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Two-stage Stochastic Optimization for the
Extended Aircraft Arrival Management
Problem Under Uncertainty

Fabian Bastin and Sonia Cafieri and Ahmed Khassiba and Marcel Mongeau

Abstract This chapter reviews recent developments to manage aircraft arrivals in
the context of extended arrival manager systems, for which uncertainty is signifi-
cant when predicting expected times to start the approach phase and landing times.
An original high-level multi-stage stochastic optimization formulation, considering
several air network points of interest, is first introduced, taking account of practical
operational constraints. The remaining of the chapter focuses on the two-stage spe-
cial case, which corresponds to recent studies on the aircraft arrival management
problem. A landing order is decided at a specific air network point known as the
initial approach fix, or IAF (first stage), and a recourse cost is proposed so as to
ensure that aircraft separation constraints are satisfied at the landing runway (sec-
ond stage). Multiple possible IAF points are considered as well as the possibility to
delay the departure of on-ground aircraft. Finally, this study proposes new analyses
(validation score and impact of inclusion of chance constraints in the first stage)
of numerical experiments performed on realistic instances based on Paris-Charles
de Gaulle arrival data. We discuss numerical results and exhibit that the stochastic
solutions are more robust than their deterministic counterparts.
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1 Introduction

We address an operations research problem, the aircraft arrival scheduling problem,
which is crucial in air traffic management, as one of its major bottlenecks is the airport
landing runways (Kistan et al., 2017). We take account of the arriving aircraft a long
time before landing, so as to have more degrees of freedom to schedule landings.
However, increasing thereby the considered time horizon brings more uncertainty
that needs to be handled.

The aircraft arrival scheduling problem consists in determining a sequence of a
set of aircraft and their schedule on reference air-traffic route points in the terminal
maneuvering area (air space around the destination airport), as well as a landing
schedule satisfying time-window constraints and safety separation constraints for
any pair of aircraft. The separation constraints are of particular importance in air
traffic control. When aircraft are airborne, a fixed minimal inter-aircraft distance
(typically 5 NM, where NM stands for Nautical Mile, which corresponds to ap-
proximately 1.85 km) constraint must be satisfied, whereas at the runway this safety
distance depends on the types of aircraft involved, due to so-called wake-vortex
turbulence (which affects more severely a light aircraft landing immediately after a
large aircraft) (Breitsamter, 2011). Several other operational features can be taken
into account, allowing thereby one to assess better the quality of the aircraft arrival
schedule.

We assume that each aircraft considered in the problem comes with an initial (de-
fault) reference route from its origin airport to its destination airport. We also assume
that the following information is known for each aircraft: speed, initial (planned) de-
parture time, and wake-vortex turbulence category (light, medium, or heavy), as
introduced by the International Civil Aviation Organization (ICAO) (Antolovic and
Franjkovic, 2020).

The framework of the aircraft arrival scheduling problem addressed in this chapter
is related to the AMAN (Arrival MANager) decision-aid tool (Hasevoets and Conroy,
2010) currently in use by air traffic controllers. Air traffic controllers can issue various
possible instructions to pilots in order to impose delays (positive or negative) to
flights and thereby satisfy the constraints and improve the schedule. Among these
instructions used to implement the solution proposed by AMAN, let us mention
aircraft speed reduction, path stretching or shortening, or stack holding (airborne
aircraft “waiting room”, as depicted in Figure 1). Typically, scheduling starts around
30 minutes before landing. The problem addressed here is in the more general
extended-AMAN context: the scheduling horizon is extended to aircraft that are
within 200–500 NM from runway threshold (Itoh et al., 2017). This corresponds
to 2–3 hours before landing (Tielrooij et al., 2015), yielding more uncertainty on
predicted approach and landing times.

We first consider the even more general operational setup that involves a set of
aircraft flying over multiple route points, which are the vertices of the network of air
routes. In particular, before landing, each aircraft must fly through a route point called
Initial Approach Fix (IAF) where aircraft are sequenced by air-traffic controllers,
using current decision-aid tools such as AMAN. The terminal maneuvering area of
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an airport can have a single IAF, gathering all arriving aircraft prior to landing, or
several IAFs. Typically, aircraft sharing neighboring routes go through a same IAF, as
illustrated on Figure 1 for the case involving two IAFs. In the case involving several
IAFs, aircraft are often simply assigned to the IAF closest to their arrival route.
However, in practice, air traffic controllers can change an aircraft’s IAF assignment
to improve the arrival sequence, as explored in Khassiba et al. (2022). Additionally,
the flight status of each considered aircraft can be taken into account, distinguishing
between an aircraft that is still at its departure airport gate from one that is already
airborne. More precisely, when making decisions on arrival times to IAFs, the former
can be delayed on ground if needed.

30-45 min 
before landing

2-3 hours before landing

IAF
Holding 
stackHolding 

stack

IAF

21

Fig. 1 Terminal maneuvering area and airport approach

The sequencing and scheduling aircraft landing problem has been studied since
the 1970’s (see, for instance, Dear (1976); Psaraftis (1978); Dear and Sherif (1991)).
The deterministic case has received the most attention (Balakrishnan and Chandran,
2010; Beasley et al., 2000) until recently. We refer the reader to Bennell et al.
(2011) and Ikli et al. (2021) for recent surveys. However, the importance of taking
uncertainty into account in air traffic management is now well recognized (Shone
et al., 2021).

Specific optimization paradigms such as two-stage stochastic programming (Birge
and Louveaux, 2011), have been applied to the aircraft scheduling problem under
uncertain arrival times with short operational horizon (Liu et al., 2018; Sölveling
and Clarke, 2014; Sölveling et al., 2011). Extensions to various types of disturbances
and uncertainties have also been addressed in a number of papers related to aircraft
scheduling in the terminal maneuvering area (Huo et al., 2021; Samà et al., 2014;
Scala et al., 2021; Vié et al., 2022). Khassiba et al. (2019, 2020, 2022) introduce
two-stage stochastic mixed-integer programming models to address the problem of
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arrival management under uncertainty with an extended operational time horizon.
In the first-stage problem, target times of arrival of aircraft at the IAF, and a target
IAF aircraft sequence are determined. Actual arrival times at the IAF are assumed to
deviate randomly from these target times, following known probability distributions.
They are assumed to be revealed at the second stage, so that the second-stage
problem determines landing times (keeping the same IAF aircraft sequence) in view
of minimizing a cost function. The numerical experiments presented in Khassiba
et al. (2019, 2020) show that the obtained stochastic solutions are more robust to the
uncertainty occurring within the 2–3 hours before landing than their deterministic
counterparts.

In Khassiba et al. (2019, 2020), one single IAF is considered. In Khassiba et al.
(2019, 2020), all aircraft are considered airborne, while on-ground vs. airborne flight
status are taken into account in Khassiba et al. (2022).

The present chapter first introduces, in Section 2, our main contribution: a detailed
high-level multi-stage stochastic optimization formulation of the extended aircraft
arrival management problem under uncertainty that can consider several air network
points of interest (previous literature commonly considers at most two such points:
the IAF and the landing runway). It takes into account other practical operational
features such as the airborne/on-ground status of aircraft, and the possibility to delay
the departure of on-ground aircraft, as this was also the case for the two-stage study of
Khassiba et al. (2022). The focus of this chapter is then made on the two-stage special
case which corresponds to recent studies on the aircraft arrival management problem
(Khassiba et al., 2019, 2020, 2022): a landing order is decided at one particular
air network point, the IAF (first stage), and a recourse cost is proposed so as to
ensure that aircraft separation constraints are satisfied at the landing runway (second
stage). Section 3 presents the sample average approximation (SAA) method (Shapiro,
2021) that is applied to perform numerical tests. Section 4 reports new numerical
experiments on realistic instances based on Paris-Charles de Gaulle arrival data,
with discussions on the appropriate number of scenarios, the value of the stochastic
solutions, and the effect of using chance constraints. Section 5 presents conclusions
and propositions of avenues for future research.

2 Optimization Models

This section first introduces the high-level multi-stage stochastic optimization model
we are proposing for the extended aircraft arrival management problem under uncer-
tainty. Details on the two-stage special case are then presented, along with the full
two-stage stochastic optimization model on which we shall rely for our numerical
experiments. It is a concise form (without the detailed description of all the oper-
ational constraints, and keeping the most generic setting) of the two-stage model
presented in Khassiba et al. (2022). A summary of the notations used is provided in
Appendix.
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2.1 High-level Multi-stage Stochastic Optimization Model

The last decades have experienced a fast increase of air traffic, and while the aviation
industry had to reduce significantly its activities during the Covid-19 pandemic,
the demand has returned to high levels, raising various challenges in air traffic
management (Kistan et al., 2017; Bolić and Ravenhill, 2021). As underlined by Itoh
et al. (2021), a current research avenue to improve aircraft arrival scheduling is the
use of a multi-stage decision sequence model, while accounting for uncertainty. They
also suggest to consider time management rather than flow management.

