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Abstract Air traffic flow management has been a major means for balancing air traffic demand

and airport or airspace capacity to reduce congestion and flight delays. However, unpredictable fac-

tors, such as weather and equipment malfunctions, can cause dynamic changes in airport and sector

capacity, resulting in significant alterations to optimized flight schedules and the calculated pre-

departure slots. Therefore, taking into account capacity uncertainties is essential to create a more

resilient flight schedule. This paper addresses the flight pre-departure sequencing issue and intro-

duces a capacity uncertainty model for optimizing flight schedule at the airport network level.

The goal of the model is to reduce the total cost of flight delays while increasing the robustness

of the optimized schedule. A chance-constrained model is developed to address the capacity uncer-

tainty of airports and sectors, and the significance of airports and sectors in the airport network is

considered when setting the violation probability. The performance of the model is evaluated using

real flight data by comparing them with the results of the deterministic model. The development of

the model based on the characteristics of this special optimization mechanism can significantly

enhance its performance in addressing the pre-departure flight scheduling problem at the airport

network level.
� 2024 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

The 2018 International Civil Aviation Organization (ICAO)

statistics showed that 4.3 billion passengers were served by
air transport, a 6.1% increase from the previous year.1 Despite
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the construction of new infrastructure to enhance the capacity
and efficiency of air traffic systems, flight delays remain an
issue due to unpredictable elements such as extreme weather.

In 2018, the flight departure delays within Europe rose to
14.7 min per flight, a 2.3 min increase from 2017.2 The imbal-
ance between the capacity of the air traffic system and the

demand for traffic is still the primary cause of flight delays.
Consequently, optimization of air traffic operations is still a
major area of research.

A great deal of research has been conducted to improve the
operational effectiveness of air traffic systems since the 1990s.
From the investigation of the Ground Holding Problem
(GHP) of single airports, multiairports and airport net-

works,3,4 to the examination of the dynamic flow problem of
the network and the formulation of the uncertainty problem,5,6

researchers from all over the world have made remarkable

advances in the air transportation field. Since 2010, researchers
have been attempting to optimize the flight schedule in a way
that is more beneficial to all parties, taking into account fair-

ness.7–11 Furthermore, to create a more reliable flight schedule,
the uncertainty factor in the airport network has also received
attention.12–14 As research results continue to be enriched, sys-

tematized integrated models have also been featured in many
studies.15–17 Some researchers have shifted their focus from
the supply side to the demand side of air transport service.18,19

The use of mathematics and big data has also been explored to

optimize flight schedules.20–22 In recent years, a large body of
literature has been developed around the topic of airport
capacity and demand management.

Air Traffic Flow Management (ATFM) is a key technique
used by traffic management operators to balance the capacity
of airports/airspace and air traffic demand. This has been a

major area of research for many years. ATFM can be broken
down into three stages: strategic ATFM, pre-tactical ATFM
and tactical ATFM. Strategic ATFM begins several months

before the day of operation and involves slot allocation and
airspace organization. Pre-tactical ATFM can start from a
week or a day before the day of operation, during which flight
schedules may be adjusted. The tactical phase is usually the

day of flight operation and the main activities include execut-
ing the daily plan developed in the pre-tactical phase, and for-
mulating and implementing tactical traffic flow management

measures to address unexpected supply–demand imbalances.
The implementation of ATFM involves airlines, airports,
and air traffic control authority. For more than two decades,

the concept of Collaborative Decision Making (CDM) has
been explored around the world to enhance the effectiveness
of ATFM. This concept has now been widely adopted in major
airports and Airport CDM (A-CDM) has become a successful

example of its application. A-CDM’s operation process helps
to reduce delays, improve punctuality, and optimize resource
utilization. It provides an information sharing platform and

decision-making mechanism for multiple parties in air trans-
port, allowing them to optimize resource utilization while still
meeting the interests of all parties. The specific process and the

16 milestones are illustrated in Fig. 1. 23 All parties involved
share their latest information and plan to keep everyone main-
taining the same situation awareness. Two important informa-

tion provided by air traffic control for departure flights are the
Target Take-off Time (TTOT) and the Target Start-up
Approval Time (TSAT). More accurate and stable timing
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information is vital to the successful implementation of A-
CDM.

However, insufficient focus has been given to examining the

robust optimization of departure slots for all flights within the
aviation system. Although current research and decision mak-
ing tools can identify the best flight schedule for air traffic

management authorities, changes in departure slots may occur
due to unexpected events or operational constraints that affect
capacity in downstream sectors or airports. Such occurrences

are commonly observed in actual operational scenarios. If
the actual capacity is lower than the expected capacity, and
too many flights were scheduled during the period, then some
flights will not be able to take off as planned, resulting in flight

delays. On the other hand, if the actual capacity is higher than
the predicted capacity, for instance, the capacity of the affected
airport or airspace is quickly restored, the preassigned depar-

ture slots may have to be changed earlier to avoid wasting
capacity and unnecessary flight delays. In such situations, air-
lines have to rearrange their resources to facilitate earlier

departures, which could result in increased workload and cost.
One of the primary obstacles is making departure decisions
when faced with capacity uncertainty. There is still a deficiency

in methods for accurately forecasting airport and airspace
capacity. The second issue lies in the complexity of the air traf-
fic management system as a networked system, where modifi-
cations in operations at a specific sector or airport can

impact the operations of other airports and sectors within
the network. In instances where a hub airport’s operational
capacity falls short of the anticipated level, traffic control

restrictions will affect both incoming and outgoing flights at
that airport. Over-scheduled flights have to be delayed, leading
to delays that will propagate through the entire air transporta-

tion network. Conversely, the repercussions of over-scheduling
are less significant at smaller airports with lower levels of traf-
fic. No research has been conducted to investigate the impact

of network effects on the optimized strategies in air traffic flow
management problems when using optimization techniques
that account for uncertainty in stochastic scenarios.

This paper investigates the pre-departure scheduling in the

tactical phase of air traffic flow management. Real-time data
are used to make optimal adjustments to the flight schedule
to enhance airport efficiency and punctuality. The contribu-

tions of our work are outlined below. First, a pre-departure
scheduling model is proposed which considers uncertain
capacity of airport and airspace to minimize the total cost of

flight delays. The chance constraint method is used to manage
the uncertainty of airport and sector capacity. Second, our
model takes the characteristics of air traffic network into
account while the computational results are compared with

the optimization results of the deterministic capacity model,
as well as the superiority of the capacity uncertainty model
considering the node importance over the traditional model

that only considers capacity uncertainty. This study is valuable
for improving the effectiveness of collaborative air traffic flow
management, and could have significant implications for

designing network control strategies in uncertain conditions.
This paper is organized as follows. Section 2 reviews the

existing literature on air traffic flow management, uncertainty

problems, and the chance constraint method. Section 3 pre-
sents a model for allocating uncertainty departure and arrival
slots flights at the airport network level and explains the trans-
formation of chance constraints. Section 4 examines the struc-
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Fig. 1 Airport CDM milestones. A total of 16 key events during arrival and departure are marked as milestones.23 Some critical time

events are Calculated Take-off Time (CTOT), Actual Take-off Time (ATOT), Actual Landing Time (ALDT), Actual In-block Time

(AIBT), Actual Commencement of Ground Handling Operations Time (ACGHOT), Target Off-block Time (TOBT), Aircraft Ready for

Departure Time (ARDT), Aircraft Startup Requested Time (ASRT), Actual Start-up Approval Time (ASAT), Actual Off-block Time

(AOBT), Actual Take-off Time (ATOT).

Robust pre-departure scheduling for a nation-wide air traffic flow management 3

CJA 3223 No. of Pages 18

9 September 2024

c

oo
f

tural characteristics of the national air traffic network and
evaluates the importance of the airport and sector nodes. Sec-

tion 5 introduces two methods to set the probability of viola-
tion of chance constraints and provides experimental results.
Section 6 is the conclusion.

