq,vr,eq, ϵr,eq,ωbr,eq

)
(32)

=

(
R⊤
ψpeq,

[
0
0
0

]
,

[
0

sin( θ2 )
0

]
,
[
0
0
0

])
, wr,eq =

[wrx
0
wrz

]
coincides with equation (28) and the expressions in Algo-
rithm 2. To this end, inspired by [37, Proof of Lemma 1],
to linearize the dynamics of the quaternion qr =

[
ηr ϵ

⊤
r

]⊤
evolving in S3, we replace ηr by its positive value induced by
the unit norm of the quaternion. Thus, ηr = (1− ϵ⊤r ϵr)

1
2 .

Let us now first focus on matrix Aw in (28). Its first block
row is evidently [ 03 I3 03 03 ], due to linearity of equation
(30a). For its second block row we focus on equation (30b) and
start by characterizing R(qr,eq), whose structure is relatively
simple due to the sparsity of ϵr,eq. In particular, we recall from
(16) that, using the expression of R in (2), we may write

R(qr,eq) = Rθ :=

1− 2ϵ22 0 2ϵ2η
0 1 0

−2ϵ2η 0 1− 2ϵ22

 =
[

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
,

where ϵ2 = sin θ
2 denotes the second element of ϵr,eq as per

(32) and η =
√
1− ϵ22 = cos θ2 .

With this expression of Rθ, we may derive the following
expression from (30b), by using the shortcut notation ·|eq to
characterize the evaluation of a (matrix or vector) function at
the equilibrium (32),

Avv :=
∂

∂v

(
1

m
R(qr)

(
Df(u)∥wr∥R⊤(qr)(vr9wr)

))∣∣∣∣
eq

=
∂

∂v

(
1

m
RθDf(ueq)∥weq∥R⊤

θ vr

)∣∣∣∣
eq
, (33)

which, also considering the identity Df,eq = Df(ueq), is
easily shown to coincide with matrix Avv given in (46) in
Algorithm 2.

We now focus on the entry Avϵ of Aw, which should be
computed, starting from (30b) in parallel ways to (33), as

Avϵ :=
∂

∂ϵ

(
1

m
R(qr)

(
M f(u) +Df(u)∥wr∥R⊤(qr)wr

))∣∣∣∣
eq
.

(34)

For evaluating the right-hand side of (34), starting from the
expression of R(q) = R ([ ηϵ ]) in (2), after substituting η =√
1− ϵ⊤ϵ ̸= 0 (we recall that for all of the characterized

equilibria we have η ̸= 0), we may compute the generic
derivative

∂Rϵ(ϵ, v) :=
∂

∂ϵ
R
([√

1−ϵ⊤ϵ
ϵ

])
v (35)

= 2η [v]×

(
ϵϵ⊤

1− ϵ⊤ϵ
− I3

)
9 4vϵ⊤+2ϵv⊤+2ϵ⊤vI3,

which also implies

∂

∂ϵ
R⊤ ([ ηϵ ]) v =

∂

∂ϵ
R
([√

1−ϵ⊤ϵ
−ϵ

])
v = ∂Rϵ(−ϵ, v). (36)

For evaluating (34), it will be useful to derive the following
simplified form

∂Rϵ

([
0
ϵ2
0

]
,
[ v1

0
v3

])
= 2

 0

(
η− ϵ22

η

)
v3 0

−ηv3 0 ηv1

0

(
ϵ22
η −η

)
v1 0

+ 2ϵ2

[ 0 −2v1 0
v1 0 v3
0 −2v3 0

]
. (37)

We can define two forces (fd, fℓ) acting on the drone at the
equilibrium, expressed in the body frame, which depend on the
wind w and on the two identical elevon inputs δ. These two
forces are the drag and lift generated by the airflow over the
wing. They are the result of the development of the expression
Df(u)∥vb∥vb from (30b) with Df(u) as in (11):[ fd

0
fℓ

]
:= −Df(ueq)∥weq∥R⊤

θ wr,eq, (38)

which, after some calculations, can be shown to coincide with
the selections in (44), given in Algorithm 2.

From the two forces (fd, fℓ) in (38), it is possible to de-
termine their partial derivatives with respect to the quaternion
component ϵ2 representing the drone’s pitch. Using (36), we
obtain[

∂fd
∂ϵ2
0
∂fℓ
∂ϵ2

]
= −Df(ueq)∥weq∥∂Rϵ(−ϵ,wr,eq)

[
0
1
0

]
, (39)

which, after some calculations, also considering the identity
Df,eq = Df(ueq), can be shown to coincide with the selections
in (44), given in Algorithm 2.

Following parallel derivations, the force fm generated by the
motors, linked to the propeller traction and the drag generated
by the airflow over the wing, and the force fe generated by
the elevons, linked to the airflow created by the propellers are
obtained from (9) as [ fm

0
fe

]
:= M f(ueq), (40)

which, after some calculations, can be shown to coincide with
the selections in (45), given in Algorithm 2.

Using the definitions (35), (36), together with the sparse ex-
pressions (37), (38), (40), and their equivalent forms reported
in (44), (45) given in Algorithm 2, we finally may compute
from (34)

Avϵ :=
1

m

(
∂Rϵ(ϵ,M f(ueq))9∂Rϵ(ϵ,Df(ueq)∥weq∥R⊤

θweq)

9RθDf(u)∥wr,eq∥∂Rϵ(−ϵ,wr,eq)
[
0
1
0

] )∣∣∣
eq
.

which provides expression (47) in Algorithm 2 after some
straightforward calculations also exploiting Df,eq = Df(ueq).