In line with these considerations, we introduce a new model, as general as possible,
using a stochastic dynamic programming formulation over𝐾 (≥ 2) stages. Each stage
is indexed by 𝑘 = 1, 2, . . . , 𝐾 . We assume that for each stage 𝑘 = 1, 2, . . . , 𝐾 − 1, we
are given the number, 𝑛(𝑘 ) , of considered aircraft, and A (𝑘 ) , the associated index
set of aircraft. The latter is partitioned further into two subsets: A (𝑘 )

𝐺
and A (𝑘 )

𝐴
,

the index set corresponding to the aircraft that are still on the ground at stage 𝑘 ,
and the index set related to the aircraft that are airborne at stage 𝑘 , respectively. We
also assume that we are given an index set, I (𝑘 ) , of possible routes for the aircraft
in A (𝑘 ) . We suppose here that 𝑛(𝑘 ) can change over time as with extended aircraft
arrival management systems, airborne aircraft can appear on the radar at a stage
𝑘 > 1. Similarly, additional on-ground aircraft may have to be considered from a
stage 𝑘 > 1, for instance if their planned departure time have been delayed.

At each stage 𝑘 , the following decisions must be made. First, one decides for each
aircraft 𝑎 ∈ A (𝑘 ) , whether its route should be modified (the route is represented by a
sequence of waypoints, which are air network vertices) chosen within I (𝑘 ) . Second,
one decides an aircraft sequence at a particular future air route point of interest (that
we shall call target point) associated to stage 𝑘 . Third, one decides a target time,
within a given time window, for each aircraft, 𝑎 ∈ A (𝑘 ) , to reach this (next-stage)
target point. Finally, one decides a target take-off time for each on-ground aircraft
𝑎 ∈ A (𝑘 )

𝐺
.

More precisely, for 𝑘 = 1, 2, . . . 𝐾 − 1, the 𝑘th-stage problem decision vector,
noted 𝑥 (𝑘 ) , reads:

𝑥 (𝑘 ) = (𝑧 (𝑘 ) , 𝑡 (𝑘 ) , 𝛿 (𝑘 ) , 𝜁 (𝑘 ) ),

where 𝑧 (𝑘 ) ∈ R𝑛(𝑘) is the vector of target-time variables (associated to the next-
stage target point); 𝑡 (𝑘 ) ∈ R |A (𝑘)

𝐺
| is the vector of target take-off time variables for

on-ground aircraft; 𝛿 (𝑘 ) is a vector of discrete variables (sequencing variables: one
binary variable for each possible pair of aircraft) used to decide a sequence of aircraft
at the next-stage target point, and 𝜁 (𝑘 ) is the vector of the aircraft route assignment
variables (each of its 𝑛(𝑘 ) components is a route index from I (𝑘 ) ). The last-stage
decision vector, 𝑥 (𝐾 ) , is particular: it is simply the vector of target landing time
variables, 𝑧 (𝐾 ) ∈ R𝑛(𝐾−1) .

In this general multi-stage context, the last stage, 𝐾 , is indeed particular: it focuses
on the decision related to a special target point: the (landing) runway threshold. The
penultimate stage, 𝐾 − 1, is concerned with another special target point: the IAF.
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Stage 𝐾 − 1 thereby concentrates on the decisions related to the aircraft passing
through their assigned IAF. For example, deciding a route assignment 𝜁 (𝐾−1)

𝑎 for
aircraft 𝑎 ∈ A (𝐾−1) , boils down to deciding whether the initial IAF assignment
for aircraft 𝑎 should be modified. In a context involving more than two stages, the
previous stage, 𝐾 − 2, could involve deciding whether yet another specialized air-
traffic-control waypoint, the merge point, planned on the initial route of 𝑎, should be
modified or not.

At each stage 𝑘 = 1, 2, . . . , 𝐾 , we define a state vector, 𝑠 (𝑘 ) , whose 𝑎th component,

𝑠
(𝑘 )
𝑎 = (𝑝 (𝑘 )𝑎 , 𝑟

(𝑘 )
𝑎 , 𝑣

(𝑘 )
𝑎 , 𝜅

(𝑘 )
𝑎 , 𝜒

(𝑘 )
𝑎 ),

gives the following five features related to aircraft 𝑎 ∈ A (𝑘 ) : 𝑝 (𝑘 )𝑎 is the position
of aircraft 𝑎 at stage 𝑘 , 𝑟 (𝑘 )𝑎 is the current (at stage 𝑘) reference route of aircraft 𝑎,
𝑣
(𝑘 )
𝑎 is its speed at stage 𝑘 , 𝜅 (𝑘 )𝑎 gives the status (on-ground or airborne) of 𝑎 at stage
𝑘 , and 𝜒

(𝑘 )
𝑎 stores other useful characteristics of aircraft 𝑎 (that does not change

through the stages in the current study) such as its wake-vortex turbulence category
(light, medium, or heavy). Remark that at stage 𝑘 = 1 the state vector, 𝑠 (1)𝑎 , is known
for every aircraft 𝑎 ∈ A (1) , and similarly for any new aircraft appearing at some
subsequent stage (pop-up flight).

Let us introduce, for each stage 𝑘 = 1, 2, . . . , 𝐾 , the following notation: the ob-
jective function 𝑓 (𝑘 ) , capturing the operating costs at stage 𝑘 (for instance, penalties
on the deviations from the target times), the separation-constraint mapping 𝑆 (𝑘 ) to
be satisfied by the aircraft pairs at the next-stage target points, the time-window
constraint mapping 𝑇 (𝑘 ) representing the feasible passing times at next-stage target
points, and a feasible set X (𝑘 ) to account for the domain definition of the vector of
decision variables, 𝑥 (𝑘 ) .

The stochastic dynamic optimization model therefore reads as follows, for 𝑘 =

1, 2, . . . , 𝐾:

𝑉 (𝑘 ) (𝑠 (𝑘 ) ) = min
𝑥 (𝑘)

𝑓 (𝑘 ) (𝑥 (𝑘 ) , 𝑠 (𝑘 ) ) + E𝝃 (𝑘+1) [𝑉 (𝑘+1) (𝒔 (𝑘+1) ) | 𝑠 (𝑘 ) ] (1)

s.t. 𝑇 (𝑘 ) (𝑥 (𝑘 ) , 𝑠 (𝑘 ) ) ≤ 0 time windows at next-stage target points (2)

𝑆 (𝑘 ) (𝑥 (𝑘 ) , 𝑠 (𝑘 ) ) ≤ 0 separation at next-stage target points (3)

𝑥 (𝑘 ) ∈ X (𝑘 ) , (4)

and 𝑉 (𝐾+1) (·) = 0. For 𝑘 = 1, . . . , 𝐾 − 1, the state transition function is

𝑠 (𝑘+1) = 𝑔 (𝑘 ) (𝑥 (𝑘 ) , 𝑠 (𝑘 ) , 𝝃 (𝑘+1) ),

where 𝝃 (𝑘+1) is some random vector capturing the uncertainty affecting the problem
at the next stage (stage 𝑘 + 1). In line with other studies (see for instance Itoh et al.
(2021)), in our context, 𝝃 (𝑘+1) captures the random time deviations (advances or
delays) affecting the aircraft with respect to their target times at their next target
points, due to various operational and environmental factors, such as the wind, and
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limited operational adjustments in order to extend engine lifetime. Other sources of
uncertainty could also be taken into account, at the price of additional modeling and
computational complexity.

2.2 Two-stage Special Case

Practitioners commonly concentrate on decisions related to the last two target points:
the IAF and the runway threshold. Two-stage stochastic optimization is suitable for
this operational context. The exposition can be generalized to more than two stages
as introduced above but specific operational constraints (including the smooth man-
agement of aircraft engine to optimize its lifetime) renders the two-stage framework
best fit to this application. For this reason, and in order to simplify the presentation, in
the sequel, we set 𝐾 = 2 (two-stage optimization): the first target point (𝑘 = 1) is the
IAF, and the second (𝑘 = 2) is the runway threshold. Also, for notational simplicity,
we shall use 𝑥 ∈ X instead of our general multi-stage notation 𝑥 (1) ∈ X (1) , and
𝑦 ∈ Y instead of 𝑥 (2) ∈ X (2) . Regarding uncertainty, we shall simply use 𝝃 instead
of 𝝃 (2) (and there is no random variable 𝝃 (1) in the special case we are considering
here).