2. Literature review

The majority of the world’s busiest airports experience signif-
icant issues with traffic congestion and flight delays. Expand-

ing airport infrastructure to increase capacity is a potential
solution, but it is a lengthy and costly process that makes it dif-
ficult to quickly solve the problem. An effective and practical

alternative is air traffic flow management. In 1987, Odoni pro-
posed a mathematical model for the first time to address the air
traffic flow management problem. The model seeks to balance

airport capacity and traffic demand, converting air delay into
ground delay, thus reducing the cost of flight operations.24 Sig-
nificant attention has been focused on researching air traffic

flow management since that time. Comprehensive reviews of
air traffic flow management can be found in Ref. 25–27. This
section provides an overview of research conducted on pre-
tactical and network-level tactical air traffic flow management.

The studies can be categorized into deterministic traffic man-
agement models and stochastic traffic management models,
depending on whether they consider the future impact on air-

port or sector capacity as deterministic or uncertain.

2.1. Deterministic air traffic flow management models

The first research on ground holding strategies for air traffic
flow management is discussed in Ref. 28, where a deterministic
model is introduced for the holding of the ground in a single

airport. The model takes into account the airport’s capacity,
which is determined by factors such as weather conditions
(such as wind speed and visibility), to calculate flight departure
times and delays. However, this model does not account for

the ripple effect of delays spreading between successive flights
of the same aircraft. In Ref. 3, a collaborative multi-airport
ground delay model is proposed and a heuristic algorithm is

developed to find a feasible solution in a reasonable time. This
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study examines the ground delay strategies for a network of
airports where the impacts of delay propagation over time

are carefully considered. To account for both airport capacity
and sector capacity constraints, a 0–1 integer program model is
developed.29 Nevertheless, the model does not account for
flight rerouting and cancellations. Subsequently, the authors

proposed a dynamic network flow method to examine the
reroute issue within air traffic flow management. 5Lulli argued
that the circumstances in Europe are distinct from those in the

U.S. and proposed a deterministic dynamic model for Euro-
pean air traffic flow management.30 A novel integer program-
ming model for solving large-scale air traffic flow problems are

presented in.31 The model covers all the phases of flights,
including departure, cruising, and landing, and considers var-
ious regulatory actions such as ground delays, route changes,

speed adjustments, and airborne holding. It incorporates a
multivariable framework with three categories of constraints
to enhance relaxation conditions, enabling efficient resolution
of air traffic management scenarios comparable in size to the

entire United States. In a different research venue, a team of
researchers investigates air traffic flow management through
the use of Eulerian models. For example, a Eulerian model is

proposed in Ref. 32, which is based on the Cell Transmission
Model (CTM). This model operates under the assumption that
flights between specific Origin-Destination (OD) pairs can be

represented as paths, which consist of a sequence of links.
Each link corresponds to a sector, and these links are further
segmented into cells, where the average flight duration between
OD pairs defines the path length and each cell’s length is con-

sidered as 1 min. In the Cell Transmission Model (CTM), the
state variable is the total count of aircraft in each cell during
every time interval, and the total aircraft count in a sector is

the aggregate of all aircraft across all cells within that sector.
This modeling approach pertains to the airway level, and the
model’s dimensions are dictated by the network structure.

Another interesting work is in Ref. 33, where an Eulerian-
Lagrangian model is developed by taking into account the
departure and arrival fix information of the flights. A Linear

Transmission Model (LTM) has been created, and a method
for pairwise decomposition is introduced to discover the best
global solution (Cao and Sun34). Similar to the CTM, this

ted
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model can achieve the optimum outcome, yet it operates
approximately six times faster than the CTM. The above men-
tioned studies can determine the optimal air traffic flow man-

agement strategies assuming that airport and sector capacities
are fixed. However, these capacities are subject to change due
to stochastic factors, such as weather, equipment malfunc-

tions, and air traffic controller’s personal capability. Several
methods have been suggested to tackle the issue of stochastic
air traffic flow management.

2.2. Stochastic air traffic flow management models

In Ref. 35, a dynamic multi-stage stochastic integer program-

ming model is introduced for a single airport. This model
employs a scenario tree to depict the uncertain capacity, and
as time progresses, the decision tree branches out to create
numerous scenarios. Hoffman argued that single airport flow

management does not take into account the connectivity
between flights, which can lead to impractical situation due
to the impact of previous flight. To deal with the unpredictabil-

ity of airport capacity in ground delay programs, Liu et al.36

developed an airport capacity scenario tree using historical
data on airport capacity distribution. Agustin et al.37 devel-

oped a multistage hybrid 0–1 programming model to solve
the air traffic management problem, taking into account the
uncertainty of the capacity of airports and sectors simultane-
ously, as well as flight rerouting. Stochastic optimization has

become a widely used method for dealing with optimization
problems that involve uncertain parameters. The main idea
behind is to minimize the risk of exceeding capacity constraints

in cases where the probability distributions of the nodes are
understood. Bertsimas and Sim6 discussed the challenge of
dealing with data uncertainty in the context of the network

flow optimization problem. They introduced a robust opti-
mization approach to tackle this uncertainty, allowing users
to manage the level of constraint violation and consequently

adjust the model’s level of conservatism. However, when cost
coefficients contain uncertainties, the 0–1 discrete optimization
problem on n variables requires at most n + 1 instances of the
original problem to solve the robust counterpart, which is

computationally intensive. Janak et al.38 proposed a novel
robust optimization approach to address planning problems
with bounded uncertainty. The model was implemented in real

industrial cases to achieve dependable and resilient solutions.
Gupta et al.39 proposed a robust optimization approach to
tackle the uncertainty in air traffic flow management. How-

ever, the model optimized the worst case of uncertain param-
eters, resulting in an overly conservative and resource-wasteful
allocation scheme. Clare and Richards40 proposed a robust
optimization method to solve the planning problem with

bounded uncertainty, assuming that the future capacity prob-
ability distribution information is known. They integrated a
deterministic discrete decision mixed integer linear model with

sector capacity violation probability constraints to create a
chance-constrained model. However, The study employed a
brute force algorithm to address the model, leading to compu-

tational constraints and challenges in solving large-scale prac-
tical issues. Chen et al.41 developed a chance-constrained air
traffic flow management model by adding probabilistic con-

straints to a deterministic integer programming model. The
capacity information of the probabilistic sector is incorporated

Unc
orr

ec
341

Please cite this article in press as: YAN J et al. Robust pre-departure scheduling for a
10.1016/j.cja.2024.08.054
within the chance constraints. A polynomial approximation
chance constraint optimization algorithm is developed, which
is capable of providing optimal traffic management scheme

with efficient computational speed. Scenarios generate method
is used to reduce the number of possible operation scenarios in
order to solve the chance constrained models.42,43 These

stochastic air traffic flow management models provide mathe-
matical frameworks used to optimize the flow of air traffic in
uncertain conditions, considering the random nature of factors

such as weather, aircraft delays, and airspace congestion. By
incorporating probability distributions and stochastic pro-
cesses, they aim to find optimal solutions that minimize delays,
fuel consumption, and overall system costs while ensuring

safety and efficiency. However, most of work consider only
one or a few sectors operating under uncertainty. Little atten-
tion is given to address the uncertainty of capacity in the whole

network. Moreover, no research has been conducted on estab-
lishing the thresholds for capacity violations, leaving air traffic
flow management staff to rely on their own expertise to make

decisions.

3. A chance constrained model for air traffic flow management

3.1. Model framework and assumptions

The overall structure of the model is illustrated in Fig. 2. It
takes into account the capacity of airports and sectors, flight
plans, and the predetermined probability of violation at the

airport/sector. Each flight plan includes the departure airport,
destination airport, planned departure time, planned arrival
time, list of sectors, and the associated flying time for travers-
ing each sector, turnaround time at the airport, etc. The model

optimizes the departure time and arrival time for each flight to
ensure that the traffic demand and capacity are balanced. We
use five-minute intervals as the time unit. Due to the data con-

straints, we assume that each flight can pass through the sector
with the minimum sector flying time. In future work, we can
consider variable flying times for different flights.

3.2. Description of notations

The sets, parameters and variables used in the model are given
in Tables 1–4.

3.3. Objective function

The aim of the model is to reduce the total cost of flight delays.