We now focus on the entry Aϵω of Aw, and we recall that,
due to the properties of the quaternion product (see, e.g., [35]),
[ ηϵ ]⊗

[
0
ωb

]
=
[

−ϵ⊤

ηI3+[ϵ]×

]
ωb. From the two lower terms of the
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matrix at the right-hand side of this last equation, when devel-
oping (30c) and computing Aϵω := ∂

∂ωb

(
1
2qr ⊗

[
0
ωb

])∣∣∣
eq

, we

obtain the two terms in expression (47) given in Algorithm 2.
We now focus on the entry Aωϵ of Aw, which should be

computed starting from (30d). Since only the last term of the
right hand-side depends on ϵ (through qr), we obtain

Aωϵ := J−1Dm(ueq)∥wr∥
∂

∂ϵ

(
R⊤(qr)(vr9wr)

)∣∣∣∣
eq

. (41)

To compute the explicit expression of (41), we exploit again
(36) and (37), and use the expression of Dm in (12), together
with the identities η2 − ϵ22 = cos θ and 2ηϵ22 = sin θ, which
provide, after some simplifications, the expression (48), given
in Algoirithm 2.

Let us now move on to deriving the entries of matrix Gw in
(28), whose components can be derived from (30b) and (30d).
Recalling from (7) the four entries of u, and also based on
the structure of M f, Df, in (9), (11), an explicit form for

Gv :=
1

m
Rθ

∂

∂u

(
M f(u)−Df(u)∥wr∥wb

eq

)∣∣∣∣
eq

, (42)

can be computed as in (49), after some straightforward factor-
izations.

Similarly, based on the matrices Mm, Dm in in (10), (12),
we may compute

Gω :=J−1 ∂

∂u

(
Mm(u)−Dm(u)∥wr∥wb

eq

)∣∣∣∣
eq

(43)

as in (50), after some straightforward factorizations.
Let us finally determine the expression of Ev in (28) as

follows. First note that we may write ∥wr∥wr = wr
√
w⊤

r wr,
so that

∂

∂wr
∥wr∥wr = ∥wr∥I3 +

wrw
⊤
r

∥wr∥
= ∥wr∥

(
I3 +

wrw
⊤
r

w⊤
r wr

)
.

Then, starting from (30b) and (30d) and following similar
computations to the previous cases, also using the expres-
sion of wr in (29), we obtain expression (51) (reported in
Algorithm 2), for Ev := − 1

mRθ
∂
∂wr

(Df(u)∥wr∥wr)
∣∣∣
eq

and

Ew := −J−1 ∂
∂wr

(Dm(u)∥wr∥wr)
∣∣∣
eq

, where we recall that

Dm,eq = Dm(ueq).
Remark 5: By inspecting the construction in Algorithm 2

and recalling that ∥weq∥ =
√
w2

rz + w2
rx, it is apparent that

the matrices characterizing the linearized dynamics in (52)
depend on the two key parameters (wrz, wrx) characterizing
the vertical and horizontal speed of the wind. This parametric
dependence will be used in Section III for suitably tuning the
feedback controller parameters. ◦

Remark 6: Consider again the case of zero-wind discussed
in Remark 4. In this case, using the expressions of unowind and
unowind,eq defined in equation (26a) and recalling the input
transformation unowind :=

[
τ1 τ2 δ1τ1 δ2τ2

]⊤
, the zero-

wind linearized dynamics is

˙̃x = A0x̃+G0(unowind − unowind,eq), (52)

Algorithm 2 Design of the linearization matrices in (28)

Input: Wind vector weq = [wx wy wz ]
⊤ and

equilibrium (ueq,xeq) from (14) and Algorithm 1.
Output: Matrices Aw, Gw, Ew in (28)
1: Select parameters ψ, θ, τ , δ in (14) from Algorithm 1 and
ϵ2 = sin θ

2 , η = cos θ2 .
2: With the quantities in (16), (11), (12), define:

Rψ :=
[ cosψ sinψ 0
− sinψ cosψ 0

0 0 1

]
, Rθ :=

[
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
,[wrx

0
wrz

]
:= R⊤

ψweq,
[
wb
x

wb
z

]
:=
[
wrx cos θ−wrz sin θ
wrz cos θ+wrx sin θ

]
[
Df,eq Dm,eq

]
:=
ρS

2

[ 9Cd 0 Cdξfδ
0 0 0

9Cℓξfδ 0 9Cℓ

0 0 0
∆rCℓξmδ 0 2∆rCℓ

0 0 0

]
3: Define the drag and lift forces, and their derivatives with

respect to ϵ2 (defined in Step 1), as[
fd

∂fd
∂ϵ2

0 0

fℓ
∂fℓ
∂ϵ2

]
:=9∥weq∥Df,eq

wb
x

(
4η9

2ϵ22
η

)
wrz98ϵ2wrx

0 0

wb
z

(
4η9

2ϵ22
η

)
wrx−8ϵ2wrz

, (44)

4: Define the motor and elevon forces as[
fm
fe

]
:=

[ (
SwetCd
2Sp

−2
)
τ

−SwetτδξfCℓ
2Sp

]
(45)

5: Select the entries of matrix Aw in (28) as:

Avv =
∥weq∥
m

RθDf,eqR
⊤
θ (46)A1,2

vϵ

A2,1
vϵ

A2,3
vϵ

A3,2
vϵ

 :=

 2η− ϵ22
η 4ϵ2 2ϵ22−1 2ϵ2η

−2η −2ϵ2 0 0
2ϵ2 −2η 0 0

−4ϵ2 2η− ϵ22
η −2ϵ2η 1−2ϵ22


 fe+fℓ
fm+fd
∂fd
∂ϵ2
∂fℓ
∂ϵ2


Avϵ =

1

m

[
0 A1,2

vϵ 0

A2,1
vϵ 0 A2,3

vϵ

0 A3,2
vϵ 0

]
,Aϵω =

η

2
I3 +

ϵ2
2

[
0 0 1
0 0 0
91 0 0

]
(47)

