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Abstract
Deep learning models are known to be vulnerable to adversarial attacks. Adver-
sarial learning is therefore becoming a crucial task. We propose a new vision on
neural network robustness using Riemannian geometry and foliation theory. The
idea is illustrated by creating a new adversarial attack that takes into account
the curvature of the data space. This new adversarial attack, called the two-step
spectral attack, is a piece-wise linear approximation of a geodesic in the data
space. The data space is treated as a (pseudo) Riemannian manifold equipped
with the pullback of the Fisher Information Metric (FIM) of the neural network.
In most cases, this metric is only semi-definite and its kernel becomes a central
object to study. A canonical foliation is derived from this kernel. The curvature
of transverse leaves gives the appropriate correction to get a two-step approxi-
mation of the geodesic and hence a new efficient adversarial attack. The method
is first illustrated on a 2D toy example in order to visualize the neural network
foliation and the corresponding attacks. Next, we report numerical results on the
MNIST and CIFAR10 datasets with the proposed technique and state of the art
attacks presented in [1] (OSSA) and [2] (AutoAttack). The results show that the
proposed attack is more efficient at all levels of available budget for the attack
(norm of the attack), confirming that the curvature of the transverse neural net-
work FIM foliation plays an important role in the robustness of neural networks.
The main objective and interest of this study is to provide a mathematical under-
standing of the geometrical issues at play in the data space when constructing
efficient attacks on neural networks.
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1 Introduction
Lately there has been a growing interest in the analysis of neural network robustness
and the sensitivity of such models to input perturbations ([3–6]). Most of these inves-
tigations have highlighted their weakness to handle adversarial attacks ([7]) and have
proposed some means to increase their robustness. Adversarial attacks are real threats
that could slow down or eventually stop the development of neural network models or
their applications in contexts where robustness guarantees are needed. For example,
in the specific case of aviation safety, immunization of critical systems to adversarial
attacks should not only be guaranteed but also certified. Therefore, addressing the
robustness of future on-board or air traffic control automated systems based on such
models is a main concern.

Adversarial attacks are designed to fool classification models by introducing per-
turbations in the input data. These perturbations remain small and in the case of
images for example, may be undetectable to the human eye. So far, most of the research
effort has focused on designing such attacks in order to augment the training dataset
with the constructed adversarial samples and expecting that training will be more
robust. Among these methods, one can refer to the Fast Gradient Sign methods ([8]),
robust optimization methods ([9]), DeepFool ([10]), and others ([11]). There are major
drawbacks with these approaches. Most attacks are data dependent and provide no
guarantees that all relevant attacks have been considered and added to the training
set. Furthermore, training in such manner does not acquire a global knowledge about
the weakness of the model towards adversarial threats. It will only gain robustness
for attacks that have been added to the dataset. However, crafting adversarial attacks
by exploiting the properties of neural network learning is useful to understand the
principles at play in the robustness or sensitivity of neural architectures.

Many authors consider neural network attacks and robustness properties in a
Euclidean input space. Yet, it is commonly admitted that to learn from high dimen-
sional data, data must lie in a low dimensional manifold ([12]). Such manifold has
in general non-zero curvature and Riemannian geometry should therefore be a more
appropriate setting to analyze distances and sensitivity from an attack point of view.
Furthermore, to analyze neural network model separation capabilities and its robust-
ness, it is critical to understand not only the topology of the decision boundaries in
the input space but also the topology of iso-information regions induced by the neu-
ral network. Again, there is no reason to believe that these sub-manifolds have zero
curvature in general. The Fisher information metric (FIM) is a valid metric for such
purpose. Indeed, the network output is seen as a discrete probability that lies on a
statistical manifold. The FIM may then be used as a Riemannian metric at the output
and the pullback metric of the Fisher information as a metric for the input manifold
([1]). The importance of the FIM in the context of deep neural networks has already
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been pointed out by several authors. In [13], it is shown that the FIM defines the
landscape of the parameter space and the maximum FIM eigenvalue defines an approx-
imation of the appropriate learning rate for gradient methods. The FIM with respect
to data (also called local data matrix) instead of network parameters has also been
investigated from a geometric perspective in [14]. The authors have shown that train-
ing data are organized on sub-manifolds (leaves) of a foliation of the data domain. A
few authors have also tried to exploit this geometric knowledge to construct adver-
sarial attacks or get some form of immunization from them. In [1], the direction of
eigenvector corresponding to the maximum eigenvalue of the pullback FIM metric is
used as a direction of attack where as in [15], similar developments are proposed to
robustify the model by regularizing the neural network loss function by the trace of
the FIM. In [16, 17], the authors directly use the geodesic distance associated with
the FIM as a regularisation term during the training of the neural network. They show
that exploiting the geometry of the FIM makes the network more robust to adversar-
ial attacks. In [17], they also suggest that some notion of curvature of the statistical
manifold is linked to the robustness of the network to adversarial attacks, as we will
investigate in this article by looking at the foliated input space. More specifically, in
[1], the authors have shown that the one step spectral attack (OSSA) they proposed
is more efficient than the Fast Gradient Sign and the One Step Target Class meth-
ods [18]. This shows that the choice of the FIM metric as a measure of sensitivity is
relevant and supports our decision to also use it in our study. However, unlike this
previous work, we will investigate its geometrical properties directly in the data space
where attacks are constructed. Note that other kinds of geometry have also been inves-
tigated, such as Wasserstein geometry in [19] where the authors show that Wasserstein
barycenters make good candidates for robust data augmentation.

