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Abstract. The safety and efficiency of airspace operations largely depend on 

the accurate prediction of 4D trajectories in dense air traffic. Traditional meth-

ods are progressively giving way to more accurate machine learning (ML) tech-

niques, among which the Long Short-Term Memory (LSTM) neural network 

emerges as an exceptionally promising tool and has been successfully applied, 

especially for time-series prediction tasks. In this study, we introduce an 

LSTM-based adjustable interpolation algorithm designed to significantly reduce 

computational time while maintaining accuracy at an acceptable level to meet 

operational constraints. The algorithm applies adjustable time intervals to input 

data based on ascent and descent rates, providing different data densities for dif-

ferent flight phases. A case study focusing on flight trajectories from Mel-

bourne to Sydney is conducted, and the findings reveal that our proposed meth-

od can reduce computation time by half without significantly sacrificing predic-

tion accuracy compared to the traditional linear interpolation method. Further-

more, it achieves accuracy improvements of at least 50% compared to raw data 

processing, with no substantial increase in computational time. Proven to be ef-

fective, our proposed algorithm can be an ideal solution for training dense air 

traffic data when regular training is required to meet accuracy and safety re-

quirements. This includes applications in Urban Air Mobility (UAM) and un-

manned aircraft operations, as well as airport management and airspace sector 

handovers. 
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1 Introduction 

Urban Air Mobility (UAM) necessitates an on-demand operation capable of safely 

executing missions in metropolitan areas, encompassing emergency medical evacua-

tions, rescue operations, humanitarian endeavors, and more [1]. Due to the stringent 
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safety requirements and the underdeveloped UAM infrastructure, current UAM op-

erations rely extensively on pre-existing networks. To advance this concept and its 

operational efficiency further, it is imperative to devise novel technologies and algo-

rithms based on the existing infrastructure and data to enhance safety and effective-

ness [2]. One of the most daunting challenges in UAM pertains to the unpredictable 

behavior of Unmanned Aircraft Vehicles (UAVs), which can potentially pose envi-

ronmental hazards and public safety concerns [3]. However, performance-based oper-

ation requires to establish a predictable and hazard-free aerial environment, in which, 

trajectory prediction plays a pivotal role, offering crucial support for conflict detec-

tion, maintain situational awareness and therefore reduce collision risk [4, 5]. Mathe-

matical and Machine Learning (ML) models have both been considered for trajectory 

prediction. Mathematical models are better suited for real-time short-term trajectory 

prediction due to their algorithmic complexity [6] In contrast, ML, particularly Long 

Short-Term Memory (LSTM), exhibits significant promise in terms of prediction 

accuracy, thanks to its capacity to uncover hidden patterns in trajectory data [7]. 

However, several challenges persist, particularly concerning the lack of accurate data 

for ML-based trajectory prediction in the context of UAM. Considering the future of 

UAM operations, the widespread utilization of Automatic Dependent Surveillance-

Broadcast (ADS-B) is anticipated. Vertical Take-off and Landing Aircraft (VTOL) 

flight profiles closely resemble those of commercial aircraft, which makes commer-

cial aircraft ADS-B data a suitable case study to validate the proposed methodology 

for application in UAM. Furthermore, adequately training an ML model demands a 

substantial training dataset, which often results in extended computation times, a 

pressing concern for UAM [8]. To expedite the training process while maintaining 

prediction functionality and accuracy at safe levels, this paper introduces a trajectory 

prediction algorithm founded on LSTM and linear interpolation. This algorithm ena-

bles real-time trajectory prediction by dynamically adjusting data density based on 

data significance and optimizing training efficiency. The case study demonstrates that 

the algorithm achieves a balance between training time and accuracy, offering the 

potential to serve as a foundational element for future UAM trajectory prediction 

systems. 

2 Literature Review 

Due to the increasing density of current airspace, there is an urgent need for trajectory 

prediction to assist air traffic management. Trajectory prediction in air mobility typi-

cally involves tracking UAVs' current and previous positions to forecast their future 

movements [9]. Compared to ground traffic prediction, predicting air trajectories is 

more challenging due to the significant influence of unpredictable weather and com-

plex airspace constraints [10]. Multiple trajectory prediction algorithms have been 

developed, utilizing both Machine Learning (ML) and mathematical approaches. Giv-

en the complexity of mathematical methods, ML has gained significant attention due 

to its ability to identify and adapt to patterns in data. Among ML algorithms, Deep 

Neural Networks (DNNs) are particularly powerful [11, 12]. Its inherent structure, 
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featuring hidden layers and numerous neurons, has led to their successful application 

in various fields, including language modeling, machine translation, and speech 

recognition [13]. However, RNNs have their limitations. They suffer from a lack of 

long-term memory, making them less effective at learning from extensive historical 

data [14]. Additionally, training RNNs can be complex, and their accuracy is not al-

ways guaranteed [12]. This is where Long Short-Term Memory (LSTM), a variant of 

the RNN architecture, comes into play. LSTM is built around a cell state (Ct) that 

flows through all LSTM cells. LSTM can maintain and convey data that needs to be 

retained from the initial LSTM unit to the final one [14].  