The first-stage problem considers aircraft that are 2–3 hours away from the IAFs
(see Figure 1), when each aircraft time to cross the IAF is still uncertain. The first-
stage problem aims thereby at deciding a target aircraft sequence, together with
an IAF affectation and an IAF target time for each aircraft, under the constraints
of IAF time windows and safe separation of aircraft at IAF. Depending on the
modeling assumptions, for each aircraft the IAF may be selected before solving the
optimization model (typically, the closest IAF), or explicitly be a first-stage decision
variable. The second-stage problem deals with the same set of aircraft, now close
to the IAF, when the actual time to cross the IAF is known for each aircraft. The
second-stage problem aims at deciding a target landing time for each aircraft, under
the constraints of landing time windows and safe aircraft separations at the runway.

This leads to the following two-stage stochastic optimization model:

min
𝑥=(𝑧,𝑡 , 𝛿,𝜁 )

𝑓 (1) (𝑥) + E𝝃 [𝑄(𝑥, 𝝃)] (5)

s.t. 𝑇 (1) (𝑧, 𝑡, 𝑠 (1) ) ≤ 0 time windows at IAF (6)

𝑆 (1) (𝑥, 𝑠 (1) ) ≤ 0 separation at IAF (7)
𝑥 ∈ X, (8)

with 𝑄(𝑥, 𝜉) =min
𝑦
𝑓 (2) (𝑦, 𝜉) (9)

s.t. 𝑇 (2) (𝑦, 𝑠 (2) ) ≤ 0 time windows at runway (10)

𝑆 (2) (𝑦, 𝑠 (2) ) ≤ 0 separation at runway (11)
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𝑦 ∈ Y, (12)

where
𝑠 (2) = 𝑔(𝑥, 𝑠 (1) , 𝜉),

𝑔 is the transition function that updates the state vector from stage 1 to stage 2, and
where the first-stage vector of decision variables, 𝑥 = (𝑧, 𝑡, 𝛿, 𝜁) and the second-stage
vector of decision variables, 𝑦, are defined as follows.

Let A be the index set of all aircraft, which is partitioned into the index sets A𝐴

and A𝐺 , respectively the subset of airborne and the subset of on-ground aircraft,
and let I be the index set of IAFs. At the first stage, one decides:

• a target arrival time for each aircraft 𝑎 ∈ A at its assigned IAF, which is denoted
by 𝑧 ∈ R |A | ;

• a target take-off time for each on-ground aircraft, 𝑎 ∈ A𝐺 , represented by the
optimization variable 𝑡 ∈ R |A𝐺 | ;

• a target sequence of all aircraft 𝑎 ∈ A which is coded in the binary optimization
variable 𝛿 ∈ {0, 1} |A |× |A | ;

• the assignment of an IAF 𝑖 ∈ I for each aircraft 𝑎 ∈ A, encoded via the binary
optimization variables 𝜁 ∈ {0, 1} |A |× |I | .

At the second stage, one decides:

• a target landing time for each aircraft 𝑎 ∈ A which is denoted by 𝑦 ∈ R |A | .

Remark that for each IAF, 𝛿 specifies the sequence order, and 𝑧 specifies each aircraft
time at its IAF, while 𝑦 encodes each aircraft landing time. The landing sequence
must be coherent with the IAF sequences, since aircraft coming from a same IAF
cannot overtake each other.

The objective and constraint functions of the general formulation (5)–(12) are
made explicit in the next subsections, following the model introduced in Khassiba
et al. (2022). Note that in Khassiba et al. (2022) some variants of the problem (de-
pending on the considered operational setup) are considered and associated models
are proposed. Here we focus only on the two-stage model that was identified as the
closest to the air traffic operating environment, i.e., the one incorporating decisions
on multiple IAF points and taking into account multiple aircraft flight status, and we
present it in a concise way which is moreover easier to generalize.

2.2.1 Objective Functions

The objective function in (5) is the sum of the first-stage function that captures the
time-deviation costs at take-off for the on-ground aircraft, and the recourse cost,
expressed as the the expectation of the optimal value, 𝑄(𝑥, 𝝃), of the second-stage
objective function. Note that we could weigh the recourse cost by multiplying it by
a parameter 𝜆 ∈ R+, as done in Khassiba et al. (2020), but for simplicity, we keep 𝜆
equal to one in the following.
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Given a scenario 𝜉 (a realization of the random vector 𝝃), actual times of arrival
at the IAFs are assumed to be known, and for each IAF, the corresponding aircraft
sequence computed at the first stage is enforced and only the target landing time, 𝑦𝑎,
is to be decided for each aircraft 𝑎 ∈ A. The complete landing sequence, gathering
the aircraft coming from any IAF, is thus implicitly determined by the landing times.
The second-stage objective function corresponds to the total time-deviation (delay
and advance) cost incurred during the en-route (relative here to the part of the flight
that takes place before the IAF) and the approach (after the IAF) phases. As in
Khassiba et al. (2022), the time-deviation cost depends on the deviation duration,
and the delay cost is determined according to the reference values proposed in the
report authored by Cook and Tanner (2015), while the approach cost is minimized
with respect to the landing times 𝑦𝑎 for each 𝑎 ∈ A. The second-stage objective
function is typically a sum of convex piecewise linear functions, and can be easily
replaced by an equivalent linear objective function (Bradley et al., 1977, Section
9.2).

Alternative formulations, and related interpretations are possible (see for instance
Khassiba et al. (2019, 2020)), but are not considered here.

2.2.2 Time-window Constraints at IAF

Let us consider an aircraft 𝑎 ∈ A. The time-window constraint (6) expresses that
its target IAF time, 𝑧𝑎, must lie within a time window

[
𝐸 𝑖𝑎, 𝐿

𝑖
𝑎

]
, where 𝐸 𝑖𝑎 and 𝐿𝑖𝑎

denote respectively the earliest time and the latest time of 𝑎 at its assigned IAF 𝑖 ∈ I:

𝑧𝑎 ∈
[
𝐸 𝑖𝑎, 𝐿

𝑖
𝑎

]
.

Recall that during the en-route flight phase, with 2–3 hour look-ahead time, it is
possible to expedite or delay aircraft 𝑎 by a given amount of time through its speed
change. These earliest and latest times can be computed by taking into account the
maximal possible time saving, and the maximal possible delay for aircraft 𝑎 during
its en-route phase, denoted as 𝑑𝑅

𝑎
and 𝑑

𝑅

𝑎 respectively, as follows:

𝐸 𝑖𝑎 = 𝑃𝑖𝑎 − 𝑑𝑅𝑎
𝐿𝑖𝑎 = 𝑃𝑖𝑎 + 𝑑

𝑅

𝑎 ,

where 𝑃𝑖𝑎 is the planned IAF time of aircraft 𝑎 at IAF 𝑖.
Remark that 𝑃𝑖𝑎 can be determined, and hence 𝐸 𝑖𝑎 and 𝐿𝑖𝑎 can be further made

explicit, according to the flight status (airborne ou on-ground) of aircraft 𝑎. Let us
first observe that the initially-assigned IAF of aircraft 𝑎 is assumed to be the IAF
𝑖∗ ∈ I that is closest to the reference (initially-planned) route of 𝑎. As a consequence,
deciding to assign aircraft 𝑎 to an IAF 𝑗 that is different from 𝑖∗ ( 𝑗 ∈ I\ {𝑖∗}) incurs
a positive rerouting delay, noted 𝑟 𝑖∗ 𝑗 > 0 (with 𝑟 𝑖∗𝑖∗ = 0). Recalling that variables 𝜁
are used to decide the assignment of each aircraft 𝑎 to an IAF 𝑖,

∑
𝑗∈I 𝑟

𝑖∗ 𝑗 𝜁
𝑗
𝑎 denotes

the actual rerouting delay for aircraft 𝑎.
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For an airborne aircraft, 𝑎 ∈ A𝐴, and an IAF 𝑖 ∈ I, the planned IAF time is
then straightforwardly computed from input data (the planned time to the initial IAF,
denoted 𝑃𝑖∗𝑎 ), adding 𝑟 𝑖∗ 𝑗 in the case where the aircraft is rerouted to an IAF different
from its initial one. The time-window constraint (6) at the IAF for an airborne aircraft
then reads as

−𝑑𝑅
𝑎
≤ 𝑧𝑎 − 𝑃𝑖

∗
𝑎 −

∑︁
𝑗∈I

𝑟 𝑖
∗ 𝑗 𝜁

𝑗
𝑎 ≤ 𝑑

𝑅

𝑎 .

For an on-ground aircraft, 𝑎 ∈ A𝐺 (still at its departure gate), the planned IAF
time depends on further input data (the flight time from the origin airport of 𝑎 to its
initial IAF 𝑖∗ ∈ I, denoted �̂�𝑂𝑎 ) as well as on the decision variable 𝑡𝑎 representing
the target take-off time. This variable 𝑡𝑎 is in turn bounded by taking into account
the planned take-off time, 𝑃TOT

𝑎 , and the maximal possible delay 𝑑
𝐺
> 0 to take off:

0 ≤ 𝑡𝑎 ≤ 𝑃TOT
𝑎 +𝑑𝐺 . The time-window constraint at the IAF for an on-ground aircraft

then reads:
−𝑑𝑅

𝑎
≤ 𝑧𝑎 − 𝑡𝑎 − �̂�𝑂𝑎 −

∑︁
𝑗∈I

𝑟 𝑖
∗ 𝑗 𝜁

𝑗
𝑎 ≤ 𝑑

𝑅

𝑎 .