Flight delay is defined as the time difference between its sched-
uled time of operation and its actual time of operation. It
should be noted that the departure displacement includes both

ground delays and early departures. The objective function is
represented in Eq. (1):

Q ¼ min
P

f2Fwait ;a¼Of

b t� tdepf

��� ���Xf;a;t þ
P
f2F

hyfYf

 !
ð1Þ

The cost in the objective function consists of two parts. The

first part is the cost of adjusting the departure slot for depar-

ture flights as expressed as
P

f2Fwait ;a¼Of

b t� tdepf

��� ���Xf;a;t, and the

second part,
P
f2F

hyfYf, is the cost of air delays for all flights.
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Table 1 Sets of model.

Set Description

T=T15 Set of 5-minute/15-minute slots in a day

Fwait Set of flights scheduled to depart at Tmin and within 3 h

Ffly Set of flights that have not yet arrived at Tmin

F Set of all flights,F ¼ Fwait [ Ffly

Sby
f;Tmin

Set of sectors that flight f has passed through or is in at

Tmin,f 2 Ffly

Sf Set of all sectors that flight f passes through(include

departure and arrival airports),f 2 F

S0
f Set of sectors that flight f passes through(exclude

arrival airport compared to Sf),f 2 F

S Set of sectors

Fs Set of flights passing through sector s,s 2 S

Af=A
0
f Set of departure and arrival airports/pairs of departure

and arrival airports a; a0ð Þ for flight f,f 2 F

Adep=Aarr Set of departure/arrival airports

Fdep
a =Farr

a
Set of flights with a as departure/arrival

airport,a 2 Adep=Aarr

P Set of pairs of connecting flights f1; f2ð Þ
P0 Set of airport pairs a; a0ð Þ corresponding to the

connecting flight pair f1; f2ð Þ, where a1 is the arrival

airport of f1 and a2 is the departure airport of f2

Table 2 Parameters of model.

Parameter Description

Tmin The start time of the flight schedule to be optimized

Tmax The end time of the flight schedule to be optimized

tdepf =tarrf =tflyf
Original departure/arrival/fly time of flight f,f 2 F

Of=Df Departure/Arrival airport for flight f,f 2 F

b=h Cost of unit slot displacement of departure/air delay

Sf;Tmin
Sector in which flight f is located at Tmin,f 2 Ffly

Snext
f;s

Next sector of sector s where flight f is located

now,f 2 F,s 2 S0
f

tinf;s The slot when flight f enters sector s,f 2 Ffly,s 2 Sby
f;Tmin

tflyf;s;min
Minimum fly time of flight f in sector s,f 2 F,s 2 Sf

kdepa;t =l
arr
a;t Capacity of airport a at slot t,a 2 Adep=Aarr,t 2 T15

us;t Capacity of sector s at slot t,s 2 S,t 2 T15

U Maximum air delay for any flight which set to 1 h

L Maximum delay for departure flight which set to 3 h

K Maximum advanced arrival time for flight which set

to 1 h

V Minimum turnaround time for connecting flight

which set to 30 min

M A positive number of infinite size

a Violation probability

Table 3 Decision variables of model.

Decision

variable

Description

Xf;a;t Binary variables, where 1 indicates that flight f is

assigned to slot t in airport a,otherwise

0,f 2 F,a 2 Af,t 2 T

Wf;s;t Binary variables, where 1 indicates at slot t flight f

has left or is in sector/airport s,otherwise

0,f 2 F,s 2 Sf,t 2 T
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Operators and managers prefer to keep flights on the
ground rather than in the air, as this increases fuel consump-

tion and the chances of unsafe events. Based on previous stud-
ies on the study of Ground Delay Program(GDP),44,45 this
paper sets the cost ratio of airborne delay to ground delay as

2:1. For simplicity, the cost of one unit of airborne delay is
100, and for ground delay it is 50.

3.4. Deterministic model constraints

The constraints of the model are capacity constraints, flight
connection constraints, and flight time constraints. Eq. (2) to
Eq. (21) are the constraints of the model.

(1) Constraints for the flights in the air

Unc
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Table 4 Indirect decision variables of model.

Indirect decision

variable

Description

bf;s;t Binary variables, where 1 indicates at slot t

flight f is in sector s,otherwise

0,f 2 F,s 2 Sf,t 2 T15

yf integer variables, where positive numbers

indicate flight f occurred air delay, otherwise

0,f 2 F

Yf Binary variables, where 1 indicates flight f

occurred air delay, otherwise 0,f 2 F
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Eq. (2) ensures that the decision variable Xf;a;t and for

flights that are in the air is equal to its actual departure time.
Eq. (3) ensures that the decision variable Wf;s;t can for flights

that are in the air is equal to its actual entry time of each sector
it traverses. Eq. (4) ensures that the decision variable Wf;s;t is

not decreasing.

Xf;a;t ¼ 1; 8f 2 Ffly; a ¼ Of; t ¼ tdepf ð2Þ

Wf;s;t ¼ 1; 8f 2 Ffly; s 2 Sby
f;Tmin

; t 2 tinf;s; 287
h i

ð3Þ

Wf;s;t�1 6 Wf;s;t; 8f 2 F; s 2 Sf; t 2 1; 287½ � ð4Þ

Xf;a;t ¼ Wf;s;t �Wf;s;t�1; 8f 2 F; a 2 Af; s ¼ a; t 2 1; 287½ � ð5Þ

(2) Flight operational constraints

Eq. (5) expresses the relation between the decision variables
Xf;a;t and Wf;s;t. When Xf;a;t ¼ 0, this means that the flight f has

not left the airport a in the slot t. In this case, Wf;s;t can be

either 0 or 1. If a is an arrival airport, Eq. (6) ensures that
all flights have unique departure and arrival slots. Eq. (7)

ensures that flights do not arrive earlier than Tmin. Eq. (8) guar-
antees that the maximum departure delay does not exceed 3 h.
Eq. (9) ensures that flights arrive no more than 1 h ahead of
schedule. Eq. (10) ensures that connecting flights must meet

the minimum connection time requirement. Eq. (11) ensures
that flights meet the sector minimum flying time. Eqs. (12)–
(15) are the air delay of the flight and make sure that the max-

imum air delay does not exceed 1 h. Eq. (16) guarantees that
transit time for connecting flights is not less than 30 min.P
t2T

Xf;a;t ¼ 1; 8f 2 F; a 2 Af ð6Þ

P287
t¼Tmin

Xf;a;t ¼ 1; 8f 2 Ffly; a 2 Df ð7Þ

Ptdepf
þL

t¼Tmin

Xf;a;t ¼ 1; 8f 2 Fwait; a 2 Of
ð8Þ

P287
t¼tarr

f
�K

Xf;a;t ¼ 1; 8f 2 F; a 2 Df ð9Þ

P
t2T

t�Xf;a;t 6
P
t2T

t�Xf;a0 ;t; 8f 2 F; a; a0ð Þ 2A0
f ð10Þ

Unc
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W
f;Snext

f;s
;tþt

fly

f;s;min

6 Wf;s;t; 8f 2 F; s 2 S0
f; t 2 Tmin; 287� tflyf;s;min

h i
ð11Þ

P
t2T

t�Xf;a0 ;t �
P
t2T

Xf;a;t � tflyf 6 U; 8f 2 F; a; a0ð Þ 2 A0
f ð12Þ

P
t2T

t�Xf;a0 ;t �
P
t2T

Xf;a;t � tflyf ¼ yf; 8f 2 F; a; a0ð Þ 2 A0
f ð13Þ

yf P 0:5�M� 1� Yf

� �
; 8f 2 F ð14Þ

yf 6 0:5þM�Yf; 8f 2 F ð15Þ

(3) Airport and sector capacity constraints

Eqs. (17)–(21) ensure that traffic at the airport or sector will
not exceed its capacity.

