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Abstract: Data mining has achieved great success in air traffic management as a technology for
learning knowledge from historical data that benefits people. However, data mining can rarely be
embedded into the trajectory optimization process since regular optimization algorithms cannot
utilize the functional and implicit knowledge extracted from historical data in a general paradigm.
To tackle this issue, this research proposes a novel data mining-based trajectory generation method
that is compatible with existing optimization algorithms. Firstly, the proposed method generates
trajectories by combining various maneuvers learned from operation data instead of reconstructing
trajectories with generative models. In such a manner, data mining-based trajectory optimization
can be achieved by solving a combinatorial optimization problem. Secondly, the proposed method
introduces a majorization–minimization-based adversarial training paradigm to train the generation
model with more general loss functions, including non-differentiable flight performance constraints.
A case study on Guangzhou Baiyun International Airport was conducted to validate the proposed
method. The results illustrate that the trajectory generation model can generate trajectories with high
fidelity, diversity, and flyability.

Keywords: air traffic management; deep generative methods; machine learning; trajectory generation;
terminal area

1. Introduction
1.1. Motivation

Society has entered a data-driven era in which huge amounts of data are being
generated every day. In the last decade, more and more researchers have focused on
mining useful information from historical data to create benefits for people. Accord-
ingly, various data-based applications have been developed, including traffic-related
mining [1,2], autonomous path planning [3–5], and popular route discovery [6]. In the air
traffic management domain, trajectory data have been used to identify traffic patterns [7–9],
estimate the loss of separation probability [10], and gain operation experience [11,12].

However, the knowledge learned from historical data can rarely be utilized in opti-
mization since it belongs to functional space. To tackle this issue, this paper proposes a
novel trajectory generation method embedded with data mining that can be compatible
with optimization algorithms. Compared with the other data-driven trajectory generation
methods mentioned in Section 1.2, the proposed method can automatically mine helpful
information (all kinds of pilot maneuvers) from historical data to improve generation per-
formance.
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1.2. Related Work

This study defines three requirements that the trajectory generation method should
meet: firstly, fidelity—synthetic trajectories should follow the characteristics of actual tra-
jectories [13]; secondly, diversity—the proposed method could reproduce some trajectories
with a small probability of occurrence; and thirdly, flyability—synthetic trajectories should
meet the flight performance constraints.

The current research on trajectory generation can be divided into model-driven and
data-driven methods. Model-driven methods [14,15] generate aircraft trajectories based
on kinetic and kinematic models with several parameters, such as initial aircraft states,
aircraft performance coefficients [16,17], weather conditions, and aircraft intents. Since
these methods depend on the model and parameters of aircraft, the trajectories generated by
these models can undoubtedly meet the requirement of flyability. To ensure the generation
of trajectories with good diversity, some model-driven methods [18–20] adopt the free-flight
concept [21,22] and do not fly along the published flight routes. However, such an approach
induces poor fidelity of trajectories since they have different distributions from the actual
ones. To address the poor-fidelity problem, other model-driven methods [23–26] search for
optimal flight paths among predefined routes, such as Standard Terminal Arrival Routes
and some of their related deviation patterns. However, due to the commonly existing
long-tail effect, these predefined routes are limited and not enough to describe all the
potential routes in real operation, leading to the homogenization of generated trajectories
(poor diversity).

Incorporating controllers’ experience from historical data while generating trajectories
can be a promising approach to improve fidelity and diversity. Data-driven methods have
been intensively explored to generate trajectories using machine learning algorithms in
the ground transportation field [27–31]. Some trajectory generation models have exploited
Multilayer Perceptron [32], Long Short-Term Memory (LSTM) [33], and convolutional
neural networks [34] to extract spatial–temporal features from actual trajectories. Other
trajectory generation models have taken advantage of Variational Auto-Encoders (VAEs)
[35], Generative Adversarial Networks [36], and their variants (GANs) [37,38] to create
new trajectories. With the success of data-driven data generation in ground transportation,
several researchers have extended this concept to generate aircraft trajectories with data-
driven methods. Existing solutions include VampPrior TCVAE [39], Conv1D-GAN [40],
Gaussian mixture model-based generators [41], Principal Component Analysis (PCA) [42],
and functional PCA [43].

However, existing data-driven trajectory generation methods have the following
drawbacks:

1. For most trajectory generation models, one cannot tell what a generated trajectory
looks like before obtaining the final results. To tackle this issue, Ref. [43] generated
trajectories via functional PCA and controlled the shape of the trajectories by modi-
fying the mean and principal component functions. Analogously, Krauth et al. [39]
controlled the shape of trajectories by sampling points in certain areas in latent space.
Although these efforts partially solved the problem and enable one to roughly de-
termine the shape of trajectories, uncertainties still remain in the generation process.
Thus, these data-driven methods can rarely cooperate with optimization algorithms
to generate optimal trajectories.

2. Existing methods prefer to exploit a distribution to capture the flight path deviations.
However, deviations are not only caused by uncertainties such as weather, aircraft
performance, and human factors, but are also caused by controllers’ instructions. Un-
like uncertainties in actual operations, the controller’s instructions must always meet
certain rules and cannot be modeled through a distribution. To imitate controllers’
instructions, Jarry et al. [43] additionally introduced several modification operators to
change the shape of trajectories. However, such a method requires some fine-tuning
by experts and cannot automatically learn controllers’ experience (instructions).
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3. Existing data-driven generation models can only be trained with differentiable loss
functions, whereas flight performance constraints are often non-differentiable. Thus,
the generated trajectories may not be able to stay flyable. The key to solving this
problem is to build a neural network with more general loss functions. To this
end, some researchers have adopted a strategy that approximates non-differentiable
constraints with differentiable functions [44–49].

To overcome all the issues mentioned above, this paper develops a novel data-driven
method called CTG-MMAT to generate trajectories. Firstly, a connection-based trajectory
generation (CTG) framework is proposed to automatically mine helpful information (all
kinds of maneuvers) from historical trajectories. Secondly, a majorization–minimization-
based adversarial training (MMAT) paradigm is adopted to train the trajectory generation
model with flight performance constraints. The main contributions of this paper are
summarized as follows:

1. The proposed CTG-MMAT is compatible with combinatorial optimization algorithms
to build a data-driven trajectory optimization methodology by combining several
maneuvers.