Aωϵ =
ρSCℓ∆r∥weq∥(wb

x−ξmδw
b
z)

Jyη

[
0 0 0
0 1 0
0 0 0

]
(48)

6: Select the entries of matrix Gw in (28) as:

Gv =
1

m
Rθ

[
Gvτ Gvδ

]
, Gvτ :=

[
19
SwetCd
4Sp
0

9
SwetCℓξfδ

2Sp

]
[ 11 ]

⊤

Gvδ :=

[
− 1

4ρSCdξf∥weq∥wb
z

0

9
SwetCℓξfτ

2Sp
+ 1

4ρSCℓξf∥weq∥wb
x

]
[ 11 ]

⊤ (49)

Gω=J−1
[
Gωτ Gωδ

]
,Gωδ :=

SwetCℓτ
4Sp

[
ayξf −ayξf
∆rξm ∆rξm
0 0

]
+

ρS∥weq∥ξm
4

[
ayCdw

b
x −ayCdw

b
x

∆rCℓw
b
x ∆rCℓw

b
x

ayCℓw
b
z −ayCℓwb

z

]
(50)

Gωτ :=

[
km
kf

+
Swet
4Sp

ayξfCℓδ

0
py+

Swet
4Sp

ayCd

]
[ 1
91 ]

⊤
+

[
0

Swet
4Sp

∆rξmCℓδ

0

]
[ 11 ]

⊤

7: Select the entries of matrix Ew in (28) as:[
Ev

Eω

]
=9

[
Avv

J∥weq∥Dm,eqR
⊤
θ

](
I3+

R⊤
ψweqw

⊤
eq Rψ

w⊤
eq weq

)
(51)

Return: Aw, Gw, Ew
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where the expression of A0 is

A0 = Aw

∣∣∣
w=0

=


03 I3 03 03

03 03 Avϵ 03

03 03 03 Aϵω

03 03 03 03

 , (53)

with the following selections

Aϵω =

√
2

4

1 0 −1
0 1 0
1 0 1

 and Avϵ =
√
2

0 −2g 0
g 0 g
0 −2g 0

 ,
while the expression of G0 is

G0 :=



03×1 03×1 03×1 03×1

0 0 ag ag
0 0 0 0
bg bg 0 0

03×1 03×1 03×1 03×1

cg −cg dg −dg
0 0 eg eg
fg −fg 0 0


,

with  ag bg

cg dg

eg fg

=
 9 Swet

4mSp
Cℓξf

1
m (1− Swet

2Sp
Cd)

km
Jxkf

Swetay
4JxSp

Cℓξf
Swet∆r
4JySp

Cℓξm
1
Jz
(py+

Swet
4Sp

ayCd)

 .
We emphasize that these equations coincide with the expres-
sions given in our preliminary work [33, eqn. (22)]. ◦

III. INTEGRAL-BASED LINEAR CONTROL

A. Description of the control scheme
A careful inspection of the control and the disturbance

input matrices Gw and Ew in model (28) (see the output of
Algorithm 2) suggests an effective control architecture to reject
a constant wind disturbance w. Indeed, the ailerons and the
propellers can be used symmetrically to generate respectively a
moment about the y[b] axis, verifying equation (19) and a force
along the x[b] axis, verifying equation (17), thus compensating
for the disturbance effect. Nevertheless, there is still a force
along the z[b] axis to be compensated for by verifying equation
(18), and an integral action can asymptotically converge to the
desired force, even with a non-measured wind disturbance w.
We may thus stabilize the UAV at a hovering equilibrium as
characterized in Theorem 1. Since we don’t measure the wind
w, the values of ψ and θ in Algorithm 1 are unknown. The
proposed controller, shown in Fig. 6, uses integral action to
obtain these two unknown angles. Its feedback loop involves
the following error variables output, which should converge to
zero in any hovering position:

ep = rp − p, evϵω = −
[

I3 03×1 03×2 03

01×3 1 01×2 01×3

03 03×1 03×2 I3

] [
ṽ
ϵ̃
ω̃b

]
, (54)

where rp ∈ R3 is the constant position reference comprising
a target position for the translational motion (note that rp is
the reference input to the control scheme).

The error variables in (54) can be represented as in the
block diagram of Fig. 6 by defining the output y ∈ R10 of the

Fig. 6. Proposed integral-based controller with the wind perturbation
w, a plant-input perturbation d and a plant-output perturbation ν.

linearized plant dynamics (28), having the incremental state
vector x̃ ∈ R10×1, as follows

y = Cx̃+
[

peq

07×1

]
, C :=

[
I6 06×1 06×2 06×3

01×6 1 01×2 01×3

03×6 03×1 03×2 I3

]
, (55)

where the output matrix C ∈ R10×12 removes the ϵ̃2 and ϵ̃3
components from the state vector x̃.

As shown in Fig. 6, the controller dynamic equations are
based on the measured error e as follows

e = [ e⊤
p e⊤

vϵω ]
⊤
, ẋc = He, u = Σxc + uK ,

Σ :=

[
1 1 0 0
0 0 1 1

]⊤
, uK =

n1s+ n0
d2s2 + d1s+ d0

Ke, (56)

where xc ∈ R2 is the integral action state; Σ is an input
allocation matrix that allows assigning the first component of
the integrator state to the propellers action and the second
component to the elevons action. Scalars n1, n0, d2, d1, d0
are respectively the numerator and denominator coefficients
of a filter used to avoid a direct input-output transmission that
would amplify high-frequency measurement noise. This filter
induces a strictly proper controller, for increased robustness
to additive uncertainties. We define the controller F having
dimensions 4×10 having transfer matrix F (s) = Te→u(s) as
described in (56) and interconected as in Fig. 6. The plant
P having dimensions 10×4 represents the linearized DarkO
dynamics. The output of the plant y ∈ R10×1 is used as the
input of controller F .