In this work, we build on the work of [1] and exploit further the geometrical
properties of the foliation of the pullback metric of the neural network FIM. More
specifically, we show that the curvature of the leaf of the transverse foliation can be
utilized to construct a two-step attack procedure referred as two-step attack. Given a
budget of attack, meaning the Euclidean norm of the attack vector, we first move in
the direction of the eigenvector corresponding to the maximum eigenvalue of the FIM
as proposed in [1] and then make another move that takes into account the curvature.
The two steps could be seen as a discretized move along a geodesic curve. The interest
of this procedure is not only to prove that, for a given budget of attack, it is possible
to construct worse attacks than those proposed in [1] but also and more importantly
to emphasize the role of curvature in the sensitivity of neural network models. Math-
ematically, this translates into the expression of the quadratic form approaching the
Kullback-Leibler divergence between the network output probability distribution at
the origin of the attack and the probability distribution at the point reached by the
attack. Indeed, we show that this expression makes explicit use of the Riemannian
curvature tensor of the foliation in the input space. To better grasp and visualize the
effect of curvature on the attacks, we provide details on the calculation of the neural
network FIM and the corresponding attacks on a XOR toy problem. The small dimen-
sion of the problem allows also 2D illustrations of the phenomenon. To demonstrate
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experimentally the benefit of exploiting the foliation curvature, experiments are con-
ducted first with the XOR toy problem and next with the MNIST ([20]) and CIFAR10
([21]) dataset. A measure of attack efficiency is defined using the fooling rate that
computes the percentage of predictions that are changing class on random data points.
The fooling rate is then used to compare the two-step attack to OSSA, and the state
of the art technique AutoAttack [2]. The result show a substantial increase for the
fooling rates when curvature is utilized.
The contribution of this study is two-fold: First and mainly, it proposes a Riemannian
geometry framework for analyzing the robustness of neural networks. Gaining mathe-
matical understanding on the efficiency of attacks should give future perspectives on
strong defense mechanisms for neural networks. Next, since we use the construction of
an attack as a methodology to understand the role of the curvature of the transverse
leaves in the efficiency of an attack, we also provide as a by-product a two-step proce-
dure for crafting adversarial attacks. These attacks have proven to be more effective
than state of the art attacks on small neural architectures. However, there are lim-
itations in the generalization of our construction technique on larger instances as it
involves the computation of the whole Jacobian of the neural network. This computa-
tion may turn out to be untractable for very large networks.
The paper is organized as follows. Section 2 details the general mathematical frame-
work of this study and defines precisely the adversarial attacks that are considered.
In the first part of Section 3, the construction of the local attack by [1] is recalled.
Next, in Section 4, the main developments of this research are detailed. They con-
sist in extending the local attack using the geometry of the problem and constructing
the so-called two-step attack. Section 5 is dedicated to the illustration of the method
through a simple play-test problem. It details more precisely the required calcula-
tions on a simple low dimensional problem and provides illustrations of the resulting
foliation at the heart of the technique. Section 6 provides the numerical results and
Section 7 concludes the article. Appendices A and B recall some important concepts
of Riemannian geometry that are used throughout the article. Appendix C contains
the proof of some stated theoretical result.

2 Problem statement

2.1 Setup
In this paper, we are studying the behavior of a neural network N : X →M. Its output
can be considered as a parameterized probability density function pθ (y | x) ∈ M
whereM is a manifold of such probability density functions, x ∈ X is the input, y ∈ Y
is the targeted label and θ ∈ Θ is the parameter of the model (for instance the weights
and biases in a perceptron). The geometric study of such probability distributions is
part of Information Geometry [22].

In this case, M and X are two (pseudo) Riemannian Manifolds when equipped
with the Fisher Information Metric (FIM). Fisher Information is originally a way to
measure the variance of a distribution along a parameter. It was used as a Riemannian
metric by Jeffrey and Rao (1945-1946), then by Amari, which gave birth to Information
Geometry [22, 23]. Measuring how the distribution of the predicted labels changes
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with input perturbations falls exactly in our usecase. This explains why the FIM is a
good candidate to be X and M’s metric.
Definition 1 (Fisher Information Metric). The Fisher Information Metric (FIM)
on the manifold X at the point x is defined by the following positive semi-definite
symmetric matrix:

gij(x) = Ey|x,θ
[
∂xi ln p(y | x, θ)∂xj ln p(y | x, θ)

]
.

Remark 1. Note that this definition is not the usual definition of the Fisher Informa-
tion. Indeed, the one defined by Fisher, used in the work of Amari and many others,
differentiate with respect to the parameter θ where we differentiate with respect to
the input x. The authors in [14] call this new metric the local data matrix to avoid
confusion.

It is important to notice that for the probability distribution given by a neural
network, the Fisher Information is only a pseudo-Riemmannian metric, meaning that
the matrix G = (gij)i,j is not full rank. This is mainly due to the fact that dimX ≫
dimM in most cases of neural networks classifiers.

In this pseudo-Riemmannian geometric setting, one can define the kernel of the
metric at each point. This subset of the tangent space TX is called a distribution and
it is integrable under some assumptions, meaning that it gives rise to a foliation i.e.
a partition of X into submanifolds called leaves. With this canonical foliation, a dual
one can be defined using the orthogonal1 complement of the kernel at each point. It
is called the transverse foliation. At each point, moving along the FIM kernel leaf will
not modify the output of the neural network. The properties of the transverse foliation
will thus be of great interest in the setting of adversarial attacks. The reader may find
more details on these geometric objects in the appendix A and B.

2.2 Adversarial attacks
One primary goal of this article is to craft the best adversarial attack possible, or at
least approach it. An adversarial attack aims at disturbing the output of the neural
network by adding noise to the original input, with the intention of changing the
predicted class and thus fooling the network. The FIM with respect to the input is
a good measure of dissimilarity between outputs, given a displacement of the input.
In order to change the predicted class after the attack one would want to maximize
the dissimilarity between the predicted distribution of probability before and after
the attack. In other words, one would like to maximize the FIM’s geodesic distance2

d(xo, xa) between the input point xo and the point xa after the attack.
Proposition 2.1. The geodesic distance can be expressed with the Riemannian norm
and the logarithm map3:

d(xo, xa)
2 =

∥∥logxo
xa

∥∥2
X = gxo

(
logxo

xa, logxo
xa

)
.

1Orthogonal with respect to the ambiant Euclidean metric.
2see Definition 8 in A
3see Definition 11 in A
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Otherwise said, if v = logxo
xa is the initial velocity of the geodesic between the two

points,
d(xo, expxo

(v))2 = ∥v∥2X .

The optimal solution will thus be the x̂a maximizing this quantity, with some
constraints. Indeed, one of the characteristics of a good adversarial attack is to be
as undetectable as possible by usual measurements on the input. A usual measure
for that is the Euclidean distance between xo and xa. The attacked point will thus
be constrained to the Euclidean ball of given (small) radius and centered at xo. The
optimal attacked point is the result of a geodesic move from xo with initial velocity
v ∈ Txo

X .
Definition 2 (ε-Adversarial Attack Problem). The optimal geodesic attack with a
Euclidean budget of ε > 0 and initial velocity v verifies:

max
v∈TxoX

∥v∥2X subject to
∥∥expxo

(v)− xo

∥∥2
2
≤ ε2 (ε-AAP)

Remark 2. Some other authors [24] are looking for the smallest attack in Euclidean
norm that changes the predicted class. We are taking the problem in reverse and
looking for an imperceptible attack with respect to a sensor with an activation level
of ε (e.g. the human eye, the human ear, camera or some other devices) with no
guarantees that there exists a class changing attack. However, in real life context where
dimension is large, it has been shown that such class changing attacks exist for small
ε with high probability [25].

A usual optimization algorithm could solve this problem, but the amount of calcu-
lus would be tremendous since the geodesic requires to solve an ODE with boundary
conditions each time. This greedy solution is thus not feasible in practice. To get close
to the optimal solution, the geodesic can be approximated by Euclidean steps.