The way 𝐸 𝑖𝑎 and 𝐿𝑖𝑎 are computed for aircraft with different flight status is detailed
in Khassiba et al. (2022).

2.2.3 Separation Constraints at IAF

In the first-stage problem, a target sequence of aircraft at each IAF and target IAF
times of each aircraft are determined in such a way that, for safety reasons, successive
aircraft crossing the same IAF are pairwise separated by a minimal time separation,
𝑆. The assignment of each aircraft 𝑎 ∈ A to an IAF 𝑖 ∈ I is decided through the
binary decision variable 𝜁 𝑖𝑎 (whose value is equal to 1 if aircraft 𝑎 is assigned to
IAF 𝑖, 0 otherwise), while binary variables 𝛿 decide the landing sequence of all
aircraft during the second stage. This in turn determines the sequence of arrivals
at each IAF since the corresponding relative order is kept unchanged for landing at
the runway. More precisely, a binary decision variable 𝛿𝑎𝑏 for each ordered pair of
aircraft (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏 is defined as follows:

𝛿𝑎𝑏 =

{
1 if aircraft 𝑎 lands before aircraft 𝑏,
0 otherwise.

Remark that these variables are defined, like in Khassiba et al. (2022), as in scheduling
theory, where direct precedence is not required, as opposed to what is done in
Khassiba et al. (2020), where the sequencing variables are defined so as to indicate
direct precedence between a pair of aircraft (like in the classical model for the
traveling salesman problem).

In order to formulate the separation constraints at each IAF, we further introduce
the following auxiliary binary decision variables for each pair of aircraft (𝑎, 𝑏) ∈
A × A, 𝑎 ≠ 𝑏:
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𝜙𝑎𝑏 =

{
1 if aircraft 𝑎 and 𝑏 are assigned to a same IAF,
0 otherwise,

together with defining constraints:∑︁
𝑖∈I

𝜁 𝑖𝑎 = 1 𝑎 ∈ A

𝜙𝑎𝑏 = 𝜙𝑏𝑎 (𝑎, 𝑏) ∈ A × A, 𝑎 < 𝑏

𝜙𝑎𝑏 ≥ 𝜁 𝑖𝑎 + 𝜁 𝑖𝑏 − 1 𝑖 ∈ I , (𝑎, 𝑏) ∈ A × A, 𝑎 < 𝑏

𝛿𝑎𝑏 + 𝛿𝑏𝑎 = 1 (𝑎, 𝑏) ∈ A × A, 𝑎 < 𝑏.

Finally, the first-stage constraints expressing pairwise aircraft separation at each IAF
takes the form:

𝑧𝑏 ≥ 𝑧𝑎 + 𝑆 − 𝑀𝑎𝑏 (2 − 𝜙𝑎𝑏 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏,

where 𝑀𝑎𝑏 is a sufficiently large constant defined for each pair (𝑎, 𝑏) ∈ A ×A such
that 𝑎 ≠ 𝑏.

2.2.4 Time-window Constraints at Runway

Let us consider an aircraft 𝑎 ∈ A. The target landing time, 𝑦𝑎, must lie within a time
window:

𝑦𝑎 ∈ [𝐸𝑎, 𝐿𝑎] ,

where 𝐸𝑎 and 𝐿𝑎 are its earliest and latest landing times, computed as the actual
time of 𝑎 at its assigned IAF 𝑖 when uncertainty is revealed: 𝑧𝑎 + 𝜉, to which we add
the minimal and maximal flight times from the IAF 𝑖 to the runway threshold. These
minimal and maximal flight times are respectively defined as

𝑉𝑎
𝑖 = 𝑉𝑎

𝑖 + 𝑑𝑇
𝑎
, 𝑉𝑎

𝑖
= 𝑉𝑎

𝑖 + 𝑑𝑇𝑎 ,

where, 𝑉𝑎
𝑖 is the unconstrained flight time of the aircraft 𝑎 from 𝑖 to the runway

threshold, 𝑑
𝑇

𝑎 is the maximal possible delay during the approach phase, and 𝑑𝑇
𝑎

is the
maximal possible time saving during the approach phase. Recall that the assigned
IAF 𝑖 of each aircraft 𝑎 is decided through binary variables 𝜁 𝑖𝑎, for all 𝑖. Hence,
minimal and maximal flight times from the IAF to the runway threshold are to be
selected according to the value of such variables 𝜁 . Finally, time windows constraints
at runway read: ∑︁

𝑖∈I
𝑉𝑎
𝑖𝜁 𝑖𝑎 ≤ 𝑦𝑎 − (𝑧𝑎 + 𝜉𝑎) ≤

∑︁
𝑖∈I

𝑉𝑎
𝑖
𝜁 𝑖𝑎 .
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2.2.5 Separation Constraints at Runway

In the second-stage problem, when uncertainty on target times at the IAFs is re-
vealed, for each aircraft, we decide on a target time, 𝑦𝑎, at the runway threshold. A
minimal time separation, 𝑆𝑎𝑏, must then be satisfied for each pair of aircraft landing
successively:

𝑦𝑏 ≥ 𝑦𝑎 + 𝑆𝑎𝑏 − 𝑀𝐿
𝑎𝑏 (1 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏,

where 𝑀𝐿
𝑎𝑏

is a sufficiently large constant defined for each (𝑎, 𝑏) ∈ A ×A (𝑎 ≠ 𝑏),
and where 𝑆𝑎𝑏 is determined from minimal separation distances (Gerz et al., 2002;
Breitsamter, 2011). These separation distances are defined according to the wake-
vortex turbulence category of aircraft 𝑎 and that of aircraft 𝑏 as introduced by the
International Civil Aviation Organization: heavy (H), medium (M), and light (L) (An-
tolovic and Franjkovic, 2020). They are converted into minimal time separations,
and reported in Table 1.

Table 1 Final-approach separations (in seconds) at runway according to wake-vortex turbulence
categories of the leader aircraft, 𝑙, and the follower aircraft, 𝑓

𝐻 𝑓 𝑀 𝑓 𝐿 𝑓

𝐻𝑙 96 157 207
𝑀𝑙 60 69 123
𝐿𝑙 60 69 82

2.3 The Two-stage Stochastic Optimization Model

The two-stage stochastic optimization model of the extended aircraft arrival manage-
ment under uncertainty presented above (and introduced in Khassiba et al. (2022))
can be summarized as follows:

min
𝑧,𝑡 , 𝛿,
𝜁 ,𝜙

∑︁
𝑎∈A𝐺

𝑓 G
𝑎

(
𝑡𝑎 − 𝑃TOT

𝑎

)
+ E𝝃 [𝑄(𝑧, 𝑡, 𝜁 , 𝛿, 𝝃)] (13)

s.t.
∑︁
𝑖∈I

𝜁 𝑖𝑎 = 1𝑎 ∈ A (14)

𝜙𝑎𝑏 = 𝜙𝑏𝑎 (𝑎, 𝑏) ∈ A × A, 𝑎 < 𝑏 (15)
𝜙𝑎𝑏 ≥ 𝜁 𝑖𝑎 + 𝜁 𝑖𝑏 − 1𝑖 ∈ I, (𝑎, 𝑏) ∈ A × A, 𝑎 < 𝑏 (16)
𝛿𝑎𝑏 + 𝛿𝑏𝑎 = 1(𝑎, 𝑏) ∈ A × A, 𝑎 < 𝑏 (17)
𝑧𝑏 ≥ 𝑧𝑎 + 𝑆 − 𝑀𝑎𝑏 (2 − 𝜙𝑎𝑏 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏 (18)
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− 𝑑𝑅
𝑎
≤ 𝑧𝑎 − 𝑡𝑎 − �̂�𝑂𝑎 −

∑︁
𝑗∈I

𝑟 𝑖
∗ 𝑗 𝜁

𝑗
𝑎 ≤ 𝑑

𝑅

𝑎 𝑖
∗ ∈ I, 𝑎 ∈ A𝑖∗

𝐺 (19)

− 𝑑𝑅
𝑎
≤ 𝑧𝑎 − 𝑃𝑖

∗
𝑎 −

∑︁
𝑗∈I

𝑟 𝑖
∗ 𝑗 𝜁

𝑗
𝑎 ≤ 𝑑

𝑅

𝑎 𝑖∗ ∈ I, 𝑎 ∈ A𝑖∗

𝐴 (20)