In view of the symmetries of the actuators on the UAV, we
have constrained the structure of matrix K in (56), associated
with the controller’s proportional action, in order to use the
actuators in a physically meaningful way as follows:

Kstruct=

[
k1 9k2 k3 k4 9k5 k6 9k7 k8 k9 9k10
k1 k2 k3 k4 k5 k6 k7 9k8 9k9 k10

9k11 9k12 k13 9k14 9k15 9k16 k17 9k18 k19 9k20
9k11 k12 k13 9k14 k15 k16 9k17 k18 k19 k20

]
. (57)

In particular, a position error on the z[i] axis of the NED
world frame (see Fig. 2) results in a symmetric use of the
two propellers that generates a force along the x[b] axis of the
UAV. The symmetric use of the two motors is reflected by
the same-sign in coefficients k3 and k6 on columns 3 and 6
of K, corresponding respectively to the position and velocity
errors on the z[i] axis. Similarly, a position or speed error
along the drone’s lateral axis y[b] will be compensated for
by an antisymmetric use of the motors, as reflected by the
coefficients k2 and k5 and their opposite signs on columns 2
and 5 of K. An angular velocity error about the x[b] axis must
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be compensated for by an antisymmetric use of the elevons, as
reflected by coefficient k18 having opposite signs on column
8 of K. Parallel arguments explain the remaining coefficients
of matrix K in (57). An advantage of the structure in (57)
is the reduction of the number of variables to be optimized,
from 40 to 20 scalar gains.

The closed loop shown in Fig. 6, is an output feedback with
10 outputs, consisting of the three linear positions, the three
linear velocities, one of the three attitude angles (ϵ1) and the
three angular velocities. This structure can be seen as a MIMO
proportional-integral feedback. The parameters to be tuned in
controller F (56) are the proportional gain K ∈ R4×10 in (57),
the integral gain H ∈ R2×10 and the filter parameters n1, n0,
d2, d1, d0, as highlighted in yellow in Fig. 6. A suitable tuning
method should ensure desirable disturbance rejection and sat-
isfactory robustness to unmodeled dynamics. These two goals
lead to a trade-off because disturbance rejection requires an
aggressive tuning while robustness properties are ensured by a
frequency roll-off strategy. We discuss next two optimization-
based tuning methods. The first one is issued from the ideas
proposed in [34], which did not need the linearized dynamics
of Theorems 1 and 2, and is summarized in Section III-B.
It is a multi-objective synthesis with H∞ constraints based
on the zero-wind model discussed in Remarks 4 and 6 and
derived in [34]. We will show that this first method fails to
stabilize the drone in certain wind ranges, due to the lack
of knowledge of the dynamics characterized in Theorems 1
ans 2. The second tuning method, presented in Sec.III-C, is
an iterative multi-objective synthesis with H∞ constraints,
based on a collection of models associated with different
wind conditions and derived based on Theorems 1 and 2,
through Algorithms 1 and 2. In our numerical validation,

Measurement Value Units
p 2.5× 10−4 m
ṽ 1.2× 10−3 ms−1

ϵ̃ 4.7× 10−4

ω̃b 2.7× 10−3 rad s−1

TABLE II
STANDARD DEVIATION OF THE MODELED SENSOR NOISE ADDED TO

THE SIMULATED MEASUREMENTS.

reported in Sections III-B and III-C (see in particular Fig. 7
and Fig. 9), measurement noise is added to the output to
produce practically reasonable numerical results. The standard
deviations of the adopted noise levels are reported in Table II.
Moreover, in addition to reporting the simulation results of
the linear feedback of Fig. 6 with the linearized model (28),
in Sections III-B and III-C, we also simulate the closed loop
by replacing the linearized plant P with the nonlinear model
(1) including many real-world effects. When replacing the
linearized plant with the nonlinear dynamics (1), whose state
is x = (p,v, q,ωb) ∈ R13, we replace the linear output y
with the following surrogate nonlinear version

yNL=

[
p
v
ϵ1
ωb

]
=

[
I6 06×1 06×1 06×2 03

01×3 0 1 01×2 01×3

03 03×1 03×1 03×2 I3

] R⊤
ψp

R⊤
ψv

q−1
eqψ⊗q
ωb

 . (58)

In the next sections we denote the modulus margin
of a transfer matrix s 7→ Tv→z as ∆m(Tv→z) =
min
ω∈R

σmin(Tv→z(jω)).

B. Zero-wind H∞-based controller tuning
For tuning the controller based on the zero wind, we use the

linear plant model detailed in Remark 6, P (s) = Tu→y(s),
obtained from equations (52) and (55) as

P (s) = C(sI12 −A0)
−1G0.