3 A local method
The authors in [1] have proposed a method to approximate the solution of a near-(ε-
AAP) problem. Their formulation of the Adversarial Attack Problem is not exactly
the same since the criteria they are maximizing is not the geodesic distance, but the
Kullback-Leibler divergence. The matter with (KL) divergences is that they are not
distances, because often not symmetric. Nevertheless, if G is the matrix associated to
the FIM, a second order Taylor approximation gives us that:

DKL (pθ (y | x) ∥ pθ (y | x+ v)) =
1

2
vTGxv + o

(
∥v∥2

)
=

1

2
gx (v, v) + o

(
∥v∥2

)
=

1

2
∥v∥2X + o

(
∥v∥2

)
.

Then, the Euclidean constraint is taken directly on v meaning that xo is moved by
a Euclidean step in the direction of v. The problem thus solved in [1] is a linear
approximation of (ε-AAP). Doing so amounts to approaching the geodesic by its initial
velocity. In other words, the first order approximation expxo

(v) ≈ xo + v is used for
this section.
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We reformulate and prove below the main result of [1] in the context of this study.
Proposition 3.1. The vector v̂ maximizing the quadratic form v 7→ vTGxv is an
eigenvector of the FIM Gx corresponding to the largest eigenvalue. Its re-normalization
by ε2

∥v̂∥2
2

gives an approximated solution to (ε-AAP). This method is illustrated
by Figure 1.

v

ε

xa

xo

Fig. 1: The one-step spectral attack in action. The circle represents the Euclidean
budget. The blue curve represents the leaf of the kernel foliation and the red curve
represents the transverse foliation.

The proof of Proposition 3.1 can be found in Appendix C.

Remark 3. The KKT optimality conditions lead to two valid and yet very different
solutions: v̂ and −v̂. To choose between the two, we select the solution decreasing the
probability of the original class the most, meaning that we select the attack vector
v ∈ {v̂,−v̂} satisfying:

pθ (yxo
| xo − v) > pθ (yxo

| xo + v) . (1)

With this choice, we increase the probability of fooling the network on this point.
This first method is local and does not take into account the curvature of the data.

Hence, we propose a new method to improve the performances, especially in regions
of X where this curvature is high.

4 A two-step attack
The idea here is to take a first local step v as in Section 3, and then take a second
step to refine the linear approximation. The two-step nature of this attack allows the
second step to take into account the curvature of the area around the input point.
This method is able to exploit the geometry of the problem to construct a better
approximation of the original problem (ε-AAP). This attack will be named the Two
Step Spectral Attack (TSSA) .

Let v be the approximated solution of (ε-AAP) using the method of Section 3 but
with a budget of µ2 < ε2.
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The new problem to solve is the following:

max
w
∥w∥2X subject to


∥w + v∥22 ≤ ε2

∥v∥22 = µ2 < ε2

v eigenvector of Gx

(S2P)

In practice, one could solve this problem in the same way as in Section 3 by taking
w the eigenvector of Gx+v with the largest eigenvalue once again (see Figure 2). By
doing that, we linearly approach the geodesic between xo and xa by two line segments
in the Euclidean sense. Taking more steps would approximate the geodesic better.
Using only two steps as proposed is a simple procedure from a computational point
of view and still achieves significantly better results than taking just one step as we
will see in Section 5.

v

w

µ

ε

xa

xo

Fig. 2: The two-step attack in action. The two circles represent the Euclidean budget.
The blue curves represent the leaves of the kernel foliation and the red curves represent
the transverse foliation.

To explicit the action of the curvature at x of the input space on the trajectory
of this multi-step attack, we will approximate Gx+v by its value at x using normal
coordinates4.
Remark 4. In the sequel of the article, for any vector (or tensor) x, x̄ will denote x
expressed in terms of normal coordinates. Besides, we are going to use the Einstein
summation notation omitting the symbol

∑
whenever the index over which the sum

should apply repeats.
Proposition 4.1. If x are the normal coordinates at xo and if R is the Riemannian
curvature tensor, then

wTGx+vw =
∂xm

∂xi

∂xn

∂xj

(
δmn +

1

3
Rmkln(x)v

kvl
)
wiwj + o

(
∥v∥2

)
(2)

4see Definition 10 in A
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Proof.

wTGx+vw = (Gx+v)ij w
iwj

=
∂xm

∂xi

∂xn

∂xj

(
Gx+v

)
nm

wiwj

=
∂xm

∂xi

∂xn

∂xj

(
δmn +

1

3
Rmkln(x)v

kvl + o
(
∥v∥2

))
wiwj .

The last line is obtained by the second-order Taylor expansion of g in normal coordi-
nates centered at x. The reader can find details of the computations in [26], Section
3.5 Corollary 7.

Proposition 4.2. By denoting w =
(
∂xm

∂xi w
i
)
m

= Pw and Rv = Rmkln(x)v
kvl,

Equation 2 can be rewritten with matrix notation by the following:

∥w∥2X = ∥w∥22 +
1

3
wTRvw + o

(
∥v∥2

)
. (3)

Remark 5. In what follows, ∥w∥2X will always be taken at x+ v, and be approximated
by the right hand of Equation 3. Additionally, we compare w and v without taking
into account parallel transport since the Christoffel symbols vanish around the origin
in normal coordinates.

The transition matrix P is equal to
(

∂xi

∂xj

)
i,j

and its inverse to
(

∂xi

∂xj

)
i,j

. We should

have for instance:

Gx = PTGxP = PT InP and P−1TGxP
−1 = In

The matrix P−1 =
[

v1√
λ1
· · · vn√

λn

]
with vi the eigenvector of Gx associated with

the eigenvalue λi satisfies this equation (the family is chosen to be orthonormal for
the ambient Euclidean metric: vTi vj = δi,j). Note that this gives us

P =


√
λ1v

T
1

...√
λnv

T
n

 .

Remark 6. The pullback metric gx is always degenerate in this problem. Indeed, the
dimension of its image is strictly bounded by the number of classes of the given task5.

To take this into account, if d = dim ImGx, one can rewrite the metric in normal
coordinates by:

Gx =

[
Id 0d,n−d

0n−d,d 0n−d,n−d

]
.

The transition matrix P−1 is equal to
[

v1√
λ1
· · · vd√

λd
vd+1 · · · vn

]
.

5See [14] for the proof.

9



Proposition 4.3. If w is a solution to S2P, then there exists a scalar λ ≥ 0 such that(
PTBP − λIn

)
w = λv (4)

with B = In + 1
3Rv.

Proof. Using again the KKT conditions but with the constraint ∥v + w∥22 =∥∥v + P−1w
∥∥2
2
≤ ε2, it implies that there exists a scalar λ ≥ 0 such that:

∇w

(
∥w∥22 +

1

3
wTRvw

)
− λ∇w

(∥∥v + P−1w
∥∥2
2
− ε2

)
= 0

=⇒ w +
1

3
Rvw − λ

(
P−1T

(
P−1w + v

))
= 0.

Thus

PT

(
In +

1

3
Rv

)
Pw = λ (w + v)

⇐⇒ PT
(
B − λP−1TP−1

)
Pw = λv

⇐⇒
(
PTBP − λIn

)
w = λv

where B = In + 1
3Rv.