2. The proposed CTG framework enables the trajectory generation model to capture
more controllers’ experiences from historical data. As a result, the generated trajecto-
ries are closer to the ones observed in the operations.

3. The proposed MMAT technique enables the trajectory generation model to be trained
with a more general loss function with non-differentiable flight performance con-
straints. As a result, the generated trajectories are more likely to stay flyable.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
CTG framework in detail and discusses why the proposed method has the potential to be
used in trajectory optimization. Section 3 presents the MMAT, which is a non-differentiable
constraint approximation technique. Section 4 provides details about the experiment.
The results of Section 5 are divided into three parts. Section 5.1 analyzes the flyability of
the generated trajectories by comparing CTG-MMAT with existing methods. Section 5.2
highlights how CTG-MMAT incorporates operation rules while generating trajectories. Sec-
tion 5.3 highlights how CTG-MMAT generates trajectories with the controllers’ experience.
Section 5.4 demonstrates how the CTG framework reduces training costs while maintaining
generation performance. Section 6 concludes this work and describes the direction for
future research.

2. Connection-Based Trajectory Generation Framework

To fully utilize the controller’s experience while generating trajectories, this paper
presents a novel trajectory generation framework. Compared with existing data-driven
trajectory generation methods, the proposed framework generates a new trajectory by
combining several maneuvers.

As shown in Figure 1, instead of generating a complete trajectory at a time, the pro-
posed CTG generates a trajectory by connecting several sub-trajectories. Figure 1a shows
the trajectory segmentation process: a complete trajectory is divided into backward, con-
necting, and forward parts. Figure 1b shows the trajectory connection process: given the
forward part of trajectory α and the backward part of trajectory β, a connecting part is
generated by a generation model to connect the backward and forward parts.

The key to achieving CTG is generating a proper connecting part for the forward
and backward parts. To this end, this paper trains a connecting part generation model
via supervised learning. The input data include the forward and backward parts, and the
output data include the connecting part.
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Figure 1. Framework of the proposed CTG. Firstly, the complete trajectory is divided into backward,
connecting, and forward parts; secondly, a new connecting part is generated to connect the backward
and forward parts from different trajectories to obtain a new synthetic trajectory.

The training data preparation process is given in Figure 2. Firstly, the historical
trajectories are resampled with equal time intervals. Each trajectory point includes latitude,
longitude, and altitude information. The time interval is set to 10 s. Then, the resampled
trajectories are normalized to make training more straightforward. Finally, the training data
are collected through three sliding windows: backward, connecting, and forward windows.
Among them, the backward and forward windows are used to obtain the features (input
data) of the supervised generation model, and the connecting window is used to obtain
labels (output data). According to the sensitivity analysis given in Appendix A, the length
of these three windows should be set to 24, 12, and 24, respectively.

According to Figure 2, both the features and labels for training the model are matrixes
composed of several trajectory points. Each row of the matrix represents a timestamp,
and each column represents a dimension of a 3D trajectory point. The size of a feature is
48× 3, and the size of a label is 12× 3.

This study intentionally introduces data leakage while collecting training data. As
shown in Figure 2, the connecting window partially overlaps with the others. In such a
manner, the overlapping parts simultaneously exist in the features and labels, and the
supervised model can easily learn to generate a connecting part to connect the backward
and forward parts seamlessly.

Since the proposed CTG takes the best advantage of the controller’s experience ex-
tracted from historical data, its benefits are obvious. On the one hand, the fidelity of
the generated trajectories is high since most parts of a synthetic trajectory are from real
ones. On the other hand, the diversity of the generated trajectories is high since the pro-
posed framework enables us to modularize trajectories and create new ones by connecting
sub-trajectories with various flight intentions.

Although the CTG framework can generate trajectories with high diversity and fi-
delity, it has a critical problem that needs to be solved before being applied. The problem is
finding proper forward trajectories for a given backward trajectory to ensure the generated
trajectories are flyable. On the one hand, if the backward and forward parts are far from
each other, it is impossible to find a proper connecting part. On the other hand, even if the
backward and forward parts are close enough, the CTG cannot guarantee that the generated
connecting parts meet the flight performance constraints. To solve these problems, this
paper employs majorization–minimization (MM) to add the non-differentiable flight per-
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formance constraints to the supervised generation model and propose a two-round flyable
trajectory filtering mechanism to eliminate unfeasible trajectories. Section 3 describes this
process in detail.

Figure 2. Schematic diagram of training data preparation for connecting part generation model.
Training data are collected by utilizing three partially overlapping sliding windows: the backward
and forward windows, which are used to obtain input data, and the connecting window, which
is used to obtain output data. The red, yellow, and blue boxes refer to the part of the backward,
connecting, and forward windows that do not overlap with other windows, respectively. The orange
and green boxes refer to the overlapping part of two adjacent windows.

Compatibility with Optimization Algorithms

This is a short sub-section showing how the CTG could be used in an optimization
loop. Considering that the proposed CTG provides an efficient way to modify a trajectory,
it can be plugged into an optimization algorithm to achieve trajectory optimization in
the future.

As shown in Figure 3, the CTG can be applied in an optimization loop to update
the trajectory. Firstly, the loss of the original trajectory can be computed to represent the
goodness of the current trajectory. Then, some optimization algorithms, such as genetic
algorithms and simulated annealing, can be used to compute decision variables, which are
used to update the original trajectory via the proposed CTG. Finally, if the stop criteria are
satisfied, the optimized trajectory is obtained; otherwise, we proceed to the next iteration.
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Figure 3. Connection-based trajectory generation (CTG) in an optimization loop. D1 and D2 are
two decision variables that describe the switch point and the alternative trajectory for the original
trajectory, respectively. The CTG takes D1, D2, and the original trajectory as inputs and outputs a
modified trajectory to update the optimization result.