With reference to Fig. 6, we introduce transfer matrices that
correspond to robustness objectives: the output sensitivity
function as Tν→e = (I10+PF )−1 having dimensions 10×10,
so that, ∥Tν→e∥∞ = ∆m(Tν→e)

−1 and the input sensitivity
function Td→u = (I4 + FP )−1 having dimensions 4×4, so
that ∥Td→u∥∞ = ∆m(Td→u)

−1. Consequently, the mini-
mization of the H∞-norm of Tν→e or Td→u, corresponds
to increasing the input and output modulus margins. Since
plant P is MIMO, we give importance to both the input
and the output sensitivity functions which do not coincide,

Fig. 7. Simulation of the non-linear model (1) (solid line) and the
linearized model (28) (dashed line) with increasing constant wind steps
with the controller tuned using the zero-wind optimization of Section III-
B.
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because P and F do not commute. We also define the transfer
matrix Tν→u having dimensions 4×10 linked to the impact of
the measurement noise ν on the control input u, and Td→y

having dimensions 10×4 representing the impact of the input
disturbance d on the plant output y. We solve the same
problem as in our preliminary work [34, eqn. (13)] using
the Systune software [38], however we use the control
diagram presented in section III-A which includes a filter
on the proportional action and a different number of outputs.
We also include in the plant P the linear actuators dynamics
discussed in Remark 3.

Successive steps of increasing horizontal and vertical wind
intensity (ranging from zero to −6m s−1) are applied, as
shown in the lower plot of Fig. 7. The selected wind pairs
(wx, wz) are represented by red dots on the surfaces in Fig. 5,
where we can see that the equilibrium (ueq,xeq) is reached
without saturating the actuators. We only focus on the negative
part of the vertical wind speed because it is the most limiting
one. Indeed, the drone is lifted by the rising vertical wind
(whose sign is negative in the NED frame), so it needs less
traction on the propellers to compensate for the gravity. The
motors generate less airflow over the elevons, which reduces
their efficiency, leads to saturation, and destabilizes the drone.
The aim of the control system is to keep the UAV at the
hovering position (defined as rp = [0, 0, 0]⊤), despite the
increasing horizontal and vertical wind wx and wz . Fig. 7
both linear simulations with the linearized plant dynamics
(28) (dashed) and nonlinear simulations with the accurate
model (1) (solid). Both the linear and nonlinear simulations
consistently show that the controller performs well at low
wind speed (in fact, the tuning is performed based on the
zero-wind model). However, when the wind speed wx and
wz exceed −5m s−1, the hovering position becomes unstable
and the drone oscillates and diverges. The tilt angles θ are
used to represent the attitude to give a better insight of the
vehicle behavior, however the nonlinear simulation of the
nonlinear dynamics (1) is carried out with unit quaternions.
The instability observed in the simulation results of Fig. 7
confirms the experimental instabilities reported in [34] where
we used this same tuning method, and confirms the importance
of Theorems 1 and 2 in Section II, for an appropriate tuning
of the controller gains, which is performed in the next section.

C. Multimodel H∞-based controller tuning
The simulation results obtained with the zero-wind tuning

method (see Fig. 7) together with the experimental instabilities
observed in [34] confirm the need for a controller gain
tuning procedure exploiting the parametrized non-zero wind
linearizations of Theorems 1 and 2. Focusing again on the
control scheme of Fig. 6, we now explicitly consider the
(linearized) wind effect on the plant, and we consider the
linearized plant dynamics (28) with output (55) and with the
selections in Algorithm 2 as

Pw(s) =
[
P u(s;w) Pw(s;w)

]
(59)

:= C(sI12 −Aw)
−1
[
Gw Ew

]
,

whose input is the concatenation of the control input u and
the wind disturbance input w. As the model depends on the

Weighting scalars W1 W2 W3 W4 W5

Values 18 16 11 26 5

TABLE III
VALUES OF THE POSITIVE WEIGHTING SCALARS W1–W5 USED IN THE

EXECUTION OF ALGORITHM 3.

wind speed w, we introduce a new transfer matrix Tw→y

having dimensions 10×3, which corresponds to the transfer
matrix between the wind input w and the plant output y,
quantifying the effect of the wind disturbance on the UAV
feedback loop. With the set of transfers matrices defined
in Sec. III-B and the new transfer matrix Tw→y , we use
the algorithmic approach in [38], [39], named “systune”,
which uses non-smooth optimization techniques to deal with
non-convex tuning problems, such as our structured control
architecture where we optimize the gain matrices K, H and
the filter parameters n1, n0, d2, d1, d0 (in yellow on the
figure 6). As reported in [39, eq. (2)], we solve a multi-
objective optimization problem, by exploiting the Matlab im-
plementation well explained in [39, §3]. In particular, based on
a set W comprising a finite collection of pairs (wx, wz), with
wx ∈ [0, 8] m s−1 and wz ∈ [94, 4] m s−1, we consider the
ensuing set of linearized plants (59) and solve the following
convex optimization, where scalars W1, W2, W3, W4 and W5

are weighting factors to be tuned to obtain a satisfactory trade-
off between robustness (associated with W2, W3 and W4) and
performance (associated with W1 and W5)

γ⋆ = min
F

max
w∈W

∣∣∣∣∣∣∣∣∣∣
∥W1Tν→e(Pw,F )∥∞
∥W2Td→u(Pw,F )∥∞
∥W3Tν→u(Pw,F )∥∞
∥W4Td→y(Pw,F )∥∞
∥W5Tw→y(Pw,F )∥∞

∣∣∣∣∣∣∣∣∣∣
∞

, subject to (60)

F stabilizes internally Fℓ(Pw,F ),∀w ∈ W,

where Fℓ(Pw,F ) denotes the linear feedback interconnection
of Fig. 6 for a specific value of w (this is consistent with the
classical robust control notation [38], [39]). Notice that, with
reference to [39, eq. (2)], we only specify soft constraints and
we do not specify any hard constraint.