Corollary 4.4. In normal coordinates, Equation 4 rewrites as:

PPTBw = λ (w + v) ie
(
PPTB − λIn

)
w = λv.

Remark 7. Note that PPT = diag (λi).
Corollary 4.5. Whenever λ is not an eigenvalue of PTBP ,

(
PTBP − λIn

)
is non-

singular and
w = λ

(
PTBP − λIn

)−1
v. (5)

It remains to find a λ such that the constraint ∥w + v∥22 ≤ ε2 is satisfied. There
are two cases:

1. either ∥w + v∥22 = ε2 and λ > 0,
2. or ∥w + v∥22 < ε2 and λ = 0.

4.1 The case λ > 0

We will use the constraint ∥w + v∥22 = ε2 to get λ. We suppose in what follows that
2λ is not an eigenvalue of B, ie (2λ − 1) is not an eigenvalue of 1

3Rv. The constraint
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may be written as:

∥w + v∥22 =
∥∥∥λ (PTBP − λIn

)−1
v + v

∥∥∥2
2

=
∥∥∥(λ (PTBP − λIn

)−1
+ In

)
v
∥∥∥2
2
.

Lemma 4.6.

λ
(
PTBP − λIn

)−1
+ In =

(
PTBP − λIn

)−1
PTBP.

Proof. (
PTBP − λIn

) (
λ
(
PTBP − λIn

)−1
+ In

)
=λ

(
PTBP − λIn

) (
PTBP − λIn

)−1
+
(
PTBP − λIn

)
=��λIn + PTBP −��λIn = PTBP.

Thus,

ε2 = ∥w + v∥22 =
∥∥∥PTBP

(
PTBP − λIn

)−1
v
∥∥∥2
2
. (6)

To find λ that satisfies Equation 6, we will study the vanishing points of:

φ : [0,∞[ −→ [0,∞[

λ 7−→
∥∥∥PTBP

(
PTBP − λIn

)−1
v
∥∥∥2
2
− ε2

However, finding the vanishing points of such a function is not an easy task. Several
methods may be used. A numerical method such as the Newton’s method [27] could
be applied.

Alternatively, observe that problem S2P can be simplified by using the triangular
inequality to get back to an easier eigenvalue problem. Indeed, consider the following
problem:

max
w
∥w∥2X subject to


∥w∥2 ≤ ε− µ

∥v∥22 = µ2 < ε2

v eigenvector of Gx

(S2.2P)

This new problem is illustrated on Figure 3. The green circle is the true budget
and the two other smaller circles represent the triangular inequality approximation.
One can see that the second step w does not reach the green circle but stop before
due to the approximation.
Proposition 4.7. Any solution of S2.2P problem will satisfy the constraint of S2P
problem.
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v

w

xo

µ

ε

xa

√
ε2 − µ2

Fig. 3: The two-step attack in action with the triangular inequality simplification.
The three circles represent the Euclidean budget. The blue curves represent the leaves
of the kernel foliation.

Proof. Indeed, by the triangular inequality, ∥w + v∥2 ≤ ∥w∥2 + ∥v∥2 ≤ (ε− µ) + µ =
ε.

With this new constraint, KKT’s conditions boil down to

PTBPw = λw
or in normal coordinates:

PPTBw = λw.
Proposition 4.8. A solution to S2.2P is to choose w to be the eigenvector of PPTB
with the highest eigenvalue λ and with the appropriate Euclidean norm of ε− µ.

An algorithm that finds a solution to S2.2P can then be created using Propo-
sition 4.8. It is presented in Algorithm 1. It is then implemented6 and tested in
Section 6.

Complexity analysis of TSSA
Let d be the dimension of the input space of the neural network, and C the number
of classes of the classification problem. The runtime analysis of Algorithm 1 can be
understood as follow:

- Line 1:

1. Computing Gxo
: It requires the computation of the the network’s Jacobian matrix

with respect to the input, as well as inverting the output of the neural network.
Computing such Jacobian matrix requires O(C) calls to the Autograd procedure,
PyTorch automatic differentiation package [28], where C is the dimension of
the output. The complexity of the Autograd algorithm depends on the neural
network architecture, and scales with the number of weights, but also with the
dimension of the input. After that, 2 matrix multiplications are needed to get
Gxo

= JN (x)Tdiag (N(x))
−1

JN (x).

6The implementation of TSSA is available at https://github.com/eliot-tron/CurvNetAttack.
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Algorithm 1: Two Step Spectral Attack (TSSA)
Data: xo initial point, ε > µ > 0 euclidean budgets.
Result: xa attacked point

1 v ← highest eigenvector of Gxo

2 v ← µ× v
∥v∥2

3 yxo
← argmaxy pθ (y | xo)

4 if pθ (yxo | xo + v) > pθ (yxo | xo − v) then
5 v ← −v
6 end
7 w ← highest eigenvector of Gxo+v

8 w ← (ε− µ)× w
∥w∥2

9 if vTw < 0 then
10 w ← −w
11 end
12 xa ← xo + v + w
13 return xa

2. Computing the highest eigenvector of this d× d matrix: It can be solved with a
power method7 in O

(
d2
)
.

- Line 2: O(d).
- Line 3: Evaluation time of the neural network, and then finding the maximum in
O(C).

- Line 4: Two evaluations of the neural network.
- Line 5: O(d)
- Line 7: Same complexity as Line 1.
- Lines 8-12: O(d).

In practice, Line 1 and 7 are the most expensive ones. This algorithm requires,
in total, O(C) calls to Autograd with respect to the input of the network for each
given input point xo, which limits the tests on large datasets requiring large networks.
Possible runtime improvements can be developed in future work such as the use of
faster power iteration methods (e.g. Lanczos), or the use of the alias method when C
is high. See [1] for some details on these aspects. Some other improvements can be
developed on the implementation side in PyTorch with batched gradient computation.
We leave this for future work and focus here on the effect of curvature on adversarial
attacks.

4.2 The case λ = 0

In that case, w is in the interior of the boundary of the problem. The problem reduces
to

Bw = 0 ⇐⇒ Rvw = −3w.

7See Section 7.3, p. 365 of [29].
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This means that w is the optimal second step if w ∈ KerB, ie if w is eigenvector
of Rv with eigenvalue −3. However, this case does not produce any interesting KKT
admissible point. Indeed,

∥w∥2X = ∥w∥22 +
1

3
wTRvw = ∥w∥22 − wTw = 0.

Therefore, the case λ = 0 does not lead to useful adversarial attacks when the
previous approximations are applied to the problem. The study of this singularity is
left as future work.

5 An enlightening play-test example

5.1 Setup
In this section, we focus on a low dimensional example in order to visualize more easily
the effect of curvature on the efficiency of the adversarial attack. A simple neural
network Nθ with one hidden layer of k neurons and sigmoids as activation functions
is used. Its architecture is depicted on Figure 4.

x1

x2

Nθ(x)

Hidden
layer

Input
layer

Output
layer

W1 W2

Fig. 4: XorNet Nθ with 3 hidden neurons.