0 ≤ 𝑡𝑎 − 𝑃TOT
𝑎 ≤ 𝑑

𝐺

𝑎 𝑎 ∈ A𝐺 (21)
𝜁 𝑖𝑎 ∈ {0, 1} 𝑖 ∈ I, 𝑎 ∈ A (22)
𝜙𝑎𝑏 ∈ {0, 1} (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏 (23)
𝛿𝑎𝑏 ∈ {0, 1} (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏, (24)

where

𝑄(𝑧, 𝑡,𝜁 , 𝛿, 𝜉) =

min
𝑦

∑︁
𝑎∈A𝐺

𝑓 R
𝑎

(
𝑧𝑎 + 𝜉𝑎 −

(
𝑡𝑎 + �̂�𝑂𝑎

))
+∑︁

𝑎∈A𝐴

𝑓 R
𝑎

(
𝑧𝑎 + 𝜉𝑎 − 𝑃𝑖

∗
𝑎

)
+

∑︁
𝑎∈A

𝑓 T
𝑎

(
𝑦𝑎 −

(
𝑧𝑎 + 𝜉𝑎 +

∑︁
𝑖∈I

�̂� 𝑖𝑎𝜁
𝑖
𝑎

))
(25)

s.t. 𝑦𝑏 ≥ 𝑦𝑎 + 𝑆𝑎𝑏 − 𝑀𝐿
𝑎𝑏 (1 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏 (26)∑︁

𝑖∈I
𝑉𝑎
𝑖𝜁 𝑖𝑎 ≤ 𝑦𝑎 − (𝑧𝑎 + 𝜉𝑎) ≤

∑︁
𝑖∈I

𝑉𝑎
𝑖
𝜁 𝑖𝑎 𝑎 ∈ A, (27)

and where 𝑀𝑎𝑏 and 𝑀𝐿
𝑎𝑏

are sufficiently large (big-M) constants, defined for each
(𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏, and whose value can be estimated from input data (see
Khassiba et al. (2022)).

The first-stage objective function (13), to be minimized, is the sum of the total
at-gate time deviation and the expectation of the second-stage objective function (see
Subsection 2.2.1). Constraints (14)–(17) are defining constraints on variables 𝜁 , 𝜙 and
𝛿 (see Subsection 2.2.3). Constraints (18) ensure separation (in terms of target IAF
times) for any pair of successive aircraft assigned to a same IAF (Subsection 2.2.3).
Constraints (19) and (20) are time-window constraints for on-ground and airborne
aircraft, respectively (see Subsection 2.2.2). Constraints (21) ensure that the take-off
time of an on-ground aircraft is chosen in the appropriate time window. Constraints
(22), (23), and (24) simply stipulate that the decision variables 𝜁 𝑖𝑎, 𝜙𝑎𝑏 and 𝛿𝑎𝑏 are
binary.

The second-stage objective function (25), to be minimized, is the total time-
deviation (delay and advance) cost during the en-route and the landing phases.
Constraints (26) are separation constraints at runway between any pair of landing
aircraft (see Subsection 2.2.5). Constraints (27) ensure, for a given aircraft, that its
landing time between its assigned IAF and the runway, lies within an appropriate
time window (see Subsection 2.2.4).
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Remark.
The first-stage problem can be enriched by chance constraints expressing a pro-

tection level against any separation loss over each IAF.
Letting 0 ≤ 𝛼 ≤ 1 be a given confidence-level parameter, and incorporating the

random time deviations at the IAFs into (18), we can introduce the chance constraints

P𝝃
(
𝑧𝑏 + 𝜉𝑏 ≥ 𝑧𝑎 + 𝜉𝑎 + 𝑆 − 𝑀𝑎𝑏 (2 − 𝜙𝑎𝑏 − 𝛿𝑎𝑏)

)
≥ 𝛼 (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏.

(28)
Chance constraints guarantee that any pair of aircraft are separated at the IAF after
uncertainty is revealed (actual IAF time deviations with respect to target IAF times)
with a probability𝛼, at least. Thus, 1−𝛼 represents the risk level at which a separation
constraint is violated. Equivalently, we can rewrite (28) as the linear constraints

𝑧𝑏 ≥ 𝑧𝑎 + 𝑆 + 𝐹−1
𝝍𝑎𝑏

(𝛼) − 𝑀𝑎𝑏 (2 − 𝜙𝑎𝑏 − 𝛿𝑎𝑏) (𝑎, 𝑏) ∈ A × A, 𝑎 ≠ 𝑏. (29)

where 𝐹𝝍𝑎𝑏 (𝛼) is the distribution function of 𝝍𝑎𝑏 = 𝝃𝑎 − 𝝃𝑏. It is noteworthy that
given an aircraft pair (𝑎, 𝑏), 𝑎 ≠ 𝑏, (29) dominates the original non-buffered IAF
separation constraint (18) when 𝐹−1

𝝍𝑎𝑏
(𝛼) > 0.

We numerically explore the effect of such chance constraints in Section 4.4. In
our setting, similar to Khassiba et al. (2020), we assume that the random deviations
𝝃𝑎’s, affecting the aircraft during the en-route phase, are independent and identically
distributed, whatever the aircraft status in the first phase (airborne or on-ground).
Quantifying the precise distribution of uncertainty is a tricky task, especially since
the random noise is not directly observable (Tielrooij et al., 2015). For the sake of
simplicity, we assume that for any 𝑎 in A, 𝝃𝑎 is normally distributed with variance
𝜎2, 𝝍𝑎𝑏 is normally distributed with zero mean and variance 2𝜎2. In this case,
𝐹

(−1)
𝝍𝑎𝑏

(𝛼) is positive if and only if 𝛼 > 0.5. In a more realistic setting, that we
leave as a future avenue of investigation, it is possible to consider that an on-ground
aircraft, 𝑎 ∈ A𝐺 , is affected by two time deviations: its actual take-off time deviates
randomly from its target take-off time, 𝑡𝑎, and its actual IAF time deviates as well
from its target IAF time, 𝑧𝑎.

3 Solution Method

Objective function (5) typically has no closed-form expression due to the expecta-
tion operator, hence the problem (5)–(12), referred to as the true problem, cannot
be solved directly. A classical remedy is to sample a finite set, S, of scenarios
over the random vector 𝝃 to produce the sample average approximation (SAA) prob-
lem (Shapiro, 2021). One practical difficulty of the SAA method is the determination
of an appropriate size of the scenario set. Indeed, large scenario sets capture bet-
ter uncertainty. However, computing times increase exponentially with the number
of scenarios. An appropriate number of scenarios can be defined as the smallest
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scenario-set size that ensures an acceptable representation level of the uncertainty.
After solving a two-stage stochastic problem, it is key to validate the benefit from
taking into account uncertainty, against the situation where the decision-maker com-
putes his decision assuming mean values of the uncertain parameters. One classical
metric to measure the benefit from two-stage stochastic programming over a deter-
ministic approach is the value of the stochastic solution. The SAA method applied
to a two-stage stochastic optimization problem is presented in Subsection 3.1. In
Subsection 3.2, we develop on the metrics used in our study to quantify the appro-
priateness of a given scenario-set size. Subsection 3.3 presents a formal definition
of the value of the stochastic solution adapted to our problem, where SAA is applied
as a solution method.

3.1 Sample Average Approximation

The SAA problem can be formulated as follows:

min
𝑥

𝑓 (𝑥,S) = 𝑓 (1) (𝑥) + 1
𝑛S

∑︁
𝜉 ∈S

𝑄(𝑥, 𝜉),

s.t. (6)–(8),
where 𝑄(𝑥, 𝜉) is defined by (9)–(12),

(SAA)

and where 𝑛S = |S| is the number of scenarios. In our case, the SAA problem turns
out to be a mixed-integer linear program, which can be solved by state-of-the-art
solvers.

Let �̂�(S) be the optimal value of the problem (SAA) when considering the set,
S, of scenarios. The consistency of the SAA problems have been studied by several
authors (Shapiro and Homem-de Mello, 2000; Shapiro, 2021; Bastin et al., 2006).
In particular, under mild conditions, �̂�(S) is an asymptotically unbiased estimator
of 𝑣∗, the optimal value of the true problem (5), as �̂�(S) converges towards 𝑣∗, with
probability one as 𝑛S tends towards infinity. In other words, with a probability rising
to one, the SAA optimal value can be made arbitrarily close to the true optimal value
for a sufficiently large number of scenarios. However, for any given number, 𝑛S ,
of scenarios, one has E [�̂�(S)] ≤ 𝑣∗, i.e., the optimal value of the SAA problem is
negatively biased, and, in practice, the required computing time grows rapidly with
𝑛S .

3.2 Appropriate Number of Scenarios

The SAA method requires to decide whether a given number of scenarios, 𝑛S , is large
enough to approximate correctly the original problem, i.e., to ensure that the solution
obtained is a satisfying approximation of an optimal solution of the original problem.