The optimization problem (60) becomes increasingly cum-
bersome, from a computational viewpoint, as we increase the
cardinality of the set of wind conditions considered in W . In
fact, a brute force approach including a fine grid of points
in W leads to a computationally intractable optimization.
Instead, we follow here the iterative procedure overviewed in
Algorithm 3, where W is initially selected as a sparse grid
comprising 3 × 3 = 9 points (step 1) and then a synthesis
step (step 2) is repeatedly followed by a (computationally
simple) analysis step (step 3) where controller F is fixed. Step
3 identifies the violating points by using a finer validation
grid Wv and adds them to the optimization set W . The
algorithm terminates after some iterations, when no points of
the validation grid violate the constraints.

Executing Algorithm 3 for the DarkO models of Theorems 1
and 2 with the selection of the positive weighting scalars W1–
W5 reported in Table III-C, returned the following selection
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Algorithm 3 Iterative multimodel controller gain tuning.
Input: Aw, Gw, Ew the output matrices of Algorithm 2 and

the positive weighting scalars W1–W5

Output: K, H and the filter gains
1: (Initialization) Initialize W as a grid comprising all the

pairs wx ∈ {0, − 4, − 8} and wz ∈ {94, 0, 4}
2: (Synthesis) Solve the optimization (60) with the software
systune

3: (Analysis) Define a validation grid Wv by discretizing the
interval (wx, wy) ∈ [0, 8] × [−4, 4] with a discretization
step of 1 and using the controller F obtained from the
previous step, compute, for each wv ∈ Wv,

γv =

∣∣∣∣∣∣∣∣∣∣
∥W1Tν→e(Pwv ,F )∥∞
∥W2Td→u(Pwv ,F )∥∞
∥W3Tν→u(Pwv ,F )∥∞
∥W4Td→y(Pwv ,F )∥∞
∥W5Tw→y(Pwv ,F )∥∞

∣∣∣∣∣∣∣∣∣∣
∞

, (61)

and augment W with the corresponding point if γv > 1 or
γv is undefined (namely if F is not internally stabilizing).

4: (Termination) If W has not been augmented at the previ-
ous step, then move to step 5, otherwise move to step 2.

5: Return: K, H and filter parameters n1, n0, d2, d1, d0

after 2 iterations:

[
K⊤ H⊤ ]=


−3.86 −3.86 0.79 0.79
1.43 −1.43 1.71 −1.71
4.06 4.06 −2.07 −2.07
−6.86 −6.86 −11.60 −11.60
−10.75 10.75 −1.89 1.89
27.20 27.20 −4.29 4.29
−12.32 12.32 −3.46 3.46
−5.84 5.84 −2.29 2.29
−5.19 5.19 5.79 5.79
−6.52 6.52 0.08 −0.08

0.02 0.48
−0.47 −1.63
−0.45 0.52
−0.14 1.40
3.35 5.69
−1.84 3.79
3.72 6.81
1.58 3.13
2.86 −1.54
0.08 2.82

 ,
n1 n0
d2 d1
d0

=
 −429 −389

1 6475

4905

 , (62)

For the first iteration of Algorithm 3, after a candidate
controller F has been evaluated at step 2, Fig. 8 shows in blue
the bode diagrams of the maximum singular values of Tν→e,
Td→u, Tν→u, Td→y , and Tw→y (associated with the value of
γv) reported in (61) at the analysis step 3, to be compared
to the inverse of the five weights W1–W5, represented by the
green horizontal lines. The diagrams in red correspond to the
points that violate the constraints and that are added to the
set W for the next iteration. The few diagrams in magenta,
instead, correspond to the 9 points considered in W for the
first iteration of the synthesis step 2. The red diagrams in Fig. 8
clearly illustrate that the iterative algorithm manages to detect
the critical values of wind speed (wx, wz) to be added to the
optimization set W .

The singular values of the output and the input sensitivity
function (respectively Tr→e and Td→u) are shown in Fig. 8 top
line. The graph in the third line represents the singular value
of the transfer between the wind disturbance w and the drone
output y. The singular value tangent to the constraint is that for
the highest wind condition a.g. (wx, wz) = (−8,−4) m s−1.

With the tuning reported in (62), as obtained with Algo-
rithm 3, we report in Fig. 9 parallel simulation results to

Fig. 8. Diagrams of the singular values of the transfer functions in (61)
at the first iteration of Algorithm 3.

those already shown in Fig. 7 for the zero-wind tuning method
discussed in Section III-B. Once again we simulate both the
nonlinear plant (1) (solid lines) and the linearized plant (28)
(dashed line). As compared to Fig. 7, the simulations of
Fig. 9 show that the controller tuning based on Theorems 1
and 2 solves the instability issues and manages to stabilize the
hovering condition in all of the considered wind scenarios.
We also note from Fig. 9 shows a more aggressive action,
indeed the control input u (both thrust and deflections) is
more affected by the measurement noise. The effectiveness
of the control scheme tuned on the basis of Algorithm 3 is
also confirmed by the experimental results reported in the next
section.

IV. EXPERIMENTAL FLIGHT WITH OPEN WIND TUNNEL

DarkO’s experimental flight took place in a dedicated space
(see Fig. 10) with an Optitrack localization system based on a
NED convention as per Figure 2. We used an open-vein wind
generator to obtain wind steps that we measured with a hot-
wire probe (the vertical bar in Fig. 10). Although this wind
information is recorded on board the drone to synchronize the
data, we do not use this measurement in the control law. The
measurement frequency of this wind probe is only 0.5 Hz, so
we only have one measurement every two seconds. The state
estimation is carried out using an inertial navigation system
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Fig. 9. Simulation of the non-linear model (1) (solid line) and the
linearized model (28) (dashed line) with increasing constant wind steps
with the controller tuned using the multimodel optimization of Algorithm 3
in Section III-C.

to merge the Inertial Measurement Unit (IMU) + Optitrack
sensor data in order to obtain an accurate estimation of the
output y in Fig. 6. However, the drone’s angular velocity ωb is
measured based on the IMU’s gyrometer, which provides noisy
measurements, therefore we added a second order Butterworth
low-pass filter with cut-off frequency of 20 Hz to smoothen
out the output ωb. The Butterworth filter is considered in
the linearized dynamics when optimizing the controller gains
following Algorithm 3.