To be more precise, if σ : a ∈ Rd 7→
(

1
1+e−ai

)d

i=1
∈ Rd is the sigmoid function and

if x ∈ R2, W1 ∈M2,k(R), W2 ∈Mk,1(R), we have

Nθ(x) = σ (W2σ (W1x+ b1) + b2) . (7)

This neural network is then trained to approximate the very simple function Xor:
{0, 1}2 → {0, 1} defined in Table 1.

The output Nθ(x) is seen as the parameter p of a Bernoulli law and associates to
the network the following probability distribution: p(y | x, θ) where θ is the vector
containing the weights and biases (Wi, bi), x is the input and y is the true label.
Proposition 5.1. The random variable Y | X, θ follows Bernoulli’s law of parameter
p = Nθ(x).
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Table 1: Xor
function.
Xor 0 1
0 0 1
1 1 0

5.2 Computing the output FIM
The output of the network is the manifold of Bernoulli probability densities parame-
terized by the open segment ]0, 1[.
Proposition 5.2. Let p ∈]0, 1[ and Gp the Fisher Information Metric at the point p.

Gp =
1

p

1

1− p
(8)

Proof.

Gp = −Ey|x,θ
[
∂2
p (lnP (y | x, θ))

]
= −E

[
∂2
p (y ln p+ (1− y) ln (1− p))

]
= −E

[
∂p

(
y

p
− (1− y)

1− p

)]
= −E

[
− y

p2
− (1− y)

(1− p)
2

]

=
1

p
+

1

1− p
=

1

p

1

1− p
.

5.3 Computing the pullback metric
Let x ∈M be a point associated with p by the network.
Lemma 5.3. The Fisher Information Metric Gx on X is the pullback metric of Gp

by the neural network Nθ.
Corollary 5.4. If J =

[
∂p
∂xj

]
j=1,2

=
[
∂Nθ(x)
∂x1

∂Nθ(x)
∂x2

]
, then

Gx = JTGpJ. (9)

Remark 8. The Jacobian matrix of a neural network J is not difficult to compute
thanks to automatic differentiation available in most neural network training software’s
packages. Besides, this approach for computing J numerically allows the sequel of the
article to stay quite general regarding the architecture of the neural network.

Knowing how to compute the metric at any point unlocks the computation of the
local method seen in Section 3 and the two-step method seen in Section 4 when the
FIM is recomputed at the intermediary point. Additionally, studying the curvature

15



of the input space is insightful to understand the behavior of the correction step in
the two-step attack, and more generally to understand why adversarial attacks are, in
some cases, so efficient.

Nonetheless, the pullback metric being almost always only semi-definite for
machine learning tasks, it makes sense to consider its kernel. The curvature will have
a decomposition term on the kernel of g and a decomposition term on its orthogo-
nal8. To craft the attack, the orthogonal term will be the only curvature component
of interest as stated at the end of Section 2.1. Thus in the following subsection, we
compute the metric kernel for this neural network.

5.4 The metric kernel foliation
Definition 3. The kernel of a metric G at the point x is defined by

kerx G =
{
X ∈ TpM | XTGxY = 0, ∀Y ∈ TpM

}
.

This kernel defines an integrable distribution when Frœbenius’ condition9 is satis-
fied, and with this distribution emerges a Riemannian foliation on the input manifold,
foliation defined by the action of the neural network.
Lemma 5.5. kerx G = ker J .

Proof. We omit 1
p

1
1−p during the proof because it is always non-zero.

• Let us prove first that kerx G ⊂ ker J . If X ∈ kerx G, then XTJTJX = 0. Hence
(JX)

T
(JX) = 0, or written otherwise: ∥JX∥ = 0. Hence JX = 0 and X ∈ ker J .

• Then we can prove that ker J ⊂ kerx G. This inclusion is simply due to the fact that
if X ∈ ker J , we have for all Y ∈ TpM that XTJTJY =����

(JX)
T︸ ︷︷ ︸

=0

JX = 0.

Proposition 5.6. If at least one of the two components of J is non-zero, the
distribution at x is one dimensional and given by Px = Span (J2(x)∂1 − J1(x)∂2).
Remark 9. If J = 0, the leaf at x is singular and is of dimension 2.

With the Xor function, the dimension of the leaves is 1, thus the condition of
Frœbenius is trivially satisfied and P is integrable.
Proposition 5.7. If γ : t ∈ I 7→ γ(t) ∈ M is an integral curve for the distribution
P , it satisfies the following ODE:

γ′(t) = J2 (γ(t)) ∂1 − J1 (γ(t)) ∂2

= Jγ(t)

[
0 −1
1 0

]
.

8Here, the Euclidean orthogonal is considered.
9For more details, see Chapter 1 of [30]
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It can be solved numerically quite easily with a finite difference method10. Figure 5
provides illustrations of the computed neural network kernel foliation with such a
method for the Xor function (Figure 5a), and for the Or function (Figure 5b).
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(a) Task: Xor

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Task: or

Fig. 5: Kernel foliation: the leaves are represented by the blue lines, the red dots are
the 0 result and the green dots are the 1 results.

Remark 10. For readability, the transverse leaves are not represented but can be easily
deduced from figure 5 as Euclidean orthogonal curves to the blue ones.

These results are quite interesting. First of all, we notice that a linearly separable
problem such as the or function seems to have hyperplanes as leaves. In fact, it is easy
to show that if the neural network is replaced by a linear form x 7→ ⟨n, x⟩ + b, then
the leaves are hyperplanes defined by the normal vector n.

Second of all, one can see that there is a singular point close to the middle point
(0.5, 0.5) for the Xor task. Clearly, it is also easy to see that around that central point,
the curvature of the leaves is the highest. Since the two-step adversarial attack makes
use of the curvature, we can conjecture that it is in the central region that the second
step will have the most impact. This phenomenon will be confirmed in Section 6.

5.5 Visualizing the curvature
In this section, we are computing the extrinsic curvature of a transverse leaf to see
where the two-step attack will differ the most from the one-step attack. But first,
we compute the Levi-Civita connection. In the following of the article, we will use
i, j, k, l ∈ {1, . . . ,dimX} as indices and we will use the Einstein summation notation.
Definition 4 (Levi-Civita connection). In coordinates ei, if Γk

ij are Chrystoffel’s
symbols, then the Levi-Civita connection is defined by:

∇̊ejei = Γk
ijek .

10See for example [31].
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Definition 5 (Riemannian curvature). The Riemannian Curvature Tensor R is
defined such that for all three tensor fields X,Y, Z,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

In local coordinates, this gives:

Rl
ijk = dxl (R (∂i, ∂j) ∂k)

= dxl
(
∇∂i
∇∂j

∂k −∇∂j
∇∂i

∂k −∇[∂i,∂j ]∂k
)

=
∂Γl

kj

∂xi
− ∂Γl

ki

∂xj
+ Γα

kjΓ
l
αi − Γα

kiΓ
l
αj .