Wf2 ;a2 ;tþV 6 Wf1 ;a1 ;t; 8 f1; f2ð Þ 2 P; a1; a2ð Þ 2 P0; t 2 0; 287� V½ �
ð16Þ

P3tþ2

t¼3t

P
f2Fdepa

Xf;a;t 6 kdepa;t ; 8a 2 Adep; t 2 Tmin

3
; Tmax

3
þ 12

� �
ð17Þ

P3tþ2

t¼3t

P
f2Farra

Xf;a;t 6 larr
a;t ; 8a 2 Aarr; t 2 Tmin

3
; Tmax

3
þ 12

� �
ð18Þ

P3tþ2

t¼3t

Wf;s;t �Wf;Snext
f;s

;t

� �
P 0:5�M� 1� bf;s;t

� �
;

8f 2 Fs; s 2 S; t 2 Tmin

3
; Tmax

3
þ 12

� � ð19Þ

P3tþ2

t¼3t

Wf;s;t �Wf;Snext
f;s

;t

� �
6 0:5þM�bf;s;t;

8f 2 Fs; s 2 S; t 2 Tmin

3
; Tmax

3
þ 12

� � ð20Þ

P
f2Fs

bf;s;t 6 us;t; 8s 2 S; t 2 Tmin

3
; Tmax

3
þ 12

� �
ð21Þ

ted
 Proo

f

3.5. Chance constraints

3.5.1. Establishment of chance constraints

Chen et al.41 proposed a chance constrained model to address

the problem of Air Traffic Flow Management (ATFM) under
uncertainty. The main idea is to replace sector capacity con-
straints in the Integer Programming optimization model with
probabilistic constraints. That is the capacity of a sector can

be exceeded with a given probability. Here, we extend their
work to consider both stochastic capacity at airports and sec-
tors. Therefore, Eq. (17), Eq. (18), and Eq. (21) are replaced by

Eq. (22):

P

P3tþ2

t¼3t

P
f2Fdepa

Xf;a;t 6 kdepa;t

P3tþ2

t¼3t

P
f2Farra

Xf;a;t 6 larr
a;tP

f2Fs
bf;s;t 6 us;t

0
BBBBBBBB@

1
CCCCCCCCA

P 1� a: ð22Þ
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This model enumerates all potential combinations of air-
port and sector capacities, and chooses the capacity combina-
tion that meets the violation probability. It creates a feasible

set of capacity combinations, which is also the feasible set of
node traffic allocations. The optimal allocation scheme is the
solution in the feasible set that has the best objective function

value.
The most accurate solution to the chance constraint model

can be determined by enumerating all possible combinations of

capacities. However, as the number of airports and sectors
increases, the computational complexity increases drastically.
This type of constraint model has difficulty in finding the opti-
mal solution for large-scale problems. Therefore, we transfer

the joint constraints into individual constraints based on the
Bonferroni conservative approximation.46 Thus, this article
improves the chance constraint method by setting the proba-

bility of violation for a single node instead of the joint distri-
bution for a number of nodes. Doing so will enhance the
computational speed of the model and allow for the cus-

tomization of node violation probabilities according to the sig-
nificance of nodes in the air traffic network. As a result, this
will lead to more beneficial and logically optimized strategies.

The capacity constraints in our chance constraint model are
expressed in Eqs. (23)–(25):

P
P3tþ2

t¼3t

P
f2Fdep

a

Xf;a;t6kdepa;t

 !
P1�aa;8a2Adep;t2 Tmin

3
;Tmax

3
þ12

� �
ð23Þ

P
P3tþ2

t¼3t

P
f2Farr

a

Xf;a;t6larr
a;t

 !
P1�aa;8a2Aarr;t2 Tmin

3
;Tmax

3
þ12

� �
ð24Þ

P
P
f2Fs

bf;s;t 6 us;t

 !
P 1� as; 8s 2 S; t 2 Tmin

3
; Tmax

3
þ 12

� �
:

ð25Þ
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3.5.2. Transformation of chance constraints into deterministic
constraints

In this section, we show how to convert the chance constraints
expressed in Eqs. (23)–(25) into deterministic constraints. As

an example, the four capacity scenarios of a sector s are pre-
sented in Table 5.

The first row in Table 5 shows the capacity value (us;t) of

the sector s for each scenario; the second row displays the
probability PCs;tð Þ of the capacity in each scenario; the third

row presents the cumulative probability (PCsum
s;t ) of the sector.

Let n be the scenario number n 2 1; 2; 3; 4f g. The cumulativenc
orr
Table 5 Capacity distribution for sector s at slot t.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

us;t 5 6 7 8

PCs;t 0.1 0.3 0.4 0.2

PCsum
s;t 0 0.1 0.4 0.8
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probability of scenario n indicates the proportion of scenarios
with capacity values less than scenario n. It establishes the con-
nection between the chance constraint and the deterministic

capacity constraint by considering the probability of violation.
The following example demonstrates the specific transforma-
tion process.

For example, if the probability of violation in sector s is
0.05, then it means that the maximum allowable flow is the
quantile 5% of all possible capacity scenarios. Since the sce-

nario with capacity of 5 is in the quantile 0% to 10%, the
probability of violation of 0.05 is within the cumulative prob-
ability of Scenario 1 and Scenario 2. Therefore, the chance
constraint can be changed into a deterministic constraint that

traffic flow is less than or equal to 5. When the probability of
violation is 0.95, the maximum allowed traffic is in the 95%
quantile of all possible capacity scenarios. Since the capacity

in Scenario 4 is in the 80% to 100% quantile, the chance con-
straint can be converted into a deterministic constraint with a
flow less than or equal to 8. Given the empirical distribution of

sector capacity, it is essential to ensure that converting a
chance constraint into a deterministic one closely to the origi-
nal situation. Thus, for sector s in the time slot t, a chance con-

straint with a probability of violation 95% can only be
translated into a deterministic constraint where the flow is less
than or equal to 8.

P
P
f2Fs

bf;s;t 6 us;t

 !
P 1� as ¼

P
f2Fs

bf;s;t 6 5; 0 6 as 6 0:1P
f2Fs

bf;s;t 6 6; 0:1 < as 6 0:4

P
f2Fs

bf;s;t 6 7; 0:4 < as 6 0:8

P
f2Fs

bf;s;t 6 8; 0:8 < as 6 1

8>>>>>>>><
>>>>>>>>:
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4. Characteristics of air traffic flow network

Due to its important role in moving passengers and cargo, the
properties of the air transportation network have become a
significant subject of study within the network science field.

Early studies have investigated the structural features of air
transport networks. For instance, Guimerà et al. examined
the structure of worldwide air transportation network.47 These
networks, whether global or national, exhibit the characteris-

tics of scale-free small-world networks. Subsequently, the
emphasis of research shifted towards analyzing vital nodes
and fundamental characteristics of the network. Given that

connectivity patterns influence diffusion phenomena (such as
flight delays and epidemics) across the network, understanding
the function and essential elements of the network is crucial.48

Earlier research has demonstrated that reductions in capacity
at various airports affect the overall performance of air trans-
port systems differently.49,50 Motivated by these findings, it is
hypothesized that the characteristics of the network play a role

in determining probabilistic constraints and optimization
approaches.

To illustrate how flights operate in the air transportation

system, Fig. 3 presents a two-layer air traffic flow network.
The bottom layer represents the airport network, where the
nodes represent the airports, and the edges represent the sched-

uled direct flights connecting the airports. The upper layers are
ation-wide air traffic flow management, Chin J Aeronaut (2024), https://doi.org/
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the sector network, where the nodes are the sectors, and the
edges represent the flow of flight traffic between the two sec-
tors. Arrows connect that airport and the sector in the two net-

works, indicating the traffic flow between the airport and the
sectors. Several studies have investigated the structural charac-
teristics of aviation networks. Most networks have airports as

nodes and a link connects two airports if there is a flight oper-
ating between them.51 In real operation, the airspace is divided
into different sectors, each of which will be managed by one or

two air traffic controllers.51 To capture the operational charac-
teristics of the air traffic network, the sector network is repre-

sented as a graph G
R
¼ N

R
;E
R� �

, where N
R

is the set of

nodes and E
R
is the set of edges. Nodes n (n 2 N

R
) of the net-

work G
R

are airports and sectors, while an edge e (e 2 E) is
added between two nodes if there is traffic between them. In
this paper, an edge e represents direct flight connections

between a sector and a sector (or an airport). Let A
R

be the

adjacency matrix of the network G
R
, with each element aij rep-

resenting the relationship between node i and j. For example,

in an undirected, unweighted network, if there is an edge
between i and j, then aij ¼ 1; otherwise, aij ¼ 0. To measure

the importance of nodes in the network, we introduce the fol-
lowing metrics.