We also used the ESCs associated with the performance
shown in Figure 3 for the propellers actuation. The two ESCs
were flashed with the open-source code available in the GitHub
repository AM32-MultiRotor-ESC-firmware2. The advantage
of this firmware, as compared with the commercial code,
is that it exploits a low-level PID feedback of the speed of
rotation of the motor, which is calculated at the same speed
as the motor phase commutation. We adapted the speed loop
code in the firmware, following the approach of [40], featuring

2https://github.com/FlorianSan/
AM32-MultiRotor-ESC-firmware

Fig. 10. DarkO’s experimental flight in front of the open wind tunnel.

an adaptive bias and adaptive gain algorithm (ABAG). In this
way, we compensate the battery discharge effects and obtain
an accurate realization of the commanded speed. Before this
modification, the integral action of the stabilizing feedback
of Fig. 6 compensated for the motor speed loss caused
by the battery voltage reduction during flight. This integral
compensation was indirectly generated by the altitude loss of
the UAV caused by the reduced traction. The advantages of
the ABAG solution are high responsiveness and adaptability,
as the propeller dimensions can be changed without needing
to modify the actuation gains.

We carried out a flight experiment where DarkO was man-
ually put into a stabilized hovering mode in front of the wind
tunnel, then we switched on the control law of Algorithm 3.
As the drone had to be stabilized at least 30 cm away from
the wind tunnel, a manual command was gradually applied
to avoid overshooting, which could damage the wind tunnel.
Once DarkO was close enough to the setpoint rp of Fig. 6, we
switched on the proposed controller, obtaining the results in
Fig. 11. During the follow-up experimentation phase, as shown
in the lower plot of Fig. 11, we stepwise increased the wind
speed, waiting 20 seconds between each pair of consecutive
steps, up to a final wind speed of 7m s−1.

Figs 11 and 12 show that the drone maintains its position
despite the increasing wind speed. We can note a few im-
portant points, in agreement with the simulations: the motor
traction decreases when increasing the wind speed. The control
scheme takes advantage of the lift generated by the wind to
support the drone, so that less energy is needed to stabilize
the hovering position. The drone maintains its tilt angle at a
value that is unknown a priori to the control law and naturally
stems from the integral action that asymptotically attains the
required value of the drone’s pitch angle θ. To stabilize the
position, the UAV uses the elevons to cancel the pitch moment
generated by the shape of the wing, subjected to a horizontal
wind, without reaching the saturation limits. We also notice a
slight asymmetry of the effectiveness of the actuators, which
is effectively compensated by the proportional action of the
control scheme.

V. CONCLUSIONS

We presented two models of the DarkO tailsitter UAV, and
characterized a set of equilibrium points for different wind

https://github.com/FlorianSan/AM32-MultiRotor-ESC-firmware
https://github.com/FlorianSan/AM32-MultiRotor-ESC-firmware
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Fig. 11. Experiment of the DarkO UAV in front of the wind tunnel with
increasing constant wind levels (lower plot).

conditions. Our analysis showed that all equilibrium points
were achievable within the saturation limits of the actuators.
For each one of these equilibria, a suitable rotated linearization
has been characterized, thereby obtaining a parametric set of
models depending on two parameters (horizontal and vertical
wind speed). A control scheme was then proposed, for hover-
ing stabilization in the presence of an unknown constant wind,
embedding an integral action and not requiring the wind speed
measurement. The parametric linearized models were then
shown to be a key instrument to perform an optimized tuning
of the controller parameters. After studying the simulation
results, we carried out an experimental flight campaign in
a controlled environment to validate our control solution.
Future work will involve outdoor testing in an uncontrolled
environment, followed by the development of a controller to
stabilize the forward flight.
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[3] L. Lustosa, F. Defaÿ, and J. Moschetta, “Longitudinal study of a
tilt-body vehicle: modeling, control and stability analysis,” in Proc.
of International Conference on Unmanned Aircraft Systems, Denver,
Colorado, US, June 2015, pp. 816–824.

[4] Y. Ke, K. Wang, K. Gong, S. Lai, and B. M. Chen, “Model based
robust forward transition control for tail-sitter hybrid unmanned aerial
vehicles,” in 2017 13th IEEE International Conference on Control and
Automation (ICCA), 2017, pp. 828–833.

[5] A. S. Saeed, A. B. Younes, C. Cai, and G. Cai, “A survey of hybrid
Unmanned Aerial Vehicles,” Progress in Aerospace Sciences, vol. 98,
pp. 91–105, Apr. 2018.

[6] G. J. J. Ducard and M. Allenspach, “Review of designs and flight control
techniques of hybrid and convertible VTOL UAVs,” Aerospace Science
and Technology, vol. 118, p. 107035, Nov. 2021.

[7] G. Droandi, A. Zanotti, G. Gibertini, D. Grassi, and G. Campanardi,
“Experimental investigation of the rotor-wing aerodynamic interaction
in a tiltwing aircraft in hover,” The Aeronautical Journal, vol. 119, no.
1215, p. 591–612, 2015.

[8] B. M. Simmons and P. C. Murphy, “Aero-propulsive modeling for tilt-
wing, distributed propulsion aircraft using wind tunnel data,” Journal of
Aircraft, vol. 59, no. 5, pp. 1162–1178, 2022.