Remark 11. In normal coordinates, at the origin point, one has:

Rijkl =
1

2
(∂i∂lgjk + ∂j∂kgil − ∂i∂kgjl − ∂j∂lgik) .

Finding an explicit form for R is unreasonable, but since we are in the simpler
case where the dimension of the transverse leaves is 1, a quick approximation can do
the trick. In fact, leaves are embedded submanifolds of the Euclidean space and the
extrinsic curvature, i.e. the second fundamental form, can be computed as the rate of
rotation of the normal vector.

To approximate the second step w of the two-step attack, we look at the rotation
speed of the unit normal to the kernel leaf n⃗ when moved by an infinitesimal step dx.
This infinitesimal step is taken in the direction of the transverse leaf, and is Euclidean.
Since the rotation rate is approximated by finite difference, one can expect the angle
variation to be very small. To ensure numerical stability, the usual procedure based on
its cosine computation using inner product is replaced by one using the cross product.
The next lemma gives the expression of the sine of the angle variation between two
close positions on curve transverse to the ker g foliation.
Lemma 5.8. If n⃗y is the normal to the kernel leaf at y ∈ X , and if · × · is the cross
product, then the infinitesimal variation of angle is

|dθ| = arcsin (∥n⃗x × n⃗x+dx∥2) .

Please note that in the small angles approximation, the sine can be replaced by the
angle itself, thus recovering the usual infinitesimal rotation representation as a cross
product (this is in fact a Lie algebra representation in the usual sense).

To approximate the effect of the curvature during the Euclidean step v, one has
to compute the rotation matrix R of angle dθ:

R =

[
cos (dθ) − sin (dθ)
sin (dθ) cos (dθ)

]
Proposition 5.9. If v is the first step, the approximated second step is given by
w = Rv and then re-normalized to get ∥w∥2 + ∥v∥2 = ε2.
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The signed curvature dθ for the Xor problem can then be seen on Figure 6. One
can see that the curvature is the highest in the middle, around the point (0.5, 0.5),
and also on the diagonals.

0.0 0.2 0.4 0.6 0.8 1.0
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10 5

10 6

0

10 6

10 5

10 4

Fig. 6: Extrinsic (signed) curvature of the transverse leaves (dθ) for the task Xor,
computed with a dx of 10−6, with the transverse leaves in blue.

6 Numerical results
In the following subsections, we first provide an illustrative example, and next we
report experimental results on two public datasets: MNIST [20] and CIFAR10 [21].
All codes used to produce the following results can be found in [32].

Note that the first step in the Two Step Spectral Attack is set to have a Euclidean
budget µ of 60% of the total budget ε in all following experiments.

6.1 Xor dataset
To compare the different attacks, we train a neural network with 8 hidden neurons
on random points taken in the square [0, 1]

2 until convergence. We then compute the
two different attacks which are the One Step Spectral Attack presented in Section 3
and the Two Step Spectral Attack presented in Section 4 with Algorithm 1 where
we compute the FIM at xo and xo + v. These attacks are computed on 5000 random
points selected in a square I of variable length. The fooling rate is then computed as
the quotient of the number of fooled prediction by the total number of points. The
budget is selected between 0 and 0.5. We plot the results on Figure 7.
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(b) I = [0.4, 0.6]2

Fig. 7: Fooling rates with respect to the Euclidean budget with random points taken
in I for the task Xor.

On each figure, the two-step attack beats the one step attack (for reasonable bud-
gets). The two-step attack is especially strong on the area where the curvature is the
strongest: almost one point better for the TSSA at the peak in high curvature zones
(see Figure 7b) compared to only half a point for the full space (see Figure 7a). Indeed,
as seen on Figure 6, the curvature is really strong at the center of the square [0, 1]2.
The eigenvector of the FIM associated with the greatest eigenvalue is always orthogo-
nal to the leaf kernel. Therefore, striking close to the middle region without taking into
account the curvature usually results in not changing the output label: (0, 0)↔ (1, 1)
or (1, 0) ↔ (0, 1). This is why the TSSA gets better results by taking the curvature
into account.
Remark 12. Note that on Figure 7b, the fooling rates collapse shortly after budget =
0.1 because such high budgets makes every points leave the initial square I. These
high budgets are too big for this area which is very close to the decision boundaries
and the second step is not enough to compensate these instabilities, thus leading to
such strange results at first glance.

The illustration of the two different attacks can be found on Figure 8.
These results confirm our intuition that using the information of local curvature

to craft an adversarial attack is meaningful. It also highlights the role of the leaves of
the kernel foliation in the sensitivity of neural networks to attacks.

6.2 MNIST dataset
Next, we train a medium convolutional neural network with 4 layers (2 convolutional
and 2 linear), ReLU as activation function and a Softmax function at the output. The
fooling rates for the One Step Spectral Attack and the Two Step Spectral Attack are
represented on Figure 9 for different Euclidean budget ranging from 0 to 10. The TSSA
performs better than the OSSA, proving that curvature of the network is of interest
in the construction of attacks or defenses to these attacks. The difference between the
fooling rate of the TSSA and the fooling rate of the OSSA is plotted on Figure 10. It
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Fig. 8: TSSA (in blue) compared to OSSA (in orange) with ε = 0.1. The kernel
foliation is depicted with the grey lines.

represents the advantage given by the curvature. As one can see, there are 3 different
regimes:

1. The first one in blue is the region where the budget is small enough for the approx-
imation expxo

(v) ≈ xo + v to hold. Taking into account the curvature does not
modify enough the attack to fool the network on a lot of additional images compared
to the straight line attack (OSSA).

2. The second regime in green is the region where the budget is high enough for the
correction due to the curvature to be essential, and yet small enough for this same
correction to hold. That is why the TSSA is much better than the OSSA for these
budgets.

3. The third and last regime in red corresponds to budgets to big so that the
approximations no longer make sense. At these horizons, the manifold is too
non-linear.

To evaluate our technique against State Of The Art (SOTA) attacks, we consider
the AutoAttack (AA) proposed in [2]. The authors propose a method to create adver-
sarial attacks combining and improving 4 SOTA algorithms, making the AutoAttack
algorithm an appropriate candidate to compare performances to. Indeed, it has been
designed to benchmark adversarial robustness, enabling the community to have a uni-
fied way to compare the performances of their adversarial defenses with others on
SOTA adversarial attacks. To implement the method, we used the code available at
https://github.com/fra31/auto-attack.git. The settings used for the AutoAttack are
the L2 norm, a varying budget of ε, and the standard version of the attack.