3. Majorization–Minimization-Based Adversarial Training

Developing a trajectory generation model that creates synthetic trajectories that meet
flight performance constraints is not trivial work. Conventional neural networks should be
trained with differentiable loss functions, which allows the use of gradient-based optimiza-
tion methods, e.g., SGD. However, the flight performance constraints in actual operation are
always non-differentiable and cannot be added to the loss functions of the neural networks.
As a result, many previous data-driven trajectory generation models cannot consider flight
performance constraints in the training process. To tackle this challenge, this paper exploits
the MM algorithm [50] to approximate non-differentiable flight performance constraints
with a differentiable neural network.

As shown in Figure 4, the proposed MMAT includes two steps. In the majorization
step, the MMAT works by finding a surrogate network that could approximate the non-
differentiable objective function (flight performance constraints). Then, in the minimization
step, the MMAT works by finding a generator that could minimize the surrogate network.
MMAT can indirectly train the generator with the non-differentiable flight performance
constraints by iteratively performing the majorization and minimization steps.

The convergence proof of the MMAT is presented in Appendix B. According to
Appendix B, a Negative Experience Replay (NER) technique is required to ensure the
convergence of the generator. Specifically, the NER technique argues that all the mistakes
(connecting parts that cannot meet the flight performance constraints) made by the genera-
tor should be collected and reused while training the surrogate network. In other words,
NER ensures that the generator will not make the same mistakes again.

In this paper, the surrogate network and generator are trainable neural networks,
denoted as Sϕ and Gθ , respectively. The subscripts ϕ and θ represent the surrogate network’s
and generator’s trainable parameters, respectively. Section 3.1 introduces the majorization
step and the loss function of the neural network Sϕ. Section 3.2 introduces the minimization
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step and the loss function of the neural network Gθ . Section 3.3 presents the pseudo-code
for iteratively training Sϕ and Gθ .

Figure 4. Schematic diagram of majorization–minimization-based adversarial training. In the
majorization step, a surrogate network is trained to approximate the flight performance constraints;
in the minimization step, a generator is trained to minimize the output of the surrogate to consider
the flight performance constraints.

3.1. Majorization Step

This paper trained a neural network Sϕ as a surrogate network to approximate the
non-differentiable constraints. A schematic diagram of the majorization step is shown in
Figure 5. The parameters of the surrogate network Sϕ are trainable, and the parameters of
the generator Gθ are frozen.

Figure 5. Schematic diagram of the majorization step. The connecting parts generated by the
generator are labeled according to the flight performance constraints and then added to the training
dataset together with connecting parts that cannot meet the constraints in previous iterations. The
labeled training data are used to train the supervised learning-based surrogate network, and the
loss function is cross-entropy. The red, yellow, and blue boxes refer to the part of the backward,
connecting, and forward trajectories that do not overlap with others, respectively. The orange and
green boxes refer to the overlapping part of two adjacent trajectories.

Firstly, a batch of forward and backward parts are input into the generator Gθ , and the
output of Gθ can be regarded as the predicted connecting parts. Then, these connecting
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parts are labeled with 0 or 1 according to whether these connecting parts can meet the flight
performance constraints. For example, if a connecting part exceeds the flight performance
limits, it will be labeled with 1; otherwise, it will be labeled with 0. Thirdly, the surrogate
network Sϕ is trained based on previously labeled data. Specifically, according to the
instruction of NER, this paper uses all the labeled connecting parts in this iteration and
all the connecting parts that cannot meet the constraints in previous iterations to train the
surrogate network.

As shown in Equation (1), conventional cross-entropy is used as the training loss of Sϕ

because the surrogate network Sϕ is a binary classification model.

Loss_S = −
B

∑
i=1
{si log s∗i + (1− si) log (1− s∗i )} (1)

where B is the batch size, and si and s∗i are the outputs of the flight performance constraints
P and surrogate network Sϕ, respectively.

3.2. Minimization Step

To generate connecting parts that meet the flight performance constraints, this paper
trained a neural network Gθ as a generator to minimize the outputs of the surrogate network
Sϕ. A schematic diagram of the minimization step is shown in Figure 6. The parameters of
the generator Gθ are trainable, and the parameters of the surrogate network Sϕ are frozen.

Figure 6. A schematic diagram of the minimization step. The generator’s loss function includes
reconstruction loss and a flight performance penalty. The reconstruction loss is the weighted mean
square error between the real and generated connecting parts, and the flight performance penalty is
the mean value of the surrogate network’s output.

Firstly, a batch of forward and backward parts are input into the generator Gθ to
obtain the predicted connecting parts. According to Equation (2), the reconstruction
error R can be calculated based on the predicted and real connecting parts. According to
Equation (3), the approximated flight performance constraint value P can be calculated via
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the surrogate network Sϕ. Finally, the total loss for the generator can be calculated based
on Equation (4). Minimizing R encourages the predicted connecting parts to look more
natural in geometry, and minimizing P encourages the predicted connecting parts to meet
the flight performance constraints.

R =
1
B

B

∑
i=1

N

∑
n=1

w(n) · (ti,n − t∗i,n)
2 (2)

P =
1
B

B

∑
i=1

Sϕ(t∗i ) (3)

Loss_G = R + λ · P (4)

where B is the batch size, N is the length of a connecting part, w(n) is the weight of the
nth point of the connecting part, and ti,n and t∗i,n are the real and predicted connecting
parts, respectively. Sϕ is the surrogate network whose parameters are not trainable in the
minimization step, and λ is a non-negative coefficient.

As shown in Figure 7, the weights for both sides of a connecting part are higher than
the others to ensure the connecting part can smoothly connect with the backward and
forward parts.

Figure 7. Weight assignment for different trajectory points.

3.3. Implementation Details

In practice, to improve convergence, this paper separately pre-trains the generator Gθ

and the surrogate network Sϕ until both Gθ and Sϕ are stable. Then, this paper iteratively
fine-tunes Gθ and Sϕ. Algorithm 1 describes the pseudo-code of the MMAT training process
in more detail.