[9] P. Aref, M. Ghoreyshi, A. Jirasek, M. J. Satchell, and K. Berg-
eron, “Computational study of propeller–wing aerodynamic interaction,”
Aerospace, vol. 5, no. 3, 2018.

[10] L. F. Fernandez, M. Bronz, N. Bartoli, and T. Lefebvre, “Assessment of
methods for propeller performance calculation at high incidence angles,”
in AIAA SCITECH 2023 Forum, 2023.

[11] J. Escareno, S. Salazar, and R. Lozano, “Modelling and control of a
convertible VTOL aircraft,” in Proceedings of the 45th IEEE Conference
on Decision and Control, 2006, pp. 69–74.

[12] J. A. Guerrero, R. Lozano, G. Romero, D. Lara-Alabazares, and K. C.
Wong, “Robust control design based on sliding mode control for hover
flight of a mini tail-sitter unmanned aerial vehicle,” in 2009 35th Annual
Conference of IEEE Industrial Electronics, 2009, pp. 2342–2347.

[13] S. Zhang, Q. Fei, J. Liang, and Q. Geng, “Modeling and control for
longitudinal attitude of a twin-rotor tail-sitter unmanned aerial vehicle,”
in 2017 13th IEEE International Conference on Control and Automation
(ICCA), 2017, pp. 816–821.

[14] Y. Ke and B. M. Chen, “Full envelope dynamics modeling and sim-
ulation for tail-sitter hybrid UAVs,” in 2017 36th Chinese Control
Conference (CCC), 2017, pp. 2242–2247.

[15] J. Escareno, R. Stone, A. Sanchez, and R. Lozano, “Modeling and
control strategy for the transition of a convertible tail-sitter UAV,” in
European Control Conference, 2007, pp. 3385–3390.

[16] R. Chiappinelli and M. Nahon, “Modeling and control of a tailsitter
UAV,” in 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), 2018, pp. 400–409.

[17] L. R. Lustosa, F. Defaÿ, and J.-M. Moschetta, “Global singularity-free
aerodynamic model for algorithmic flight control of tail sitters,” Journal



16 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

of Guidance, Control, and Dynamics, vol. 42, no. 2, pp. 303–316, Feb.
2019.

[18] E. Tal and S. Karaman, “Global incremental flight control for agile ma-
neuvering of a tailsitter flying wing,” arXiv preprint arXiv:2207.13218,
2022.

[19] J. Liang, Q. Fei, B. Wang, and Q. Geng, “Tailsitter VTOL flying
wing aircraft attitude control,” in 2016 31st Youth Academic Annual
Conference of Chinese Association of Automation (YAC), 2016, pp. 439–
443.

[20] J. Escareño, R. Stone, A. Sanchez, and R. Lozano, “Modeling and
control strategy for the transition of a convertible tail-sitter UAV,” in
2007 European Control Conference (ECC), 2007, pp. 3385–3390.

[21] D. A. Ta, I. Fantoni, and R. Lozano, “Modeling and control of a
convertible mini-UAV,” IFAC Proceedings Volumes, vol. 44, no. 1, pp.
1492–1497, 2011, 18th IFAC World Congress.

[22] E. Bulka and M. Nahon, “Autonomous control of agile fixed-wing UAVs
performing aerobatic maneuvers,” in 2017 International Conference on
Unmanned Aircraft Systems (ICUAS), 2017, pp. 104–113.

[23] Y. Yang, J. Zhu, X. Zhang, and X. Wang, “Active disturbance rejection
control of a flying-wing tailsitter in hover flight,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 6390–6396.

[24] S. Verling, B. Weibel, M. Boosfeld, K. Alexis, M. Burri, and R. Siegwart,
“Full Attitude Control of a VTOL tailsitter UAV,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), 2016,
pp. 3006–3012.

[25] J. Zhong, B. Song, Y. Li, and J. Xuan, “l1 adaptive control of a dual-
rotor tail-sitter unmanned aerial vehicle with input constraints during
hover flight,” IEEE Access, vol. 7, pp. 51 312–51 328, 2019.

[26] J. M. Olszanecki Barth, J.-P. Condomines, M. Bronz, J.-M. Moschetta,
C. Join, and M. Fliess, “Model-free control algorithms for micro air
vehicles with transitioning flight capabilities,” International Journal of
Micro Air Vehicles, vol. 12, pp. 1–22, Apr. 2020.

[27] E. J. J. Smeur, M. Bronz, and G. C. H. E. de Croon, “Incremental control
and guidance of hybrid aircraft applied to the Cyclone tailsitter UAV,”
Journal of Guidance, Control, and Dynamics, Sep. 2019.

[28] N. Silva, J. Fontes, R. Inoue, and K. Branco, “Dynamic inversion and
gain-scheduling control for an autonomous aerial vehicle with multiple
flight stages,” Journal of Control, Automation and Electrical Systems,
vol. 29, no. 3, pp. 328–339, 2018.

[29] Y. Demitrit, S. Verling, T. Stastny, A. Melzer, and R. Siegwart, “Model-
based wind estimation for a hovering VTOL tailsitter UAV,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 3945–3952.

[30] X. Lyu, J. Zhou, H. Gu, Z. Li, S. Shen, and F. Zhang, “Disturbance
Observer Based Hovering Control of Quadrotor Tail-Sitter VTOL UAVs
Using H∞ Synthesis,” IEEE Robotics and Automation Letters, vol. 3,
no. 4, pp. 2910–2917, 2018.

[31] G. Hattenberger, M. Bronz, and J.-P. Condomines, “Estimating wind
using a quadrotor,” International Journal of Micro Air Vehicles, vol. 14,
p. 17568293211070824, 2022.

[32] F. Sansou, “Commande hybride d’un drone convertible pour des
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