21

https://github.com/fra31/auto-attack.git


The difference between the fooling rate of the TSSA and the fooling rate of the
AutoAttack is plotted with respect to the Euclidean budget on Figure 11 for both
ReLU and Sigmoid activation function cases. From the plots, one can see that the
AutoAttack achieves better results than our Two Step attack for mid-range budgets.
However, by design, the TSSA algorithm only performs two steps when the AutoAt-
tack procedure carries out many moves (for example, 100 iterations for the APGD
or FABAttack subroutines used within AutoAttack). To have a fair comparison with
TSSA, it would require a 100 steps attack or equivalently solve the geodesic equation
with 100 discretization steps. This is computationally expensive at each step due to the
calculation of the FIM and its eigenvectors. Nevertheless, the TSSA achieves compa-
rable performances for large budgets, and even better performances for small budgets.
Note that the range of small budgets is the one considered in [2]. The results confirm
that good adversarial attacks can be efficiently computed (meaning in very few steps)
with the use of geometry, which was the primary objective of this study.

Note that with equal Euclidean budget, the infinity norm of the attack is higher
for the AutoAttack than for the TSSA or the OSSA most of the time as shown in
Figure 12. It means that, in the case of MNIST images, the absolute value of the
variation of pixel intensity is higher in the case of AutoAttack for equal Euclidean
budget. Therefore, attacks constructed with AutoAttack might be more noticeable to
the human eye on the average.

Some examples of attacked images are also included for different budgets in order
for the reader to realize that such small budgets are enough to fool the network while us
- humans - still recognize very well the true digit. Other examples of attacks produced
by the TSSA procedure are included in Figure 13 and in Figure 14 for different budgets.
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Fig. 9: Fooling rates with respect to the Euclidean budget on all MNIST test-set.
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Fig. 10: Difference between the fooling rate of the TSSA (frTSSA) and the one of
the OSSA (frOSSA) with respect to the Euclidean budget (frTSSA− frOSSA), and some
examples of the attacks it produces.

Table 2: Fooling rates with respect to the Euclidean budget on all MNIST test-set
(without input normalization, activation function: Sigmoid) for the 3 attack proce-
dures.

Budget (ε) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

OSSA 0.126 0.326 0.599 0.805 0.915 0.963 0.983 0.992 0.997 0.998
TSSA 0.128 0.339 0.643 0.845 0.945 0.981 0.994 0.998 1.000 1.000
AA 0.110 0.324 0.689 0.906 0.980 0.998 1.000 1.000 1.000 1.000

Table 3: Fooling rates with respect to the Euclidean budget on all MNIST test-set
(without input normalization, activation function: ReLU) for the 3 attack procedures.

Budget (ε) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

OSSA 0.088 0.309 0.614 0.820 0.923 0.970 0.988 0.996 0.998 0.999
TSSA 0.093 0.349 0.666 0.862 0.953 0.985 0.996 0.999 1.000 1.000
AA 0.090 0.386 0.716 0.909 0.979 0.997 1.000 1.000 1.000 1.000

The values of the fooling rates with respect to the Euclidean budget for the 3
examined adversarial attack procedures on MNIST are detailed in Table 2 for the
Sigmoid network and in Table 3 for the ReLU network.

6.3 CIFAR10 dataset
We ran similar experiments with the CIFAR10 dataset as in Section 6.2 with the
MNIST dataset. The fooling rates for the One Step Spectral Attack and the Two Step
Spectral Attack are represented on Figure 15 for different Euclidean budget ranging
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(a) Activation function: ReLU
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(b) Activation function: Sigmoid

Fig. 11: Difference between the fooling rate of the TSSA (frTSSA) and the one of
AutoAttack (frAA) with respect to the Euclidean budget (frTSSA − frAA) on MNIST.

from 0 to 2. Figure 16 and Figure 17 show the difference between the fooling rate of the
TSSA and respectively the fooling rate of OSSA and the fooling rate of AutoAttack.
Figure 18 provides the comparison between the infinity norm of the attack of TSSA
and AutoAttack with respect again to its Euclidean norm.

Similar conclusions to the MNIST case can be drawn from the CIFAR10 results.
It strengthens our confidence in the results and their interpretations stated in
Section 6.2.

The values of the fooling rates with respect to the Euclidean budget for the 3
examined adversarial attack procedures on CIFAR10 are detailed in Table 4.
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Fig. 12: ∥·∥∞ of the attack with respect to its Euclidean norm ∥·∥2 on MNIST.
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Fig. 13: Result of the TSSA with a budget ε = 3.
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Fig. 14: Result of the TSSA with a budget ε = 7.

7 Conclusion
This paper explores the relationship between adversarial attacks and the curvature of
the data space. Using the curvature information, we have proposed a Two Steps Attack
that achieves better results than the One Step Spectral Attack presented by [1] on rel-
atively small architectures. As the computation of the attack involves the computation
of the whole Jacobian matrix of the neural network, some limitations will be reached on
larger architectures. The main goal of this study is the mathematical emphasis on the
role of geometrical properties of the data space through the neural network Rieman-
nian foliations rather than providing a new numerical attacking strategy that could
outperform existing state-of-art attacks for various neural network architectures. The
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Fig. 15: Fooling rates with respect to the Euclidean budget on all CIFAR10 test-set.
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Fig. 16: Difference between the fooling rate of the TSSA (frTSSA) and the one of the
OSSA (frOSSA) with respect to the Euclidean budget (frTSSA − frOSSA) on CIFAR10.

Table 4: Fooling rates with respect to the Euclidean budget on all CIFAR10
test-set for the 3 attack procedures.

Budget (ε) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80

OSSA 0.428 0.673 0.809 0.877 0.912 0.932 0.945 0.953 0.958
TSSA 0.445 0.718 0.858 0.924 0.954 0.969 0.974 0.977 0.979
AA 0.434 0.737 0.882 0.939 0.962 0.970 0.973 0.973 0.975
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Fig. 17: Difference between the fooling rate of the TSSA (frTSSA) and the one of
AutoAttack (frAA) with respect to the Euclidean budget (frTSSA− frAA) on CIFAR10.
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Fig. 18: ∥·∥∞ of the attack with respect to its Euclidean norm ∥·∥2 on CIFAR10.

analytical mathematical expression of the proposed attack explicitly uses the curva-
ture tensor of the FIM kernel leaves. This emphasizes the importance of geometry in
the construction of an efficient attack. Additionally, with simple experiments on a toy
example, we have illustrated and confirmed that exploiting such geometrical informa-
tion is relevant and actually outperforms a state of the art strategy. The mathematical
construction of the proposed method opens also new opportunities for future research.
Indeed, it is clear that, in the case of neural networks, the geometrical properties of
the leaves of the kernel foliation is related to its robustness as explained above but
more generally to its power to separate data points. Therefore, the geometry of the
foliation is directly linked to the complexity of the model (i.e. the neural network
architecture). A deeper analysis of these aspects should help in gaining knowledge and
some explainability of the underlying principles at play in neural network learning and
more generally deep learning methods. This will be the focus of our future research.