However, MMAT cannot guarantee that the generated connecting parts meet the flight
performance constraints. On the one hand, the generator has no strict flight performance
guarantee, but only approximately satisfies those constraints by minimizing the output of
the surrogate network Sϕ. On the other hand, not all the backward and forward parts can
be connected properly. For example, if a backward part and a forward part are far from
each other, it is impossible to combine those two to obtain a new trajectory.

To ensure that all the generated trajectories can meet the flight performance constraints,
this paper additionally introduced two-round flyable trajectory filtering to eliminate all the
trajectories that cannot meet the constraints. Algorithm 2 describes the two-round flyable
trajectory filtering process in more detail. Firstly, the surrogate network Sϕ is exploited to
quickly and roughly eliminate connecting parts that cannot be achieved. Secondly, the flight
performance constraint P is used to eliminate the unflyable connecting parts.
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Algorithm 1: Pseudo-code of the training process

Input : Training set for generator TG = {(tbackward, t f orward, tconnecting)}; training
set for surrogate network TS = {}; negative connecting part set
TNER = {}; trajectory generator Gθ ; surrogate model Sϕ; flight
performance constraints P; the number of minimization steps e; the
number of majorization steps m

Output : Optimal parameters θ, ϕ
1 Initial Gθ and Sϕ randomly.
2 Pre-train Gθ on TG by minimizing Loss_G while λ=0.
3 Generate some samples {t∗connecting} based on Gθ .
4 Label {t∗connecting} based on P to form TS = {[t∗connecting; P(t∗connecting)]}.
5 TNER ← {[t∗connecting; P(t∗connecting)]|P(t∗connecting) = 0}.
6 Pre-train Sϕ on TS by minimizing Loss_S.
7 repeat
8 for i← 0 to m do
9 Train Gθ on TG by minimizing Loss_G while λ>0.

10 end for
11 for i← 0 to e do
12 Generate some samples {t∗connecting} based on Gθ .
13 Label {t∗connecting} based on P to form TS = {[t∗connecting; P(t∗connecting)]}.
14 Train Sϕ on TNER ∪ TS by minimizing Loss_S.

TNER ← TNER ∪ {[t∗connecting; P(t∗connecting)]|P(t∗connecting) = 0}.
15 end for
16 until generator and surrogate model converge;
17 return Gθ and Sϕ

Algorithm 2: Trajectory Generation Implementation
Input : Backward trajectory tbackward; forward trajectory t f orward; well-trained

generator Gθ ; well-trained surrogate network Sϕ; flight performance
constraints P

Output : Flyable connecting part t∗connecting

1 t∗connecting ← ∅
2 t← Gθ(tbackward, t f orward)

3 if Sϕ(t) ≈ 0 then
4 if P(t) = 0 then
5 t∗connecting ← t
6 end if
7 end if
8 return t∗connecting

4. Experiment
4.1. Experimental Setup

Air traffic operation in the terminal area (TMA) is much more complex than in other
airspaces. Arriving aircraft need to follow the instructions delivered by controllers instead
of standard procedures to establish landing sequences and maintain safe separation in the
TMA. As a result, arrival trajectories always have a higher diversity than departure and
en-route trajectories. Thus, this paper uses the proposed CTG-MMAT to generate arrival
trajectories to validate its efficiency. It is worth noting that the trajectory generation model
proposed in this paper can also be used to generate departure or en-route trajectories.
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In this paper, we collected trajectory data (from 1 September 2019 to 31 September
2019) from the TMA of Guangzhou Baiyun International Airport (ZGGG) to conduct our
experiments. According to the statistics, there are 20,121 northbound arrival trajectories
and 357 southbound arrival trajectories. As shown in Figure 8, arrival trajectories enter the
TMA from six entry points: ATAGA, IGONO, P270, IDUMA, GYA, and LUPVU.

Figure 8. Historical trajectories and six entry points.

As shown in Figure 8, arrival trajectories adopt specific maneuvers in specific areas.
For example, trajectories entering from GYA prefer to take short-cut maneuvers before
joining the downwind leg of the traffic pattern, and trajectories entering from ATAGA prefer
to take parallel-offset maneuvers before joining the final leg of the traffic pattern. Figure 8
shows that some operation rules are contained in the collected 20,478 arrival trajectories,
and CTG-MMAT should learn these rules to be considered successful. Furthermore, CTG-
MMAT should also generate trajectories that meet the flight performance constraints
mentioned in Section 4.2.

4.2. Flight Performance Constraints for Arriving Aircraft

In this paper, the flight performance constraints include six indicators: speed, altitude,
acceleration, rate of climb, bank angle, and turning rate. Two assumptions are made when
calculating these indicators:

1. Due to the lack of reliable atmospheric data, this paper assumes that the wind speed
is zero. According to such an assumption, the value of ground speed equals the value
of true airspeed.

2. To simplify computing, this paper assumes that the magnetic deviation is zero. There-
fore, the value of the aircraft’s true heading is equal to the value of the aircraft’s
magnetic heading.

The details of six related indicators are summarized as follows:

1. Speed refers to the aircraft’s ground speed. Acceleration refers to the difference in the
aircraft’s ground speed over time.

2. Altitude refers to the aircraft’s pressure altitude. The rate of climb refers to the
difference in the aircraft’s pressure altitude with time.

3. The bank angle refers to the amount the aircraft rolls. The turning rate refers to the
difference in the aircraft’s true heading with time.

4. The dependencies between indicators are considered in this paper. As shown in
Figure 9, speed and altitude are coupled, and the bank angle and the turning rate are
also coupled.
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Figure 9. Flight performance of different aircraft categories. Each row in the figure represents a
wake turbulence category, while each column in the figure represents one or two flight performance
indicators. A trajectory meets the flight performance constraints if all its points lie in the feasible area.

If a generated connecting part is always within the feasible area, the generated tra-
jectory’s flight performance penalty is 0. Otherwise, the generated trajectory’s flight
performance penalty is 1.

According to [51,52], aircraft can be divided into four weight turbulence categories: L,
M, H, and J. As shown in Figure 9, an aircraft’s flight performance depends on its weight
turbulence category. Due to the lack of trajectories belonging to the L-category in the
collected data, only the other three categories of aircraft (M, H, and J) are considered in
Figure 9.