16 Bastin, Cafieri, Khassiba, & Mongeau

The optimal value of the SAA problem, �̂�(S), is not necessarily a good-quality
indicator with respect to the original problem, due to the SAA bias and variance
of the SAA optimal value. Hence, a post-optimization validation step is needed to
evaluate the quality of any SAA solution. In our study, we rely on the so-called
out-of-sample validation, that consists in re-evaluating a first-stage SAA solution,
𝑥(S), with a validation set S𝑉 , containing many more scenarios than the training set
S used to find the solution. The validation set is believed to represent the complete
set of all possible scenarios, and can be used as a reference scenario set to compare
the quality of different feasible solutions. The evaluation of a feasible solution 𝑥 on
the validation set S𝑉 , denoted 𝑓 (𝑥,S𝑉 ), is called the validation score. When the
gap between the SAA optimal value, �̂�(S), and the validation score 𝑓 (𝑥(S),S𝑉 ) is
small (according to the analyst), the SAA problem can be considered as stable and
the training set used large enough. As SAA solutions depend on the random scenario
set S, we build 𝑛R replicated SAA problems with 𝑛S scenarios each, independently
generated, to illustrate better the average behavior of SAA problems with a given
number of scenarios, 𝑛S . Let �̄� (𝑛S , 𝑛R) be the average optimal value obtained over
𝑛R such replications:

�̄� (𝑛S , 𝑛R) =
1
𝑛R

𝑛R∑︁
𝑟=1

�̂� (S𝑟 ) , (30)

where S𝑟 , 𝑟 = 1, . . . , 𝑛R , are scenario sets of size 𝑛S , independently generated, and
independent of the validation set S𝑉 . The corresponding average validation score
over 𝑛R replications, denoted 𝑓 (𝑛S , 𝑛R ,S𝑉 ), is

𝑓 (𝑛S , 𝑛R ,S𝑉 ) =
1
𝑛R

𝑛R∑︁
𝑟=1

𝑓 (𝑥∗ (S𝑟 ),S𝑉 ), (31)

where 𝑥∗ (S𝑟 ) is the computed optimal solution of the problem (SAA), with the
scenario set S𝑟 .

3.3 Value of the Stochastic Solution

Consider the two-stage stochastic problem (5)–(12). The incorporation of uncer-
tainty, while making the model more realistic, comes with additional modeling
questions and computational complexity, as we must decide on the random distribu-
tions to capture the uncertainty, and deal with more numerically intensive computa-
tions. It is therefore interesting to evaluate the relevance of the stochastic approach
by comparing it to a simpler deterministic program. We first define the expected
value problem (EVP) as the deterministic problem in which we replace the random
vector, 𝝃, by its expectation, E[𝝃]:
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min
𝑥,𝑦

𝑓 (1) (𝑥) + 𝑓 (2) (𝑦,E[𝝃]) (32)

s.t. 𝑇 (1) (𝑦, 𝑡, 𝑠 (1) ) ≤ 0 (33)

𝑆 (1) (𝑥, 𝑠 (1) ) ≤ 0 (34)

𝑇 (2) (𝑦, 𝑠 (2) ) ≤ 0 (35)

𝑆 (2) (𝑦, 𝑠 (2) ) ≤ 0 (36)
𝑥 ∈ X, 𝑦 ∈ Y, (37)

where
𝑠 (2) = 𝑔(𝑥, 𝑠 (1) ,E[𝝃]).

Denote by 𝑥∗
𝐸𝑉𝑃

the first-stage optimal solution found when solving (32)–(37), and
assume that the two-stage stochastic program (5)–(12) has a relatively complete
recourse. The value of the stochastic solution (VSS) (Birge and Louveaux, 2011)
captures the improvement achieved when taking uncertainty into account:

VSS = 𝑓 (1) (𝑥∗) + E [𝑄(𝑥∗, 𝝃))] − 𝑓 (1)
(
𝑥∗𝐸𝑉𝑃

)
− E

[
𝑄

(
𝑥∗𝐸𝑉𝑃 , 𝝃

) ]
. (38)

We again rely on the SAA approach to approximate the true VSS (38), defining the
SAA VSS with respect to the set of scenarios S and the validation set S𝑉 as

V̂SS(S,S𝑉 ) = 𝑓 (𝑥∗ (S),S𝑉 ) − 𝑓
(
𝑥∗𝐸𝑉𝑃 ,S𝑉

)
. (39)

In other terms, the true solution 𝑥∗ is replaced by the SAA solution 𝑥∗ (S), and the
approximate VSS is computed as the difference of the validation scores computed at
𝑥∗ (S) and 𝑥∗

𝐸𝑉𝑃
. We can also compute the relative approximate VSS as

V̂SS% (S,S𝑉 ) = 𝑉𝑆𝑆(S,S𝑉 )/ 𝑓
(
𝑥∗𝐸𝑉𝑃 ,S𝑉

)
. (40)

4 Numerical Study

We now illustrate our approach on various numerical experiments. Subsection 4.1
presents the realistic instances of the two-stage stochastic optimization problem we
are addressing, together with the considered test data to conduct our numerical
study. The aim of the numerical study is threefold. First, in Subsection 4.2, we seek
the appropriate number of scenarios in order to apply the SAA method. Second,
in Subsection 4.3, we compute the value of the stochastic solution for different
uncertainty amplitudes in order to assess the benefit from taking account of the
uncertainty via two-stage stochastic programming. Third, we study in Subsection 4.4
the effect of chance constraints on the value of the stochastic solution, and on the
solution quality. All numerical tests are conducted on a Windows platform with an
Intel i5-10310U and 16 GB RAM using the solver CPLEX 22.1.0.0.
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Fig. 2 Simplified scheme of the four IAFs surrounding the four runways of CDG airport

4.1 Instances and Test data

We focus on Paris Charles-de-Gaulle airport (CDG) and its northern landing runway
(named 27R), depicted in Figure 4, along with its surrounding IAFs. We use the
five instances, of 𝑛 = 10 aircraft each, described in Khassiba et al. (2022). They
correspond to aircraft planning to land on the northern runway 27R, and to cross the
two IAFs, MOPAR or LORNI, between 5:59 AM and 6:59 AM, on May 5, 2015.
Instance characteristics are summarized in Table 2. We assume that time deviations
of the IAF actual times, for all aircraft, are independent and normally distributed,
with zero mean of variance 𝜎2. Additional test data are summarized in Table 3.
Delay and advance unit costs, in euros per second, are the same as in Khassiba et al.
(2022, Appendix C).

Table 2 Instance characteristics

Instance id 559 618 607 623 619 634 624 640 634 659

|A | 10 10 10 10 10
Time span 10 min 30 s 8 min 42 s 8 min 30 s 8 min 4 s 12 min 29 s

|A𝐴 | 6 4 3 5 7
|A𝐺 | 4 6 7 5 3

# Medium (M) 4 6 7 7 7
# Heavy (H) 6 4 3 3 3

# assigned to IAF 1 6 5 5 4 3
# ass. to IAF 2 4 5 5 6 7
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Table 3 Test data

Parameter Definition Test values

𝑑
𝐺

Maximal delay at-gate, seconds 900
𝑑𝑅
𝑎

Maximal advance en-route, seconds 60
𝑑
𝑅

𝑎 Maximal delay en-route, seconds 300
𝑑𝑇
𝑎

Maximal advance approach, seconds 0
𝑑
𝑇

𝑎 Maximal delay approach, seconds 1200
𝑟 Rerouting time to change IAF, seconds 300
𝑆 Minimal IAF time separation, seconds 72
�̂�1
𝑎 Unconstrained flight time from MOPAR to runway, seconds 780
�̂�2
𝑎 Unconstrained flight time from LORNI to runway, seconds 660
𝜎 Standard deviation of the normal random deviation 𝝃 , seconds 60, 120
𝑛S Number of scenarios in the SAA problem 10, 50, 100, 200
𝑛S𝑉 Number of scenarios in the validation set 1000
𝑛R Number of replications 20

4.2 Appropriate Number of Scenarios

We consider the problem (SAA), and explore an increasing number of scenarios
𝑛S = 10, 50, 100, 200, to determine the number of scenarios required to accurately
enough approximate the true problem. For each value of 𝑛S , we solve 𝑛R = 20
independently generated replications of the SAA problem. In our experiments, the
scenario sets are built incrementally, i.e., for a given replication 𝑟 = 1, 2, . . . , 𝑛R
and two scenario sets S′

𝑟 and S𝑟 , such that 𝑛S′
𝑟
< 𝑛S𝑟 , we have S′

𝑟 ⊂ S𝑟 . The
optimal solution of each replication is then evaluated on the same validation set
S𝑉 , with 𝑛S𝑉 = 1, 000. Figure 3 focuses on instance 559 618 and plots the average
optimal value (30) and the average validation score (31) for an increasing number of
scenarios, using boxplots to exhibit the variability of the optimal value �̂�(S) and the
validation score 𝑓 (𝑥(S),S𝑉 ) over the replications.