3 System Design 

The objective is to develop a real-time model capable of accurately predicting sequen-

tial trajectory characteristics using LSTM based on trajectory information. Initially, 

data is sourced from commercial airspace due to the unavailability of urban airspace 

data. The proposed system design, as illustrated in Fig. 1, outlines the workflow. The 

first step involves the utilization of the proposed algorithm, Adjustable Linear Inter-

polation (ALI), as part of the pre-processing phase. ALI is applied to generate a more 

structured dataset. Subsequently, the data is processed using a sliding window tech-

nique to reshape it into training data. 

 

 

Fig. 1. System design. 

3.1 Data Pre-processing 

ADS-B data sourced from FlightRadar24 exhibits non-deterministic behavior, with 

time intervals fluctuating between 2s to 120s. This variability can significantly impact 

the accuracy of the model, leading to confusion in the LSTM model. Moreover, data 

redundancy can result in inefficient training, prolonging the model training time. 

Conventional Linear Interpolation (LI) addresses the issue of time interval fluctuation 

by converting it into a constant value, but it doesn't resolve the problem of data re-

dundancy. To strike a balance between these concerns, the proposed system employs 

a novel linear interpolation method in which the time interval is determined based on 

the aircraft's ascent and descent rate. This approach effectively retains critical trajec-

tory data while filtering out redundant information. The pseudocode below illustrates 

the Adjustable Linear Interpolation (ALI) algorithm, where T1, T2, T3, and T4 repre-

sent different time intervals corresponding to the ascent/descent rate (R). Typically, 

these values from T1 to T4 should increase sequentially to accommodate varying air 

risks. 
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3.2 Sliding Window Method 

The sliding window is a crucial component of the data pre-processing phase, as de-

picted in Fig. 2. Its purpose is to collect the most recent n sequential trajectory data 

points and the subsequent m sequential trajectory data points at a specific timestamp t. 

As the sliding window traverses the entire dataset, trajectory data is divided into mul-

tiple sub-datasets, each containing a total of m+n data points. Within each sub-

dataset, the first n data points are designated as DataX, while the remaining data 

points are referred to as DataY. For instance, in the figure provided, the labels X, Y, 

and Z correspond to latitude, longitude, and altitude, respectively. The yellow dataset 

represents DataX, while the blue dataset represents DataY. The reshaped data is then 

fed into the LSTM model. Notably, the three input data dimensions—longitude, lati-

tude, and altitude—are trained separately. To implement the system design outlined 

above, a dataset comprising 100 trajectories originating from Melbourne Airport to 

Sydney Airport was sourced from FlightRadar24. Of this dataset, 70% was allocated 

for training, while the remaining 30% was utilized for validation. 

 

 

Fig. 2. Sliding window. 
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3.3 System Set Up 

The LSTM models utilized for training altitude, longitude, and latitude are entirely 

identical. Each model is composed of two LSTM layers. The input layer is configured 

with 64 neurons, followed by a dense layer with 32 neurons, and finally, an output 

layer with 5 outputs. This LSTM model configuration enables the algorithm to predict 

the next five waypoints based on the previous twenty waypoints. To assess the accu-

racy of the training results, several error metrics are employed, including Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage 

Error (MAPE). The average values of MAE, MAPE, and RMSE are calculated to 

determine the final error of the model. In the subsequent equations, K represents the 

number of rounds of training or testing conducted for a single trajectory. In this study, 

N is set to 5 since the model's objective is to predict 5 trajectory data points. 𝑃𝑗𝑖  de-

notes the 𝑖𝑡ℎ  predicted trajectory data in round j, while 𝐴𝑗𝑖  signifies the 𝑖𝑡ℎ  actual 

trajectory data in round j. 
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     To determine the most suitable combination of T1, T2, T3, and T4 for the Adjust-

able Linear Interpolation (ALI) method, this paper investigated five different combi-

nations and assessed their effectiveness and feasibility. The five combinations for ALI 

are presented below. 

   

Fig. 3. Training efficiency for the five combinations. 

In these combinations, N represents the code name for different combinations. 

Each combination comprises the four intervals T1-T4 as outlined in the pseudocode. 

Given the vast number of potential combinations, it is impractical to test them all. 

Therefore, the authors have selected the most reasonable ones. To ensure safety, the 

maximum time interval during the ascent/descent phase is capped at 5 seconds. Three 

factors are considered: training time, total training, and average time interval. In Fig. 

3, "total train" indicates the number of training sessions conducted for each N, train-
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ing time reflects the time required for each training session, and "average time inter-

val" calculates the mean time interval for each combination. The objective is to identi-

fy an N that strikes a balance between low training time and a reasonable average 

time interval. The results clearly indicate that when training time and total training is 

low, the average time interval tends to increase significantly, which negatively im-

pacts accuracy, and vice versa. Therefore, "N3" emerges as the best choice, striking a 

balance between these three factors, and it has been selected for implementation in 

this study. 