Although trajectories of different aircraft categories have various flight performances,
as shown in Figure 9, the feasible area for various aircraft categories is the same. This
phenomenon is probably because, in most cases, the standard procedures and controllers’
instructions should be suitable for any aircraft and not vary from aircraft to aircraft to
reduce the associated workload. According to this finding, this paper does not specify the
aircraft categories used to train the model in the following experiment.

4.3. Settings of Parameters

The computer used in this experiment was an HP desktop with an Intel Core i7-7700
at a CPU frequency of 3.60 GHz. All the code was implemented in Python 3.7.

Firstly, this paper initialized the generator by pre-training the model for 600,000 epochs
by minimizing the Loss_G while λ = 0 using an Adam [53] optimizer with a batch size of
200,000, and a learning rate of 10−4. The adapted architecture of the generator is shown in
Table 1.

Secondly, this paper initialized the surrogate network by pre-training the model for
1,000,000 epochs by minimizing the Loss_S using an Adam optimizer with a batch size of
100,000 and a learning rate of 2× 10−4. The adapted architecture of the discriminator is
shown in Table 2.

Thirdly, this paper trained the generator and surrogate network for 300,000 epochs
while λ = 5× 10−2. Specifically, the generator was trained using an Adam optimizer with
a batch size of 200,000 and a learning rate of 10−5, and the surrogate network was trained
using an Adam optimizer with a batch size of 100,000 and a learning rate of 2× 10−4.
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Table 1. Adapted architecture of generator.

Layer Type Layer Parameters Output Size

Input layer - 48× 3
Flatten layer - 144
Dense layer units = 100, activation = sigmoid 100
Dense layer units = 100, activation = sigmoid 100
Dense layer units = 36, activation = sigmoid 36

Reshape layer target shape = (12, 3) 12× 3

Table 2. Adapted architecture of discriminator.

Layer Type Layer Parameters Output Size

Input layer - 12× 3
Feature construction layer 1 - (12 + 11 + 10)× 3

Flatten layer - 99
Dense layer units = 330, activation = sigmoid 330
Dense layer units = 1, activation = sigmoid 1

1 The feature construction layer was designed to calculate the first-order and second-order differentiation of the
input data in the time dimension and stack the results behind the input data.

4.4. Benchmark Model

To further demonstrate that the trajectories generated via CTG-MMAT are more
likely to stay flyable, this paper compared CTG-MMAT with the state-of-the-art trajectory
generation model VampPrior TCVAE proposed by [39]. VampPrior TCVAE was chosen
for two reasons. First, it outperforms other models, such as the Gaussian mixture model
presented in [41]; second, it is good at generating arrival trajectories.

As shown in Figure 10, VampPrior TCVAE can be regarded as a VAE architecture
embedded with some improvements. Firstly, a temporal convolutional network was used
to extract spatial–temporal features from trajectories; secondly, a variational mixture of
posteriors was used to replace the simplistic prior (standard Gaussian).

Figure 10. The improvement made by VampPrior TCVAE. The commonly used fully connected layers
in the encoder and decoder are replaced with temporal convolutional networks to better extract the
spatial–temporal features from the trajectories, and the widely used standard Gaussian is replaced
with the variational mixture of posteriors.

5. Results and Discussion

This section evaluates the proposed trajectory generation method to demonstrate that
CTG-MMAT can be embedded with more domain knowledge. First, this paper evaluated
whether the proposed MMAT technique could train the trajectory generator with non-
differentiable flight performance constraints; second, this paper evaluated whether the
proposed CTG framework could generate trajectories with higher diversity and fidelity by
incorporating more operation experience and maneuvering rules.
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5.1. Generating Trajectories with Flight Performance Constraints

To ensure flyability, the generated trajectories should meet the flight performance
constraints. Therefore, this paper proposed an MMAT technique to train a generator with
non-differentiable flight performance constraints.

A controlled experiment is presented in this sub-section to explore whether the pro-
posed MMAT technique enables the generator to learn more about flight performance
constraints. The experiment group is the generator trained with the MMAT technique,
and the control group is the generator trained without the MMAT technique. Firstly, this
paper pre-trained the experiment and control groups for 600,000 epochs without the MMAT
technique. Then, this paper trained the experiment group for 300,000 epochs with the
MMAT technique and the control group for 300,000 epochs without the MMAT technique.
The generated trajectories’ flyability changes throughout the training epochs are shown in
Figure 11.

Figure 11. Flyability changes throughout the training epochs. The MMAT technique is introduced to
the experiment group after 600,000 epochs, and the flyable rate of the experiment group first sharply
declines and then rapidly rebounds, and finally exceeds the control group.

Figure 11 shows that after introducing the MMAT technique, the flyable rate of the
experimental group first sharply declines and then rapidly rebounds, and finally exceeds the
control group. The decrease in the flyable rate is because the surrogate network was trained
with biased data at the beginning of the introduction of MMAT. Fortunately, by iteratively
training the generator and surrogate network, the bias of the surrogate network continues to
decrease, and the MMAT technique finally shows its positive effects. The flyability changes
in Figure 11 strongly suggest that the MMAT technique plays a key role in requiring the
generator to consider flight performance constraints.

Once a well-trained generator and surrogate network are obtained, the feasible tra-
jectories can be generated in three steps. For the first step, as shown in Figure 12a, a
large number of synthetic trajectories are generated by combining the backward trajec-
tory with randomly selected forward trajectories via the CTG framework. For the second
step, as shown in Figure 12b, the well-trained surrogate network is used to conduct the
first-round flyable trajectory filtering to quickly and roughly eliminate connecting parts
that cannot be achieved. For the third step, as shown in Figure 12c, the flight performance
constraints are used to conduct the second-round flyable trajectory filtering to precisely
eliminate unflyable connecting parts. Furthermore, due to the fact that CTG-MMAT is
trained offline and used online, as shown in Figure 12, generating candidate trajectories for
a given backward trajectory takes about 0.053 + 0.064 + 0.002 = 0.119 s.
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Figure 12. Trajectory generation with the well-trained generator. (a) We randomly select some
forward trajectories and connect them with the backward trajectory with connecting parts. (b) We
roughly eliminate unflyable trajectories with the surrogate network. (c) We precisely eliminate
unflyable trajectories according to the flight performance constraints.