(1) Degree and degree distribution. The degree of a node v
is denoted as kv, which is defined as the number of edges
connected to that node. In an undirected network G, the
degree of node v is calculated as

kv ¼
P
u

av;u ð27Þ

The degree distribution is often represented as a histogram,
showing the count of nodes for each degree.

(2) Degree centrality. The degree centrality is defined as

CD vð Þ ¼ kv
max deg0 ð28Þ

where maxdeg is the maximum degree in the network.
orr

ec

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

Fig. 3 Air traffic network. The bottom layer is the airport

network with the size of node indicating the traffic volume at the

airports. The upper layer in the sector network.
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(3) Betweenness centrality. Betweenness is to measure the

influence of the node v over traffic flow between other
node. Betweenness centrality is defined as

CB vð Þ ¼ P
i–v–j

rij vð Þ
r0
ij

ð29Þ

where rij is the total number of shortest path from node i to

node j, and rij vð Þ is the number of those paths that pass

through node v.

(4) Closeness centrality. Closeness centrality is a measure

that quantifies how close a node is to all other nodes
in a network. Mathmatically, closeness centrality is
defined as

CC vð Þ ¼ n�1P
u
d v;uð Þ0 ð30Þ

where d v; uð Þ is the shortest path length from node v to node u.
The importance of nodes in a network can be evaluated

using metrics such as degree, betweenness, and closeness.

The degree could reflect the potential for interaction between
the node and other nodes in the network. However, we should
note that the importance of a node is not solely determined by

its degree value, but also by the degree values of its neighbor-
ing nodes. Betweenness was originally proposed to measure the
social status of a node, as it is determined by the number of

shortest paths that pass through it. Closeness is a measure of
the proximity of a node to other nodes in the network, with
a higher value indicating that the node is closer to other nodes

and its information will spread more quickly. When it comes to
air traffic, flight delays can spread throughout the system, lead-
ing to further delays. To reduce the amount of delays, it is
essential to first minimize the initial delays, and then manage

the propagation of delays in the network. Therefore, it is
important to assess the importance of nodes in sector net-
works. Closeness could be a suitable measure for the sector

nodes. Nodes with higher closeness should have a lower chance
of exceeding capacity, which would control the initial delay
generated by important nodes and thus limit the spread of

delays in the network.
Airports, which are the beginning and end points of the air

traffic management system, differ from sectors. Therefore, it is

not appropriate to use the same network topology metric to

assess their importance. To this end, the airport network G
R

is created with all airports as nodes and a link between two air-
ports if there is a scheduled traffic flow between them. The

degree of the airport node reflects the number of cities served
by the airport, but the traffic volume of the airport with high
degree is not necessarily large. For example, the node degrees
of ZBTJ(Tianjin) and ZLXY(Xi’an) are approximately equal,

however, the flight volume of ZLXY is almost twice as much
as that of ZBTJ. This means that ZLXY has a higher traffic
volume, making it more prone to delays. Furthermore, due

to the larger number of flights, ZLXY flight delays are more
likely to spread to other airports through the network. More-
over, a prior research on the resilience of the airport network

has indicated that the traffic volume of airports is the most reli-
able indicator of the effect of a disturbance on network effi-

ted
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ciency.50 Therefore, we use traffic volume as a metric to eval-
uate the importance of airport nodes.

To further calculate the importance of the nodes, we use the

standard max–min normalization method to transfer the orig-
inal node important metric data into the range (0, 1). Fig. 4
plots the importance of sector nodes and airport nodes. The

names of sectors are shown in the upper X-axis, while the
names of the airports are shown in the bottom X-axis. The sec-
tors whose closeness are smaller than 0.209, are assumed to

have enough capacity handling additional flights. These sectors
are mostly located at the periphery of the network, and the
probability of delay caused by these sectors is low. Thirty-
eight of these airports have an average daily flights of more

than 200, while the remaining airports have a smaller average
daily flights and a low probability of traffic exceeding airport
capacity. Thus, it is assumed that the capacity of these airports

is always enough to meet traffic demand.

5. Case study

5.1. Experimental setup

5.1.1. Data

We examine the effectiveness and performance of our model

by comparing the optimized results with those obtained from
the deterministic model. The flight schedule from 9:00 am to
12:00 pm on August 1, 2018 is used as input data for the mod-
els. During this period, there were 3435 flights. At 9:00AM,

1156 flights were in the air, while 2279 were still on the ground.
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Fig. 4 Importance indicator of sectors and airports. The

importance of airports is determined by assessing their significance

through traffic volume. Similarly, the importance of sectors is

determined by evaluating their significance through closeness

centrality.
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The air traffic network consists of 195 airport nodes and 188
sector nodes. The sector network is formulated based on air-
space data from the Air Traffic Management Bureau. Estima-

tion of the capacity of an airport or of a sector is a complex
task, which is beyond the scope of this study. The airport
capacity is provided by the air traffic control authority in the

form of declared airport capacity. Statistical results indicate
that hourly arrivals/departures of the airport vary between
40% and 70% of its declared capacity. Therefore, we use

60% of the airport declared capacity as departure capacity
and arrival capacity. As there is no data available on the
capacity of the sector, the sector capacity is determined as
the 50th percentile of the past traffic volume moving through

the sector. The primary goal of this study is to investigate
the efficiency and benefits of using a chance constrained model
in air traffic flow management when faced with uncertainty,

taking into account the structural characteristics of the air traf-
fic network. It is assumed that the precise determination of air-
port and sector capacities does not significantly influence this

research. Further validation efforts can be conducted using
more realistic capacity data.

5.1.2. Optimization schemes

We evaluate ten different optimization strategies in addition to
the baseline (deterministic) model to compare the performance
of our chance-constrained models. These ten optimization

schemes are divided into two groups: (A) Method 1: Chance-
constrained model with equal probability of violation for all
airports and sectors; and (B) Method 2: Chance-constrained

model with the probability of violation setting based on the
importance of the node. In the base optimization scheme
(S0), all constraints in the worst-case scenario model must be
satisfied. This means that optimized traffic must not exceed

airport or sector capacity in all possible scenarios.
In fact, the operational capacity of airports or sectors is

stochastic, which means that traffic flow may exceed a given

capacity limit at some points. To account for this, we allow
capacity constraints to be violated with a small probability.
To set this probability, we used two different approaches.

The first is to set all nodes with the same probability of viola-
tion. If this probability is set too high, it could lead to airport
and airspace congestion and large flight delays in actual oper-
ations. However, if set too low, the optimized schedule may be

more robust to various operating scenarios, but the limited air-
port capacity may be underused. To balance capacity utiliza-
tion and robustness to optimization, we set five schemes

a 2 0:05; 0:08; 0:11; 0:14; 0:17f g which are referred to as S1 to
S5, respectively. We suggest a second approach that takes into
account the characteristics of the air traffic network. Small dis-

turbances that occur at a critical airport or sector can cause
long unforeseen delays throughout the network. Therefore,
optimized traffic flow must be more resilient to uncertainty

in these airports and sectors, and operations strategies should
be more conservative. We propose a method to set the proba-
bility of violation for airports and sectors, which takes into
account the importance of the airport or sector. For simplicity,

we use the term ‘‘node n‘‘ to refer to an airport or a sector.
Let Hn be the importance value of node n, then

Maxix ¼ max Hnf g and Minix ¼ min Hn;f g are the maximum

importance value and the minimum importance value of all
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nodes. The probability of violation an;i of the optimization

scheme ith; i 2 6; 7; 8; 9; 10f g is calculated as follows:

ain ¼ ain;min þ ain;max � ain;min

� �
Maxix�Hn

Maxix�Minix
ð31Þ

where ain;max and ain;min are the predetermined violation proba-

bilities for the nodes with the maximum importance value

and the minimum importance value. Here, ain;max are set to

0.20, while ain;min are set to 0:05; 0:08; 0:11; 0:14; 0:17f g, corre-
sponding to the schemes S6 to S10 respectively. Table 6 pre-
sents data regarding the probablity of violation a for each
optimization scheme. The algorithms are coded in Python

and Groubi, and are executed on a computer equipped with
a 32 GB RAM and a 12th Gen Intel(R) Core(TM) i7-12700
Cpu (2.10 GHz).