As 𝑛S grows, we observe that the average optimal value increases, whereas the
average validation score decreases, while their variances decrease. This behavior
can be expected as a SAA problem with a scenario set S′ ⊂ S can be viewed as a
relaxation of the SAA problem with a scenario set S with respect to the first-stage
decision 𝑥. However, due to the variability of the second-stage cost, the SAA optimal
value is not constrained to be monotonically increasing with respect to the number of
scenarios, as reflected by the whiskers of the boxplots, while this variability decreases
as 𝑛S increases. The evolution of the validation score, both in terms of average and
variance, illustrates the convergence of the SAA optimal value towards the true
optimal value when 𝑛S rises, in line with consistency analysis results (Shapiro,
2021). More specifically, we observe that, as the number of scenarios increases, the
variances of the optimal value and validation score decrease, as well as the bias
between the SAA and true optimal values, produced by the optimization over a
finite sample size. For 200 scenarios, the variance of the validation score can be
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Fig. 3 Objective function’s optimal value and validation score as functions of the number of
scenarios, for the instance 559 618

neglected, and the its average is close to the average SAA optimal value. Due to the
numerical costs experienced with 200 scenarios (around 9 minutes on average to
find the optimal solution of one replication), we decided not to increase the number
of scenarios furthermore, and use 𝑛S = 100 as the number of scenarios for our
subsequent tests.

4.3 Value of the Stochastic Solutions

Fixing the number of scenarios to 𝑛S = 100, we solve 𝑛R = 20 replications of the
problem (SAA), for each of the five studied instances, and report the main results
in Table 4. For each instance, we test two values of the standard error 𝜎 of the
normally distributed random deviations, 60 and 120 seconds, corresponding to low
and high uncertainty levels. We report in the column “CPU time” the computing
time, in seconds, to find an optimal solution, averaged over the 𝑛R replications, and
the average validation score (31) in column “Validation score”. The SAA VSS (39)
and its relative counterpart (40), averaged over the 𝑛R replications, are reported in
columns “V̂SS” and “V̂SS (%)”, respectively. The ratio of aircraft that changed their
IAF, averaged over all replications, is reported in column “Avg IAF changes”. The
number of different sequences at IAF 1, IAF 2, and runway, in the optimal solutions
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of the 𝑛R replications, are listed in columns “# different sequences IAF 1”, “IAF 2”,
and “RWY”, respectively.

Table 4 Results summary of the stochastic solutions of all instances

Instance 𝜎 CPU Val. score V̂SS Avg IAF # different sequences
(s) time (s) (euros) (euros) (%) changes IAF 1 IAF 2 RWY

10 559 618 60 138.77 1,552.38 -216.79 -12.25% 19% 2 2 2
120 212.09 2,782.65 -478.32 -14.67% 30% 1 1 1

10 607 623 60 78.78 1,070.92 -295.27 -21.61% 1% 2 2 2
120 106.62 1,997.39 -448.40 -18.33% 10% 4 4 5

10 619 634 60 178.53 1,062.28 -22.04 -2.03% 0% 2 2 3
120 698.71 1,899.01 -59.70 -3.05% 0% 2 2 6

10 624 640 60 575.54 944.40 -136.14 -12.60% 1% 2 2 2
120 660.24 1,673.17 -206.55 -10.99% 16% 4 3 7

10 634 659 60 37.63 670.34 -108.51 -13.93% 5% 1 2 2
120 177.61 1,445.17 -266.61 -15.58% 10% 1 2 2

The increase in computational time alongside the uncertainty level exhibits that the
problem then becomes more expensive to solve, even though the number of scenarios
is fixed. Moreover, greater uncertainty leads to higher deviation costs, captured by the
validation scores. Negative values of the stochastic solution, ranging from -2.03% to
-21.61%, illustrate the benefit from taking into account uncertainty through two-stage
stochastic programming. Moreover, the increase of the VSS in absolute value with
the level of uncertainty suggests that the benefit of two-stage stochastic programming
is greater for high uncertainty. Modifying the IAF assignment, by rerouting flights
during the en-route phase, appears to be an efficient measure to hedge against
uncertainty, as the average number of IAF changes increases as uncertainty grows,
while deterministic expected value solutions do not propose any IAF change. Note
that for 𝜎 equal to 60 seconds, most of the instances present two different sequences
at each IAF and on the runway, across the 𝑛R replications. This comforts the selection
of 𝑛S = 100 as an appropriate number of scenarios. On the other hand, the higher
uncertainty level, generated by fixing 𝜎 to 120 seconds, leads to a larger number of
different sequences, in most cases, and more scenarios could be required to stabilize
the solution.

4.4 Effect of the Chance Constraints

To study the effect of chance constraints, we run additional experiments with the same
setup as in the previous Subsection 4.3, and the addition of the chance constrains
(29), with 𝛼 = 0.9. Table 5 provides the values of the minimal IAF time separation,
in the original case (without chance constraints) and when chance constraints are
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included, with 𝛼 = 0.9, and the uncertainty level, 𝜎, equal to 60 or 120 seconds. A
summary of the results is provided in Table 6.

Table 5 Minimal IAF time separations (s) for the studied values of 𝛼 and 𝜎

𝑆 𝑆 + 𝐹−1
𝝍𝑎𝑏

(𝛼)
𝛼 = 0.9, 𝜎 = 60 s 𝛼 = 0.9, 𝜎 = 120 s

72.0 180.7 289.5

Table 6 Results summary of the stochastic solutions of all instances with chance constraints
(𝛼 = 0.9)

Instance 𝜎 CPU Val. score V̂SS Avg # different sequences
(s) time (s) (euros) (euros) (%) IAF changes IAF 1 IAF 2 RWY

10 559 618 60 225.94 2,361.37 -94.96 -3.87% 26% 2 2 2
120 113.83 4,855.63 -35.94 -0.73% 30% 2 2 4

10 607 623 60 324.40 1,769.40 -246.86 -12.24% 12% 3 4 5
120 398.99 3,108.35 -118.49 -3.67% 20% 3 2 4

10 619 634 60 652.26 1,146.99 -76.51 -6.25% 0% 1 1 3
120 1256.40 2,480.56 -36.36 -1.44% 20% 4 2 4

10 624 640 60 649.15 982.73 -37.51 -3.68% 11% 2 3 4
120 646.20 1,982.12 -39.69 -1.96% 12% 2 2 2

10 634 659 60 164.51 929.57 -47.60 -4.87% 10% 3 1 3
120 433.82 2,427.54 -15.61 -0.64% 23% 3 2 4

A comparison with Table 4 reveals that the inclusion of change constraints usually
leads to higher computing times, suggesting that the problem with a buffered IAF
separation is more difficult to solve. A possible explanation is that buffered IAF
separations of 3 up to more than 4.5 minutes, as computed in Table 5, make difficult
to find feasible sequences since in our experimental settings, described in Table 4.1,
the maximal possible advance and delay at the IAF for a given aircraft are 1 minute
and 5 minutes, respectively. This also contributes to produce more IAF changes, that
offer additional en-route delays (recall that one IAF change represents 5 minutes of
en-route delay), and larger validation scores, i.e., larger time deviation costs. This
is consistent with the fact that buffered separation corresponds to a conservative
approach, hedging against uncertainty. However, for the case of instance 10 559 618
with 𝜎 equal to 120 seconds, the average computing time is the smallest over all
cases involving this instance, with and without chance constraints, which might
be explained by a set of feasible solutions being very small due to the large IAF
separation requirement. The associated validation score is also the highest over all
instances, highlighting that the solutions produced are averse to the risk of facing
too small separations.
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The chance-constrained variant of the problem presents smaller VSS in absolute
value than the original formulation in the problem (SAA). This suggests that, when
buffered IAF separations are used, there is a smaller room for the two-stage pro-
gramming to improve on the deterministic EVP solutions, compared to the case with
a basic IAF separation. This conclusion is consistent with the results obtained by
Khassiba et al. (2020).

In summary, using buffered IAF separation seems inefficient to hedge against un-
certainty for the problem of stochastic extended aircraft arrival scheduling with total
deviation cost minimization, as validation scores are higher for both the stochastic
and the deterministic EVP solutions.

5 Conclusions and Perspectives

This chapter introduced a high-level multi-stage stochastic optimization formulation
to manage aircraft arrivals in the context of extended arrival manager systems, for
which uncertainty is significant when predicting expected times to start the approach
phase and landing times. It first considered a general setup involving several air
network points of interest, and then presented a review of recent developments for
the two-stage special case, which corresponds to recent studies on the aircraft arrival
management problem taking account of practical operational constraints. Numerical
experiments conducted on realistic instances based on Paris-Charles de Gaulle arrival
data exhibited that the stochastic solutions are more robust than their deterministic
counterparts, and can be obtained within a reasonable computing time budget using
a limited number of randomly generated scenarios. Introducing chance constraints at
the first stage to hedge against uncertainty led to an increase in required computing
time and tended to yield overly conservative solutions. As a result, for this particular
problem, this approach should not be prioritized.