In this paper, we let CTG-MMAT and VampPrior TCVAE generate 20,000 trajectories
each and calculated the flight performance parameters of those generated trajectories. It is
worth noting that, according to the findings mentioned in Section 4.2, the differences in
aircraft categories are ignored in this experiment. The distribution of flight performance
parameters is shown in Figure 13.

Figure 13. Flight performance of trajectories generated by different models. Each row in the figure
represents a trajectory generation model, while each column in the figure represents one or two flight
performance indicators. A trajectory meets the flight performance constraints if all its points lie in the
feasible area.

Figure 13e,f shows that although VampPrior TCVAE can generate high-fidelity and
-diversity trajectories, the generated trajectories are often out of the feasible area. In other
words, VampPrior TCVAE cannot consider flight performance constraints while generating
trajectories. For example, as shown in Figure 13e, a large portion of the generated trajec-
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tories would fly at an abnormally low speed at a high altitude or at high speed at a low
altitude. Compared with real trajectories’ flight performance distribution in Figure 13a–d,
the distribution of trajectories generated via VampPrior TCVAE in Figure 13e,f is almost
not feasible.

Figure 13e,f shows that CTG-MMAT can consider flight performance constraints since
the generated trajectories are always within the feasible area. Only a few trajectory points
are out of the feasible area. There are two reasons for those outliers that are out of the feasi-
ble area. First, considering that the new trajectories are generated by connecting different
trajectories, those trajectory points out of the feasible area may come from the historical
trajectories instead of the connecting part generated via CTG-MMAT. Second, trajectory
points out of the feasible area may happen at the joint part because of an unsmooth con-
nection. Despite these exceptions, CTG-MMAT outperforms the state-of-the-art trajectory
generation model.

To summarize, with the help of the proposed MMAT technique, the proposed trajectory
generation model successfully learns non-differentiable flight performance constraints and
can generate trajectories that are more likely to stay flyable.

5.2. Generating Trajectories with Operation Rules

To demonstrate that CTG-MMAT can learn more operation experience, this paper
compares CTG-MMAT with a state-of-the-art trajectory generation model, VampPrior
TCVAE. Figure 14 shows the real historical trajectories, those generated via VampPrior
TCVAE, and those generated via CTG-MMAT.

Figure 14. Comparison with other trajectories. (a) Real northbound trajectories often pass through
the published waypoints and only deviate from the published routes in specific regions. For example,
an aircraft entering the TMA from ATAGA or IGONO tends to make a dog-leg in the yellow area. (b)
Trajectories generated by VamPrior TCVAE ignore the published waypoints and could deviate from
the published routes in any region. (c) Trajectories generated by CTG-MMAT can pass through the
published waypoints and deviate at proper regions just like the real trajectories.

The real historical trajectories are shown in Figure 14a. It is easy to observe that most
arriving aircraft flew over the published waypoints, denoted as red points in Figure 14,
and only took necessary maneuvers in some regions. For example, arriving aircraft entered
the TMA from only a few entry points rather than from any point to maintain safe separation
from departure aircraft. As another example, an aircraft entering the TMA from ATAGA or
IGONO tends to make a dog-leg maneuver in the yellow area in Figure 14a to postpone its
landing time to establish landing sequences and maintain safe separation.

The trajectories generated via VampPrior TCVAE are shown in Figure 14b. It seems
that those generated trajectories that have a similar distribution to the real ones fail to
utilize operation rules even though the fidelity and diversity of these trajectories are high.
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For example, compared with the trajectories in Figure 14a, the generated trajectories in
Figure 14b deviate from the published waypoints and occupy almost all the area of the
TMA, which is strictly forbidden in the conditions of arrival and departure separation.
Moreover, compared with the classic flight intentions, such as short-cut, dog-leg, hold-on,
etc., the flight intentions in Figure 14b are hard to implement because the heading of these
trajectories changes continuously rather than changing in steps. As a result, a pilot must
constantly adjust the aircraft’s attitude to fly along such a trajectory.

In contrast, CTG-MMAT can capture operation rules quite well. Figure 14c shows
trajectories generated via CTG-MMAT across the published waypoints and that have classic
and easy-to-implement flight intentions, such as short-cut, dog-leg, hold-on, etc. As a result,
the diversity and fidelity of trajectories generated via CTG-MMAT are high enough to be
mistaken for real historical trajectories.

To summarize, the proposed CTG framework helps the trajectory generation model
successfully gain more operation experience.

5.3. Generating Trajectories with Controllers’ Experience

Instead of mimicking the distribution of actual trajectories, CTG generates trajectories
by connecting different trajectories. As shown in Figure 15, by connecting trajectory α and
trajectory β, the CTG framework can create trajectories with common flight intentions such
as parallel-offset, hold-on, short-cut, and dog-leg.

Figure 15. Generating trajectories with different maneuvers. (a) Connecting to trajectory β, which
joins the base leg earlier than trajectory α, to form a parallel-offset maneuver. (b) Connecting to
trajectory β, which has hold-on patterns, to form a hold-on maneuver. (c) Connecting to trajectory β,
which joins the final leg earlier than trajectory α, to form a short-cut maneuver. (d) Connecting to
trajectory β, which has a dog-leg pattern, to form a dog-leg maneuver.

In addition, Figure 15 shows that the connecting parts partially overlap with the
backward and forward parts. These overlaps are intentionally designed, as mentioned
in Section 2. They can introduce data leakage while training the generator to ensure that
both ends of a connecting part can seamlessly connect with the backward and forward
parts. When combining these three parts to obtain a new trajectory, the overlaps should be
eliminated from the connecting part.
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Figure 16 dynamically demonstrates the flight intention-based trajectory generation
process from the perspective of pilots and controllers.

Figure 16. Rerouting path planning for an aircraft entering from IGONO. At different positions,
the ownship can switch to different historical trajectories.