5.2. Results

5.2.1. The total cost for each optimization scheme

Table 7 shows the total cost of and the computation time for
obtaining the optimal flight schedule under the optimization
schemes from S0 to S10. The total cost of the optimal solution

for the base model is 416450, with 13.2% of this cost being
attributed to air delay and 86.8% to ground slot displace-
ments. In the optimized schedule, 64.9% of the flights are

assigned their scheduled departure time, and 35.1% are
delayed (98.7%) or depart earlier (1.3%). In contrast, 81.1%
of the arrival flights are not assigned their original scheduled

arrival slot, with 42.8% being delayed and 57.2% assigned ear-
lier slots. This is likely due to the fact that airlines adding buf-
fer time to their scheduled blocked time to account for
potential flight delays.52

In uncertainty scenarios, the total delay cost decreases as
the probability of violation increases for both the random set-
ting and the importance-based node setting. This is because an

increase in the capacity chance constraint violation probability
enlarges the feasible domain of the model solution, prompting
the model to search for a flight schedule with a lower total cost.

Since excessive air delay can cause airspace congestion and air
traffic safety concerns, the unit cost of air delay is higher than
the unit cost of ground delay in the objective function setting

of the model. This leads to the ground delay being greater than
the air delay. Generally, the optimization results based on
Method 2 are better than those of Method 1. The variation
is smaller, indicating greater stability. As the probability of

violation increases, the percentage of flights experiencing flight
delay decreases in all schemes in Method 1. Method 2, how-
ever, has a concentration of 6.9%-13.6% of departure flights

with delays, and as capacity constraints become more relaxed,
the percentage of departure flights delayed decreases. It is evi-
dent that the percentage of departure flights that are delayed in

nc
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ec
Table 6 Violation probability for eleven optimization schemes.

Scheme Base method Method 1

S0 S1 S2 S3 S4

a 0 0.05 0.08 0.11 0.14

amin

amax
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U

Method 2 is much lower than that in Method 1. The results
show that about 90% of the departure flights depart on time.
In comparison, the proportion of flights with delayed arrival

flight is higher. Method 1 and Method 2 generally do not have
a clear increasing or decreasing pattern but with an overall
downward fluctuate.

In Fig. 5, we plot the number of slot displacements for arri-
val and departure flights in each optimization scheme, while
Fig. 6 further shows the ratio of slot forward and slot back-

ward displacement. We observe that in the departure flight slot
displacement, the slot forward displacement maintaining
numerical stability and the slot backward displacement
decrease with the increase in violation probability. The back-

ward displacement of the departure slot for all scenarios is
almost always greater than the forward displacement, and
the numerical change in the backward displacement is also sig-

nificantly greater than that of the forward displacement. In the
flight arrival slot displacement, the slot backward displacement
is much smaller than the slot forward displacement, and its

proportion is continuously decreasing and approaching zero.
The forward displacement of the slot determines the direction
of the departure slot for the flight.

The runtime of the optimization model using various
schemes are displayed in Fig. 7. Our scenario involves 3435
flights, 195 airports, and 188 sectors. Traffic characteristics
are comparable to those examined in,41 although our network

is substantially larger (up to 20 sectors in their work). Our
model was executed using a desktop computer equipped with
a single 12th Gen Intel(R) i7-12700 CPU running at

2.10 GHz and 32 GB of RAM, whereas the model presented
in the study by Chen et al. was run on a Spark Cluster consist-
ing of 6 nodes, with each node containing an 8-processor CPU.

While it is not possible to directly compare the computational
complexities of the two studies, our model can be successfully
solved within a 20-minute timeframe for all optimization

schemes, with the exception of S6 and S7.

5.3. Robustness tests

In Section 5.2, we compare and analyze the total cost, the pro-

portion of flights that experience slot displacements, and the
amount of slot displacement for arrivals and departures. As
expected, the total expected cost would decrease as the proba-

bility of violation increases. The reason for this is the inclusion
of additional ‘‘predicted‘‘ capacity resources to meet traffic
demand. There is a potential risk when expanding capacity,

as the actual capacity may be lower than anticipated. Conse-
quently, overscheduled flights must be rescheduled for a later
departure or arrival time. One advantage of the chance-
constrained model is that it helps to ensure that constraints

are not violated at a specified probability level. To evaluate

ted
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Table 7 Total cost and computation time (in second) for each optimization scheme.

Cost S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Total 416,540 146,950 64,750 39,750 22,850 17,250 61,200 27,400 18,600 16,000 13,900

Air 54,900 14,625 6675 4350 3375 2550 8100 4050 3150 2700 2400

Gnd 364,550 132,325 58,075 35,400 19,475 14,700 53,100 23,350 15,450 13,300 11,500

Time 125,624 34,520 24,867 14,684 5324 1387 10,170 5006 1131 1277 1086

Fig. 5 Number of slot displacements for arrival and departure flights in each scenario.
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the effectiveness of our approach, we use optimized flight

schedule as input to the operational air traffic network. How-
ever, it is difficult to accurately predict what the future state of
airspace will be; therefore, a robust and stable flight schedule

in actual operation is more desirable. The term ‘‘robust” is
commonly defined to characterize a software, a strategy, or
an item that functions effectively and demonstrates minimal
failures in various scenarios. In this research, we define the

robustness of a flight schedule as the total amount of excess
traffic scheduled for all sectors and airports. Here, we con-
ducted a total of 20 experiments to compare the robustness

of the optimal flight schedule under various schemes. Each
experiment generated 50 sets of combinations of capacity
based on the empirical distributions of the capacity of airports

and sectors. We compare the amount of traffic with the capac-
ity for each flight schedule, and calculate the total amount traf-
fic that exceeds the capacity. Let Rq be the robustness of

optimization scheme q, then we have

Rq¼ 1
N

PN
j¼1

P
t2T0

P
a2Adep[Aarr

max 0; Fq
j;a;t�Cj;a;t

� �� �þP
s2S

max 0; Fq
j;s;t�Cj;s;t

� �� �" #

ð32Þ

where N represents the total number of simulated operation
scenarios, F j; a; tq and F j; s; tq denote 500 the number of
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flights at airport a and sector s during time period t under opti-
mization scheme q, while Cj;a;t and Cj;s;t are the simulated

actual capacities at airport a and sector s during time period
t under optimization scheme q.

5.3.1. Robustness test results for base model

The base model corresponds to the scenario in the uncertainty
model where the violation probability is 0. Flight schedule data

obtained from its optimization is then compared with the 50
sets of capacity combinations generated in each experiment.
The robustness R0 is then calculated and the statistical results
are shown in Fig. 8. It is evident that the robust model-

optimized flight schedule is more robust than the original flight
schedule, as its R is substantially lower. This further confirms
that flight schedule optimization is essential to make the air

traffic system more stable and improve its resilience to various
uncertainties.

5.3.2. Robustness test results for uncertainty model

The base model is too conservative. Airport and sector capac-
ity may be unused due to low scheduled traffic. The more
robust a flight schedule is, the higher the total cost. Based on

the robustness test, the optimal flight schedule robustness met-
ric for Schemes 1–10 has been calculated. We compare the
ation-wide air traffic flow management, Chin J Aeronaut (2024), https://doi.org/
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Fig. 7 Runtime of models under different setting.
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robustness of the uncertainty models with that of the base
model based on the robustness metric. Additionally, we also
compare the robustness between Method 1 and Method 2, as

well as the robustness of the optimal flight schedule for each
scheme within Method 1 and Method 2, to analyze the effect
of node importance and violation probability on the robust-

ness of the models.
We can see from Fig. 9 that the optimal flight schedule for

all schemes of Method 1 is less robust than the base model.