Several avenues for future research were evoked, including the possibility to solve
more realistic problems, relying for instance on a multi-stage formulation, and a
better representation of the uncertainty affecting on-ground aircraft. More work on
scenario generation and selection could be pursued to improve the solution quality
while using a limited number of scenarios, allowing computing time reduction.
Quantifying uncertainty in terms of random variables remains a challenging task
due to the intricate interplay of random time deviations and air control orders in real
delay data. To address this, adopting a distributionally robust optimization framework
could provide a more accurate representation of the available information and lead
to better results. Furthermore, extending the solution to a rolling horizon framework
would be beneficial (Abba Rapaya et al., 2021; Furini et al., 2015) This advancement
would facilitate the consideration of larger aircraft sequences and better reflect the
dynamic nature of air traffic.
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Samà M, D’Ariano A, D’Ariano P, Pacciarelli D (2014) Optimal aircraft scheduling and routing
at a terminal control area during disturbances. Transportation Research Part C 47:61–85, DOI
10.1016/j.trc.2014.08.005

Scala P, Mota MM, Wu CL, Delahaye D (2021) An optimization–simulation closed-loop feed-
back framework for modeling the airport capacity management problem under uncertainty.
Transportation Research Part C 124:102937, DOI 10.1016/j.trc.2020.102937

Shapiro A (2021) Statistical inference. In: Shapiro A, Dentcheva D, Ruszczyński A (eds) Lectures
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Appendix: Summary of notations used

Sets
Multi-stage formulation

A (𝑘 ) index set of aircraft at stage 𝑘
A (𝑘 )
𝐴

index set of airborne aircraft at stage 𝑘
A (𝑘 )
𝐺

index set of on-ground aircraft at stage 𝑘
I (𝑘 ) index set of possible aircraft routes at stage 𝑘
X (𝑘 ) feasible set for the decision vector 𝑥 (𝑘 )

Two-stage formulation
A index set of aircraft
A𝐺 index set of on-ground aircraft
A𝐴 index set of airborne aircraft
I index set of IAFs
A𝑖∗ index set of aircraft whose initial IAF is 𝑖∗ ∈ I
A𝑖∗

𝐺
index set of on-ground aircraft whose initial IAF is 𝑖∗ ∈ I

A𝑖∗

𝐴
index set of airborne aircraft whose initial IAF is 𝑖∗ ∈ I

X feasible set for the first-stage decision vector
Y feasible set for the second-stage decision vector
S set of uncertainty scenarios used for optimization
S𝑟 𝑟th-replication set of uncertainty scenarios used for optimization
S𝑉 set of uncertainty scenarios used for validation

Parameters
Multi-stage formulation

𝐾 number of stages
𝑛(𝑘 ) number of aircraft at stage 𝑘
𝑠 (𝑘 ) state vector at stage 𝑘
𝑠
(𝑘 )
𝑎 𝑎th component of the state vector at stage 𝑘
𝑝
(𝑘 )
𝑎 position of aircraft 𝑎 at stage 𝑘
𝑟
(𝑘 )
𝑎 current (at stage 𝑘) reference route of aircraft 𝑎
𝑣
(𝑘 )
𝑎 speed of aircraft 𝑎 at stage 𝑘
𝜅
(𝑘 )
𝑎 status (on-ground or airborne) of 𝑎 at stage 𝑘
𝜒
(𝑘 )
𝑎 other characteristics of aircraft 𝑎 such as its wake-vortex turbulence

category
𝝃 (𝑘 ) random vector capturing the uncertainty affecting the problem at

stage 𝑘
Two-stage formulation

𝑃𝑖𝑎 planned IAF time of aircraft 𝑎 at an IAF 𝑖
𝑃TOT
𝑎 planned take-off time of aircraft 𝑎 ∈ A𝐺
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𝐸 𝑖𝑎 earliest time for aircraft 𝑎 to reach IAF 𝑖
𝐿𝑖𝑎 latest time for aircraft 𝑎 to reach IAF 𝑖
𝑟 𝑖 𝑗 delay due to rerouting from IAF 𝑖 to IAF 𝑗

�̂�𝑂𝑎 unimpeded flight time from the origin airport of aircraft 𝑎 ∈ A𝐺

�̂� 𝑖𝑎 unimpeded time for aircraft 𝑎 to fly from IAF 𝑖 to the landing runway
𝑉 𝑖
𝑎

minimal time for aircraft 𝑎 to fly from IAF 𝑖 to the landing runway
𝑉
𝑖

𝑎 maximal time for aircraft 𝑎 to fly from IAF 𝑖 to the landing runway
𝑑
𝐺

maximum delay on-ground
𝑑𝑅
𝑎

maximal possible time saving for aircraft 𝑎 during en-route phase
𝑑
𝑅

𝑎 maximal possible delay for aircraft 𝑎 during en-route phase
𝑑𝑇
𝑎

maximal possible time saving for aircraft 𝑎 during approach phase
𝑑
𝑇

𝑎 maximal possible delay for aircraft 𝑎 during approach phase
𝑆 minimal time separation between two consecutive aircraft at IAF
𝑆𝑎𝑏 minimal final-approach time separation between leading aircraft 𝑎

and following aircraft 𝑏
𝝃𝑎 random variable of IAF time deviation of aircraft 𝑎
𝜉𝑎 realization of the random variable, IAF time deviation of aircraft 𝑎
𝑀𝑎𝑏 big-M constant enabling/disabling the separation constraint at IAFs

between aircraft 𝑎 and 𝑏
𝑀𝐿
𝑎𝑏

big-M constant enabling/disabling the separation constraint at the
runway
between aircraft 𝑎 and 𝑏

𝜎 standard deviation of the normal random deviation 𝝃
𝛼 desired probability of separation between any pair of aircraft over

their IAF
𝝍𝑎𝑏 random variable defined as 𝝍𝑎𝑏 = 𝝃𝑎 − 𝝃𝑏
𝑛S number of scenarios in uncertainty scenario set S
𝑛S𝑉 number of scenarios in validation scenario set S𝑉
𝑛R number of replications of uncertainty scenario sets used for opti-

mization

Functions
Multi-stage formulation

𝑓 (𝑘 ) cost function at stage 𝑘
𝑆 (𝑘 ) separation-constraint mapping at stage-(𝑘+1) target points
𝑇 (𝑘 ) time-window constraint mapping at stage-(𝑘+1) target points
𝑔 (𝑘 ) state transition function from stage 𝑘 to stage 𝑘 + 1
𝑉 (𝑘 ) optimal value function at stage 𝑘

Two-stage formulation
𝑄 recourse cost
𝑓 G
𝑎 cost function of the time deviation at gate of aircraft 𝑎 ∈ A𝐺

𝑓 R
𝑎 cost function of the time deviation en route of aircraft 𝑎
𝑓 T
𝑎 cost function of the time deviation in approach of aircraft 𝑎
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𝐹𝝍𝑎𝑏 probability distribution function of random variable 𝝍𝑎𝑏
𝑓 objective function of the SAA problem
𝑓 average validation score over a number of replications
�̂� optimal value of the SAA problem
𝑣∗ optimal value of the true problem
�̄� average optimal value over a number of replications of the SAA

problem

Decision vectors/variables
Multi-stage formulation

𝑥 (𝑘 ) decision vector at stage 𝑘
𝑧 (𝑘 ) vector of target-time variables (associated to stage-(𝑘+1) target point)
𝑡 (𝑘 ) vector of target take-off time variables for on-ground aircraft at stage

𝑘

𝛿 (𝑘 ) vector of sequencing variables of aircraft at stage-(𝑘+1) target point
𝜁 (𝑘 ) vector of the aircraft route assignment variables at stage 𝑘

Two-stage formulation
𝑥 decision vector in the first-stage problem
𝑥(S) feasible (first-stage) decision vector of the SAA problem with sce-

nario set S
𝑥∗ (S) optimal (first-stage) decision vector of the SAA problem with sce-

nario set S
𝑥∗
𝐸𝑉𝑃

optimal (first-stage) decision vector of the expected value problem
𝑧𝑎 target IAF time of aircraft 𝑎 ∈ A
𝑡𝑎 target take-off time of aircraft 𝑎 ∈ A𝐺𝐺

𝛿𝑎𝑏 sequencing variable of aircraft pair (𝑎, 𝑏) ∈ A × A
𝜁 𝑖𝑎 assignment variable of aircraft 𝑎 to IAF 𝑖
𝜙𝑎𝑏 same-IAF indicator variable for aircraft pair (𝑎, 𝑏) ∈ A × A
𝑦 decision vector in the second-stage problem
𝑦𝑎 target landing time of aircraft 𝑎 ∈ A
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