As shown in Figure 16, the CTG can provide alternative arrival routes for an arriving
aircraft by connecting the aircraft’s already flown trajectory with candidate historical
trajectories. This connection is achieved through flight intentions such as dog-leg and
short-cut. This process is close to the actual operation where a controller plans a rerouting
path for an aircraft. In such cases, the CTG framework maximizes the actual operation
experience while generating trajectories, since most of the content comes from historical
data. Please refer to Appendix C for more examples similar to Figure 16 to show how the
CTG framework recommends alternative trajectories for aircraft from different entry points.

To summarize, with the help of the proposed CTG framework, the proposed trajectory
generation model can generate trajectories similar to the ones used in operations.

5.4. Lower Training Costs and Better Outcomes

The adapted architecture of the proposed generator—including only three dense lay-
ers—is quite simple and may raise concerns about their capability. Hence, more complicated
architectures are considered in this subsection to analyze the effects of different architectures.

Recurrent neural networks, such as LSTM, Gated Recurrent Unit (GRU), and Bi-
directional LSTM (BiLSTM), were developed to replace dense layers because these layers
can effectively leverage the temporal relation information in the trajectory. In addition,
the temporal convolutional network (TCN) used in [39] was also considered since it exhibits
longer memory than recurrent architectures.

For a fair comparison, as shown in Figure 17, these models have a close number of
trainable variables. However, their floating-point operations (FLOPs) differ. Specifically,
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the TCN’s FLOPs are about 38 times those of the other models. The higher the FLOPs,
the more complex the model. In addition, as shown in Figure 18, the training time of
CTG-MMAT is significantly lower than that of the other models. This is because the
computations in dense layers can happen in parallel, while in the other models, they need
to be processed sequentially. The simplicity of the generator matters. This explains why
CTG-MMAT can be trained nearly a million times in a short time with a regular office
computer. This simple neural network structure avoids dependency on high-performance
deep learning workstations during the training process and lowers the bar when applying
a trajectory generation model.

Figure 17. Information of the models. Although the models for comparison have close trainable
variable sizes, they have different FLOPs. The higher the FLOPs, the more complex the model.

Figure 18. Time consumption for each epoch.

Simplifying the generator’s architecture does not always degrade its generation perfor-
mance. As shown in Figure 19, the reconstruction error of CTG-MMAT is close to the best
one (TCN) and outperforms the others (GRU, LSTM, BiLSTM). Although the TCN has the
lowest reconstruction error, its robustness is worse than that of the other models. As shown
in Figure 19, when the TCN is trained for more than 300 epochs, its reconstruction error
fluctuates strongly.

Figure 20 shows the increase in the number of flyable trajectories during training.
Compared with the results given in Figure 19, there is no clear relationship between
the models’ reconstruction error and their ability to generate flyable trajectories: the
performance of the TCN and BiLSTM differs significantly in reducing the reconstruction
error, but they are similar in generating flyable trajectories. In other words, minimizing
a trajectory generation model’s reconstruction error cannot guarantee that the generated
trajectories are flyable, and the flight performance constraints need to be additionally
considered. CTG-MMAT, which was trained to minimize both reconstruction error and
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flight performance penalty, is the best example. As shown in Figure 20, CTG-MMAT
outperforms the other models in generating flyable trajectories.

Figure 19. The variation in reconstruction error over several epochs.

Figure 20. The variation in flyable trajectory numbers over several epochs.

6. Conclusions

This paper proposed a novel trajectory generation method to incorporate more domain
knowledge while generating trajectories, such as operation rules, controllers’ experience,
and flight performance constraints. Such a generative model is of great interest in traffic-
related mining and simulation since it can provide large-scale trajectory data when only a
limited amount of observation is available. By incorporating the proposed CTG framework
and MMAT technique, the model fulfills all expectations mentioned in the introduction:

1. This paper adds non-differentiable flight performance constraints into the trajec-
tory generation model. Considering that the non-differentiable flight performance
constraints cannot be added to the trajectory model directly, the proposed model
incorporates the MMAT technique to approximate non-differentiable constraints with
differentiable functions to train CTG-MMAT with flight performance constraints. As a
result, the trajectories generated via CTG-MMAT are more likely to be flyable than
those generated using previous models.
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2. Unlike previous trajectory generation methods focusing on generating a whole tra-
jectory, the proposed CTG-MMAT generates trajectories by connecting several sub-
trajectories. This way, CTG-MMAT can not only fully utilize the operation rules and
controllers’ experience, but can also be plugged into a combinatorial optimization
algorithm to achieve trajectory optimization in the future.

3. With the help of the CTG framework, the synthetic trajectory generation task becomes
far easier. Accordingly, the generator composed of several dense layers is able to
generate high-diversity and -fidelity trajectories. The training costs can be reduced sig-
nificantly, reducing the threshold of development and application for future trajectory
generation-related tasks.

Although the proposed trajectory generation method was validated by generating
arrival trajectories for the ZGGG airport, it can also be directly applied to other types of
trajectories. In the future, we will analyze the trajectory generation model’s robustness and
integrate the proposed model into traffic-related mining and simulation tasks to improve
the performance of these related algorithms.
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MM Majorization–minimization
NER Negative Experience Replay
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Appendix A. Sensitivity Analysis

A sensitivity analysis was conducted to determine how the model structure affects the
performance of the trajectory generation model. Specifically, we synchronously changed the
model’s structure and the sliding window’s size and validated the performance differences
of the generator in two cases.

The first case is the training or testing case. As shown in Figure A1a, the backward
and forward parts were obtained from the same trajectory through a sliding window.
The second case is the application case. As shown in Figure A1b, the backward and forward
parts were obtained randomly from different trajectories, not the same ones. Considering
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that the randomly sampled backward and forward parts in the second case may be too far
apart to find a proper connecting part to combine the backward and forward trajectories,
the generator’s performance in the second case will not be as good as in the first case.

Figure A1. Input data in different cases. (a) We collect backward and forward parts from the same
trajectory through a sliding window. (b) We randomly collect backward and forward parts from
different trajectories.