27



Appendix A Notions of Riemannian geometry
Let M = (M, g) be a real Riemannian manifold of dimension n.
Definition 6 (length of a path). Let γ : [0, 1] → M be a C1 path. The length of γ,
denoted l(γ) is defined by

l(γ) =

∫ 1

0

g (γ (t) , γ′ (t) , γ′ (t))
1/2

dt

Definition 7 (geodesic). Let p, q be two points of M . The C1 path γ : [0, 1]→M is
said to be a geodesic between p and q if:

γ(0) = p, γ(1) = q

l(γ) = inf
{
l(θ), θ ∈ C1 ([0, 1), M) , θ(0) = p, θ(1) = q

}
Definition 8 (geodesic distance). The length of a geodesic between p and q is called
the geodesic distance, denoted d(p, q).

In what follows, the Levi-Civita connexion of M will be denoted ∇̊.
Definition 9. Let γ : [0, 1]→M be a C2 path. It it said to be a geodesic of ∇̊ is, for
each t ∈]0, 1[ the following holds:

∇̊γ̇(t)γ̇(t) = 0 (A1)

The differential equation A1 translates in local coordinates to:

∂2γk

∂t2
(t) + Γk

ij (γ (t))
∂γi

∂t
(t)

∂γj

∂t
(t) = 0 (A2)

For an initial point p = γ(0), Cauchy-Lipschitz theorem shows that ther is a unique
local solution to Equation A1.
Proposition A.1. Let p ∈M . There exist ε > 0 such that for all v ∈ TpM , ∥v∥ < ε,
there exist a unique geodesic γ : [0, 1]→M such that γ(0) = p, γ′(0) = v. The function
which to such v associates γ(1) with γ the geodesic of ∇̊ such that γ(0) = p, γ′(0) = v
is called the exponential map and denoted expp.
Proposition A.2. Let v ∈ TpM , ∥v∥ < ε and let q = expp(v). Then γ : t ∈ [0, 1] 7→
expp(tv) is a geodesic between p and q. Besides, l(γ) = ∥v∥.
Remark 13. Note that ∥v∥ = g (p; v, v)

1/2 is the riemannian norm and not the
Euclidean norm.
Definition 10. d expp(0) = Id and thus the exponential map is a local diffeomor-
phism. Around each point, expp defines a chart of M . The local coordinates we get
are called the normal coordinates at p.
Definition 11 (logarithm map). Let p ∈M and ε > 0 such that the exponential map
is defined in B(0, ε). For all q ∈M such that d(p, q) < ε we set:

logp(q) = v, expp v = q.
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Remark 14. One can compute the logarithm by solving the following differential
system: {

∂2γk

∂t2 (t) + Γk
ij (γ(t))

∂γi

∂t (t)
∂γj

∂t (t) = 0

γ(0) = p, γ(1) = q
(A3)

Proposition A.3. In normal coordinates at p ∈M , geodesics with origin p are strait
lines going through the origin.
Definition 12 (parallel transport). Let v ∈ TpM and q = expp x. The geodesic
between p and q is γ : t ∈ [0, 1] 7→ tx in normal coordinates. Besides, the linear
differential equation:

∇̊γ̇(t)X(t) = 0, X(0) = v

has a solution on [0, 1] called the parallel transport of v.
Parallel transport allows to go from a tangent vector at q = expp x to a tangent

vector at p.

Appendix B Fisher Information Metric
An important question arising when dealing with Fisher information metric is to know
when going in the converse direction is feasible: given a Riemannian manifold (X , g),
is it possible to find a probability family such that g is exactly its Fisher information?
This is exactly what is behind the next definition.
Definition 13 (Statistical model). A statistical model for a Riemannian manifold
(X , g) is a probability space (Ω, T , P ) such that:

• It exists a family of probabilities px, x ∈ X , absolutely continuous with respect to
P .

• For any x ∈ X:
gij(x) = Epx

[∂i ln px∂j ln px]

Remark 15. When px is C2 with support not depending on x and the conditions for
exchanging derivative and expectation are satisfied, then:

gij(x) = −Epx [∂ij ln px]

In such a case, the metric g is Hessian.
In nearly all cases considered in machine learning, the metric g is only semi-definite.

It thus makes sense to consider its kernel.
Definition 14. Let g be a semi-definite metric on a manifold X . A tangent vector
X ∈ TxX is said to belong to the kernel kerx g of gx if for any Y ∈ TxX , g(X,Y ) = 0.
Proposition B.1. Let (X , g) be a connected manifold with g a semi-definite metric.
If it exists a torsionless connection ∇ on TX such that ∇g = 0, then the mapping
x ∈ X → kerx g defines an integrable distribution, denoted by ker g.

Proof. It is clear that for any x ∈ X , kerx g is a linear subspace of TxX . Let X,Y, Z
be vector fields such that Y ∈ ker g. Then, since ∇g = 0 by assumption:

X (g(Y,Z)) = g (∇XY,Z) + g (Y,∇XZ)
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Since Y ∈ ker g:
X (g(Y,Z)) = 0 = g (∇XY,Z)

and so, for any X, ∇XY ∈ ker g. This proves that the parallel transport of a vector in
ker g is a vector in ker g. The dimension of ker g is thus constant. Now, if X,Y ∈ ker g,
by the above result and since ∇ has vanishing torsion: [X,Y ] = ∇XY −∇Y X ∈ ker g,
proving that ker g is an integrable distribution.

Remark 16. If the dimension of ker g is not constant, then no torsionless connection
∇ can be such that ∇g = 0. However, there is still a singular foliation associated with
ker g, with a canonical stratification by the dimension of ker g.
Proposition B.2. Under the assumptions of prop. B.1, g defines a transverse metric
for the ker g foliation.

Proof. This is essentially prop 3.2, p. 78 in [30].

The leaves of the ker g foliation are neutral submanifolds for the fisher information
metric, that is moving along them will not modify the output distribution. On the
other hand, the transverse metric is a measure of output variation when moving in a
direction normal to the leaves.

Appendix C Proofs
Proof of Proposition 3.1. To maximize this quadratic form under the constraint
∥v∥22 = ε2, Karush-Kuhn-Tucker’s optimality conditions11 ensure that there exists a
scalar λ ∈ R such that the optimum attack v̂ satisfies:

∇v

(
vTGxv

)
− λ∇v

(
∥v∥22 − ε2

)
= 0

=⇒
(
Gx +GT

x

)
v̂ = λ2v̂

=⇒ Gxv̂ = λv̂.

Otherwise said, the optimum v̂ is in the set of Gx’s eigenvectors. In this case:

∥v̂∥2X = v̂TGxv̂ = v̂Tλv̂ = λ ∥v̂∥22 = λε2.

Thus, v̂ corresponding to the largest eigenvalue maximizes the Riemannian norm.
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