The capacity restriction becomes more stringent as the proba-
bility of violation decreases, leading to a decrease in overca-
pacity and a more robust flight schedule. The results of the

robustness test for each scheme of Method 1 are in line with

Un
Please cite this article in press as: YAN J et al. Robust pre-departure scheduling for a
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the initial hypothesis. This implies that Method 1, which takes
into account capacity uncertainty, is less robust than the base
model. However, the base model sacrifices the total cost of the

flight schedule in order to achieve strong robustness. Fig. 10
shows that the total cost of the flight schedule for the robust
scheme is approximately 35. 4%, 15. 6%, 9. 49%, 5. 38%,

and 4. 05% of the base model, respectively. This indicates that
the base model incurs a considerable cost in its pursuit of
robustness, which may not be desirable to stakeholders. In

comparison, Method 1 achieves a significant reduction in the
total cost of the flight schedule by sacrificing a bit of robust-
ness and appears to be more profitable. However, considering

that the optimization objective of the model in this paper is the
nation-wide air traffic flow management, Chin J Aeronaut (2024), https://doi.org/
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flight schedule at the airport network level, it is possible to
incorporate the structural characteristics of the network into
Method 1. This has the potential to result in obtaining a robust

flight schedule and reducing costs, thereby creating a model
better suited for optimizing the flight schedule at the airport
network level.

In an airport network, if there is delay or congestion at an

airport or sector with high average daily flow or closeness, it
can have a ripple effect on other downstream airports and sec-
tors. To minimize the likelihood of this occurrence, Method 2

considers the importance of both the airport and the sector
nodes. This results in a smaller probability of violations for
important airports and sectors, leading to a robust flight

schedule with a low total cost sacrifice. The total cost of the
optimal flight schedule for all the schemes of Method 2 is sig-re
921
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Fig. 9 Comparison of optimal flight schedule robustness metric

by scheme.

Fig. 10 Comparison of total cost of optimal flight schedule by

scheme.
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nificantly lower than that of the robust model and Method 1,

as seen in Fig. 10. Additionally, the overcapacity of the opti-
mal flight schedule for almost schemes of Method 2 is higher
than that of Method 1, as seen in Fig. 9. Considering the

importance of the node in the model, incorporating it into
the optimization model can result in a flight schedule that
demonstrates strong resilience and minimizes overall cost.

This, in turn, improves the efficiency of optimizing the flight
schedule at the airport network level.

Further examination of Fig. 9 reveals two interesting find-
ings: (A) we observe that the optimal flight schedule of

Scheme 9 in Method 2 performs better in terms of robustness,
even though the total cost is lower than that of Scheme 4 and 5
of Method 1 by 30.7% and 7.8%, respectively. This clearly

shows the robustness and superiority of Method 2 compared
ation-wide air traffic flow management, Chin J Aeronaut (2024), https://doi.org/
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to Method 1. Inclusion of the importance of the nodes in the
model has advantages for the optimization performance of
the model, making it more suitable for optimizing the flight

schedule at the airport network level. The results of the robust-
ness metric comparison for the above schemes are shown in
Fig. 11. (B) The optimization performance of the model still

has room to improve. Fig. 11 shows the robustness metric
for each scheme of Method 2. Since Scheme 7 has lower viola-
tion probabilities, the optimized schedule should be more

robust. However, its robustness metric is not as good as those
of Schemes 8 and 9. We hypothesize that this is due to the com-
bination of the probability of violation and the structural char-
acteristics of the airport network. The importance value

cannot fully capture the importance of the sector or airport
in the network. To further investigate this, we performed addi-
tional experiments by adjusting the values of Eq. (27). The

maximum violation probability in Method 2 is set to 0.2, the
maximum violation probability ranged from 0.23 to 0.35 with
a step change of 0.03. In total, five sets of optimization exper-

iments similar to Method 2 were conducted, with the only dif-
ference being the combination of violation probability.

Table 8 presents the total cost and robustness of the flight

schedule. The data in the tables show that as the probability
of violation increases, the total cost of the optimal flight sched-
ule from Scheme 6 to Scheme 10 decreases, but the robustness
does not necessarily increase. The results for different values of

a demonstrate that the robustness of schemes with a high prob-
ability of violation can be lower than that of schemes with a
low probability of violation. Method 2 is more suitable for

flight schedule optimization at the airport network level than
Method 1, however, it does not take into account all the spe-
cial points of the airport network. The combination of viola-

tion probability calculated by linear interpolation based on
node importance is probably not the optimal combination
for the corresponding schemes. This is evidenced by the lack

of a clear trend in the average robustness in Table 8. c

1004

Fig. 11 Comparison of optimal fl
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5.4. Comparison with other method of setting violation
probability

The importance of the sector node was determined using close-
ness, while the importance of the airport node was assessed

based on the volume of traffic. In this section, we compare
the optimal results with an alternative approach that relies
on a different network metric to assess the importance of
nodes. Specifically, we use the degree of the node as the mea-

sure of importance. The total cost and robustness of the results
under different optimization schemes are plotted in Fig. 12.
There is minimal variation in total cost resulting from two net-

work metrics, with only a slight distinction observed in the
schemes S6 and S7. However, there are clear discrepancies in
the robustness of the optimized schedule when using the two

different methods to set the probability of violations. Using
traffic and closeness metrics to assess the importance of nodes
can lead to a more resilient flight schedule compared to relying

solely on the degree of the network. The excess capacity at
each airport and sector is determined by employing Eq. (32)
In Fig. 13(a) and (b), the average number of flights surpassing
the capacity of airports or sectors is illustrated for various

optimization approaches. Among the airports, only ZBAA,
ZGSZ, and ZUCK exhibit more than 3 flights exceeding
capacity, while the majority of airports and sectors experience

fewer than 2 flights exceeding capacity. Sectors ZHHHAR01
and ZBAAAR15 show more than two flights surpassing sector
capacity when applying violation probability settings based on

closeness. Overall, the optimized flight schedules demonstrate
resilience to operational uncertainties.

5.5. Discussion

We identified congested points in the air traffic network by
using flight traffic data and capacity data. The level of conges-
tion was measured with a number in the range of 0 to 1, with

ted
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ight schedule robustness metric.
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Table 8 Total cost (robustness) for schemes in Method 2 with different maximum violation probability.

amax S6 S7 S8 S9 S10

amin = 0.05 amin = 0.08 amin = 0.11 amin = 0.14 amin = 0.17

0.20 61,200 (55.5) 27,400 (50.2) 18,600 (49.1) 16,000 (70.2) 13,900 (74.2)

0.23 51,250 (64.1) 21,750 (54.3) 16,600 (65) 13,300 (74.3) 12,750 (82.8)

0.26 47,750 (69.5) 19,650 (67.1) 15,100 (68.2) 11,900 (75.6) 10,700 (74)

0.29 46,550 (73.8) 18,650 (56.9) 12,800 (85.6) 10,600 (78.1) 9650 (92.8)

0.32 43,950 (90.3) 16,050 (86.8) 10,850 (77.3) 9250 (98.2) 8900 (96.8)

0.35 41,450 (90.4) 14,750 (81.4) 10,250 (96.4) 8750 (98.1) 7350 (92.1)

Fig. 12 Total cost and robustness of results under different optimization scheme.
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higher numerical values indicating more congestion. Similar to

Rq, we define Rq;w;t as value of the level of congestion for node

w at 15-minutes slot t of optimization scheme q.Rq;w;t can be

calculated by Eq. (33). The results of Scheme 10 are shown

in Fig. 14. We see the optimized flight schedule of Scheme 10
still has some congested airports and sectors. To achieve a
flight schedule with fewer congested airports and airspace,

increased robustness, and lower total cost, we can modify
the probability of a violation of restrictions in airports and sec-
tors. However, depending solely on static data such as node

importance to set the probability of violation of airports and
sectors may not be an optimal strategy. It is challenging to
decide on the optimal combination of probability of violation,

and congested nodes in the air traffic network should be taken
into consideration to dynamically adjust the probability of vio-
lation of each chance constraint. To improve the probability of
violation and the quality of the solution, it is possible to reduce

the probability of violation at congested points and increase
the probability of violation at points with a sufficient capacity
margin. This can be done by ‘‘cutting the peak and filling the

valley‘‘, which can be further studied by monitoring the
changes in the probability of the chance of violation of the
constraints of each node, thereby exploring the trigger condi-

tions and intrinsic mechanisms of the optimization dynamic
of the airport network.