Table A1 summarizes the performance of the generator in the training and testing
cases. When we changed the size of the sliding window, we obtained intuitive experimental
results. On the one hand, the shorter the connecting parts, the more likely it is that the
generated trajectories are feasible. One possible reason is that reducing the size of the
connecting window makes the generation task easier. On the other hand, the longer the
backward/forward window, the more likely it is that the generated trajectories are feasible.
One possible reason is that increasing the size of the backward/forward parts brings more
information for the generation step.

Table A1. Flight performance compliance rate of generated trajectories in training and testing cases.

Back./Forw.
Conn. 8 12 16 20

4 94.05% 90.96% 90.47% 86.43%
14 95.13% 93.39% 90.41% 88.77%
24 95.41% 93.37% 90.67% 88.55%
34 95.70% 93.74% 91.35% 87.62%

Table A2 summarizes the performance of the generator in the application case. Due
to the fact that the backward and forward parts were obtained randomly from different
trajectories, the values in Table A2 are much lower than those in Table A1. Furthermore,
when we changed the size of the sliding window, we obtained counterintuitive experi-
mental results. On the one hand, the longer the connecting window, the more likely it is
that the generated trajectories are feasible. One possible reason is that, in the application,
the longer the connecting parts, the more forward parts can match the backward part.
On the other hand, the longer the backward/forward part, the less likely it is that the
generated trajectories are feasible. One possible reason is that the backward/forward
parts contain distinct intentions, and increasing the length of the backward/forward parts
intensifies the contradictions between the two flight intentions.

Table A1 suggests that the generation task will be more successful when decreasing
the length of the connecting part and increasing the length of the backward/forward parts.
Table A2 suggests that the model will be more practical when increasing the length of
the connecting part and decreasing the length of the backward/forward parts. To make a
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trade-off between training cost and practicability, we set the length of the connecting part
to 12 and the backward/forward parts to 24.

Table A2. Flight performance compliance rate of generated trajectories in application case.

Back./Forw.
Conn. 8 12 16 20

4 0.70% 1.01% 1.68% 2.03%
14 0.41% 0.78% 1.18% 1.46%
24 0.31% 0.49% 0.82% 1.27%
34 0.17% 0.39% 0.61% 0.92%

Appendix B. Convergence Proof and Negative Experience Replay

To train a generator with flight performance constraints, the loss function of the
generator can be written as a functional.

L(Gθ , P) = ∑
i

P
[
Gθ(ti

backward, ti
f orward)

]
i = 1, . . . , B (A1)

where Gθ is the connecting part generator, P is the flight performance constraints, B is the
batch size, and ti

backward and ti
f orward are the backward and forward parts, respectively.

According to Equation (A1), we have:

Ĝθ = arg min
Gθ

L(Gθ , P) (A2)

In most cases, P is complicated and non-differentiable, so P cannot be used to train
the generator directly. Therefore, we transform the trajectory generation problem into a
majorization–minimization problem.

Instead of operating on P, we train a surrogate network Sϕ to approximate P. Noting
that Sϕ is a neural network, we have:

Ĝθ = arg min
Gθ

L(Gθ , Sϕ) (A3)

where L(Gθ , Sϕ) is the modified loss functional in which P is replaced by Sϕ.
According to the definition of MM, the surrogate network Sϕ should meet the following

two essential conditions to ensure convergence:

L(G(T)
θ , S(T)

ϕ ) = L(G(T)
θ , P) (A4)

L(G(t)
θ , S(T)

ϕ ) ≥ L(G(t)
θ , P) t = 1, 2, . . . , T − 1 (A5)

where G(T)
θ and S(T)

ϕ are the generator and surrogate network in Tth iterate, respectively,

and G(t)
θ is the generator at iteration t.

The remainder of this appendix proposes a Negative Experience Replay (NER) tech-
nique to ensure that S(T)

ϕ can meet the two conditions mentioned above. For the convenience
of illustration, we rewrite Equations (A4) and (A5).

Firstly, Equation (A4) requires that the S(T)
ϕ be consistent with P in flight performance

penalty evaluation for G(T)
θ . Hence, Equation (A4) can be rewritten as follows:

S(T)
ϕ (x) = P(x) = 0 ∀x ∈ X+

T (A6)

S(T)
ϕ (x) = P(x) = 1 ∀x ∈ X−T (A7)
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where X+
T is the set of connecting parts that can meet the flight performance constraints,

and X−T is the set of connecting parts that cannot meet the flight performance constraints.

Both X+
T and X−T are generated by G(T)

θ .

Secondly, Equation (A5) requires that S(T)
ϕ retain some memory during iteration.

Specifically, S(T)
ϕ should consider the unflyable connecting parts generated by G(1)

θ –G(T−1)
θ

as ones that cannot meet the flight performance constraints. Therefore, Equation (A5) can
be rewritten as follows:

S(T)
ϕ (x) = P(x) = 1 ∀x ∈ X−1:T−1 (A8)

where X−1:T−1 is the set of connecting parts that cannot meet the flight performance con-

straints. X−1:T−1 is generated by all previous generators G(1)
θ –G(T−1)

θ .

Based on Equation (A6)–(A8), we can summarize the NER technique: train S(T)
ϕ with

not only trajectories generated by G(T)
θ , but also unflyable connecting parts generated by

G(1)
θ –G(T−1)

θ . In the practice of NER, we construct the training set with all the unflyable
connecting parts and the same number of flyable connecting parts.

Appendix C. Trajectory Generation for Arriving Aircraft

Five trajectory sets are given to show how CTG-MMAT recommends alternative
trajectories from different entry fixes.

Figure A2. Rerouting path planning for an aircraft entering from GYA. At different positions,
the ownship can switch to different historical trajectories.
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Figure A3. Rerouting path planning for an aircraft entering from ATAGA. At different positions,
the ownship can switch to different historical trajectories.

Figure A4. Rerouting path planning for an aircraft entering from IDUMA. At different positions,
the ownship can switch to different historical trajectories.
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Figure A5. Rerouting path planning for an aircraft entering from P270. At different positions,
the ownship can switch to different historical trajectories.

Figure A6. Rerouting path planning for an aircraft entering from LUPVU. At different positions,
the ownship can switch to different historical trajectories.
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