Unc
orr

e

Please cite this article in press as: YAN J et al. Robust pre-departure scheduling for a n
10.1016/j.cja.2024.08.054
Rq;w;t ¼ 1
N

PN
j¼1

max 0; Fq
j;w;t � Cj;w;t

� �� �
; 8w 2 Adep [ Aarr [ S; t 2 T0

ð33Þ
Our research has practical implications in real-world sce-

narios. Critical sectors and airports can be identified using

existing and predicted air traffic conditions, along with meteo-
rological data. Supported by air traffic flow management sys-
tems, the personnel involved in managing air traffic flow

determines the permissible risk levels for key sectors and air-
ports. Subsequently, our model is capable of assigning the best
departure times for each flight. In the future, the efficacy of the

model could be improved through the application of machine
learning and artificial intelligence technologies.

6. Conclusions

The demand for air transport and the complexity of the air
traffic system have both grown, leading to a number of uncer-

tainties in the implementation of flight schedules. This paper
presents a new capacity uncertainty chance constraint model
to address the flight schedule optimization problem at the air-
port network level. This model takes into account the capacity

uncertainty of airports and sectors in the air traffic system and
also innovatively incorporates the importance of network
nodes into the model. The experimental data show that the tra-
ation-wide air traffic flow management, Chin J Aeronaut (2024), https://doi.org/
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Fig. 13 Robustness of airports and sectors.

Fig. 14 Heatmap of congestion at airports and sectors in Scheme 10. (a) The congestion level of departure airports; (b) The congestion

level of arrival airports; (c) The congestion level of sectors.
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ditional capacity uncertainty model is not sufficient to handle
the uncertainty problem. The cost of having a reliable flight
schedule is high. To address this issue and create a model with

better optimization results, this paper takes into account the
importance of the nodes in the airport network in the model.
Compared to the deterministic model and the traditional

capacity uncertainty model, the results show that our model
can produce a more robust and lower total cost flight schedule
through the appropriate setting of the chance constraint viola-
tion probability.

This study has the following limitations. First, due to the
limitations of the current dataset, it is difficult to find the opti-
mal combination of probability of violation. This, in turn,

reduces the efficiency of the model. To improve the optimiza-
tion performance, the dynamic data of the congested points in
the airport network should be taken into account when adjust-

ing the probability of violation. Second, the length of the slot
discussed in this paper is 5 min. Reducing the slot to 1 min

Unc
o
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could provide more accurate results. However, this would also
significantly increase the computational complexity of the
model. Third, the sector minimum flight time for each flight

should be varied, as this would make the flight schedule more
practical. This is because the performance of the aircraft can
vary greatly depending on the model of the plane being used.

Therefore, the sector minimum flight time should be adjusted
accordingly for each flight. Future research efforts should be
made in two areas: (A) to develop algorithms based on artifi-
cial intelligence to generate representative airspace operation

scenarios; and (B) investigating the unique optimization pro-
cess of the airport network.

CRediT authorship contribution statement

Jianzhong YAN: Writing – original draft, Validation, Investi-
gation, Formal analysis, Conceptualization. Haoran HU:

Writing – original draft, Software, Methodology, Investiga-
nation-wide air traffic flow management, Chin J Aeronaut (2024), https://doi.org/

https://doi.org/10.1016/j.cja.2024.08.054
https://doi.org/10.1016/j.cja.2024.08.054


1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

Robust pre-departure scheduling for a nation-wide air traffic flow management 17

CJA 3223 No. of Pages 18

9 September 2024

c

tion, Formal analysis. Yanjun WANG: Writing – review &
editing, Writing – original draft, Supervision, Project adminis-
tration, Methodology, Investigation, Funding acquisition,

Formal analysis, Data curation, Conceptualization. Xiaozhen
MA: Methodology, Investigation, Formal analysis. Minghua

HU: Investigation, Formal analysis. Daniel DELAHAYE:

Writing – review & editing, Writing – original draft, Method-
ology, Formal analysis. Sameer ALAM: Writing – review &
editing, Writing – original draft, Investigation, Formal

analysis.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science
Foundation of China (Grant Nos. U2033203, U1833126,

61773203, 61304190). We thank the anonymous referees and
the editors for their constructive comments and suggestions,
which have significantly improved this work.

References

1. Icao.int.Solid passenger traffic growth and moderate air cargo

demand in 2018; 2019; [updated 2018 Jan 27; cited 2024 Mar 29].

Available from: https://www.icao.int/Newsroom/Pages/Solid-

passenger-traffic-growth-and-moderate-air-cargo-demand-in-

2018.aspx.

2. Eurocontrol.int.Coda digest 2018; 2019; [updated 2018 Mar 8;

cited 2024 Mar 29]. Available from: https://www.eurocontrol.

int/publication/all-causes-delay-and-cancellations-air-transport-

europe-2018.

3. Vranas PBM, Bertsimas D, Odoni AR. Dynamic ground-

holding policies for a network of airports. Transp Sci 1994;28

(4):275–91.

4. Richetta O, Odoni AR. Solving optimally the static ground-

holding policy problem in air traffic control. Transp Sci 1993;27

(3):228–38.

5. Bertsimas D, Patterson SS. The traffic flow management

rerouting problem in air traffic control: a dynamic network

flow approach. Transp Sci 2000;34(3):239–55.

6. Bertsimas D, Sim M. Robust discrete optimization and network

flows. Math Program 2003;98(1):49–71.

7. Bertsimas D, Farias VF, Trichakis N. The price of fairness. Oper

Res 2011;59(1):17–31.

8. Barnhart C, Bertsimas D, Caramanis C, et al. Equitable and

efficient coordination in traffic flow management. Transp Sci

2012;46(2):262–80.

9. Bertsimas D, Farias VF, Trichakis N. On the efficiency-fairness

trade-off. Manag Sci 2012;58(12):2234–50.

10. Bertsimas D, Gupta S. Fairness and collaboration in network air

traffic flow management: an optimization approach. Transp Sci

2016;50(1):57–76.

11. Jacquillat A, Vaze V. Interairline equity in airport scheduling

interventions. Transp Sci 2018;52(4):941–64.

12. Bandi C, Bertsimas D. Tractable stochastic analysis in high

dimensions via robust optimization. Math Program 2012;134

(1):23–70.

13. Lee J, Marla L, Jacquillat A. Dynamic disruption management

in airline networks under airport operating uncertainty. Transp

Sci 2020;54(4):973–97.

Unc
orr

e

Please cite this article in press as: YAN J et al. Robust pre-departure scheduling for a n
10.1016/j.cja.2024.08.054
14. Bertsimas D, Shtern S, Sturt B. A data-driven approach to

multistage stochastic linear optimization. Manag Sci 2023;69

(1):51–74.

15. Jacquillat A, Odoni AR. An integrated scheduling and

operations approach to airport congestion mitigation. Oper

Res 2015;63(6):1390–410.

16. Bertsimas D, Frankovich M. Unified optimization of traffic

flows through airports. Transp Sci 2016;50(1):77–93.

17. Jacquillat A, Odoni AR. A roadmap toward airport demand and

capacity management. Transp Res Part A Policy Pract

2018;114:168–85.

18. Katsigiannis FA, Zografos KG. Multi-objective airport slot

scheduling incorporating operational delays and multi-

stakeholder preferences. Transp Res Part C Emerg Technol

2023;152:104156.

19. Katsigiannis FA, Zografos KG. Incorporating slot valuation in

making airport slot scheduling decisions. Eur J Oper Res

2023;308(1):436–54.

20. Bertsimas D, Koduri N. Data-driven optimization: a

reproducing kernel Hilbert space approach. Oper Res 2022;70

(1):454–71.

21. Bertsimas D, Li ML. Stochastic cutting planes for data-driven

optimization. Inf J Comput 2022;34(5):2400–9.

22. Bertsimas D, Carballo KV. Multistage stochastic optimization

via kernels. 2023:arXiv:2303.06515. http://arxiv.org/abs/2303.

06515.

23. ACI, EUROCONTROL, IATA. Airport CDM implementation

manual. EUROCONTRL; 2017.

24. Odoni AR. The flow management problem in air traffic control.

In: Odoni AR, Bianco L, Szegö G, editors. Flow control of
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