4 Results 

4.1 Training and Computation Time 

In the training phase, longitude, altitude, and latitude are simultaneously trained using 

both pre-processing methods: ALI, LI, and raw data (RD). The ALI time interval is 

set as previously discussed, while the LI time interval is fixed at 5 seconds. The slid-

ing window is configured with n = 20 and m = 5. Prior to the main training process, 

five trajectories were selected and pre-trained to simplify the training process and 

evaluate the impact of the ALI algorithm during training. Fig. 4 illustrates the training 

times for the three different pre-processing methods. It is evident that ALI reduces 

training time by almost 50% compared to LI. However, in comparison to RD, it re-

sults in an average increase of training time by approximately 30%. This experiment 

demonstrates that, when compared to LI, the ALI algorithm proves to be beneficial 

for future trajectory prediction development. To further assess the accuracy of each 

method, models equipped with either ALI, LI, or RD are separately trained using 70 

trajectories.  

 

 

Fig. 4. Training efficiency. 

4.2 Test Results 

To gain a more intuitive understanding of the errors associated with the three meth-

ods, a random trajectory was selected for verification purposes. As depicted in Fig. 5, 

the predictions are plotted concurrently with the actual trajectory for visualization. In 

the plots, the green line represents the actual trajectory that requires prediction, and 

the points along the green line represent the predictions generated by the model. The 
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X and Y axes correspond to latitude and longitude, measured in degrees, while the Z 

axis represents altitude in feet. From a visual standpoint, LI and ALI exhibit similar 

levels of accuracy, although LI predictions tend to be more precise. ALI tends to ex-

perience more errors when transitioning between phases, and RD exhibits the lowest 

accuracy. 

 

                 
ALI                                                                 LI 

 

RD 

Fig. 5. Predicted flight trajectories. 

While 3D trajectory plotting provides an intuitive representation, it does not allow 

for the quantification or display of errors based on timestamps. To conduct a more 

comprehensive analysis of the advantages and disadvantages, the table below presents 

the three different errors associated with the three pre-processing methods in the three 

directions for this prediction.  

Table 1. Error for three pre-processing methods. 

  MAE   MAPE   RMSE  

 ALI LI RD ALI LI RD ALI LI RD 

X 0.061 0.031 0.084 1.6E-3 8.8E-4 2.4E-3 0.060 0.032 0.086 

Y 0.078 0.023 0.14 5.3E-4 1.6E-4 9.2E-4 0.081 0.024 0.14 

Z 328.2 306.8 904.0 0.023 0.025 0.104 342.6 328.8 957.4 

 

 

 
 

 

Melbourne 

Melbourne 

Melbourne 

Sydney 
Sydney 

Sydney 
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When assessing overall accuracy, LI outperforms the other two algorithms. This is 

primarily because LI has access to the largest amount of training data. Additionally, 

LI maintains a constant time interval, which reduces data complexity. ALI exhibits 

better accuracy than RD, even though it shares a similar amount of data with RD. The 

key reason for this difference is that RD's data time interval is entirely unpredictable, 

while ALI follows a more structured data pattern that can be easily detected by 

LSTM. Analyzing individual axes, ALI demonstrates a significant advantage on the 

Z-axis. This can be attributed to the fact that ALI is based on the data variation rate 

along the Z-axis, making it easier for the model to identify data patterns in this di-

mension. Nevertheless, ALI still maintains a considerable advantage over LI on the X 

and Y axes. For a more comprehensive performance assessment, MAE errors along 

the trajectory are plotted in Fig. 6. Although the other two error metrics are calculat-

ed, they are not included in this paper due to page limitations. With ALI, errors on the 

X and Y axes are generally insignificant throughout the entire prediction. However, 

errors increase after 2200 seconds, likely due to an aircraft maneuver that results in 

less precise predictions. 

 

 
                                          MAE_X                                                                              MAE_Y 

 

 
MAE_Z 

Fig. 6. Prediction error time-histories.  

As shown in the figure, the ALI model demonstrates the ability to adjust accuracy and 

rapidly reduce data errors. When considering altitude, the model provides highly ac-

curate predictions during specific time intervals which correspond to phases when the 

aircraft is climbing, descending, or cruising steadily. However, during other time 

periods, the altitude predictions are less accurate, particularly when the airplane is 

executing turns. In comparison, the RD model exhibits a similar error pattern for the 

X and Y axes. Nevertheless, it is evident that the RD model requires more time to 

adapt to abrupt changes in data. This can be attributed to two factors: first, the RD 

dataset contains less data compared to ALI or LI, and second, the time interval of raw 

data in RD is highly unpredictable, leading to increased errors. Conversely, LI con-
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sistently demonstrates good accuracy, even during turning maneuvers, as its time 

interval remains constan. To assess whether the error patterns observed previously are 

consistent across different trajectories, the model underwent testing with 30 additional 

trajectories in this section. The average of all three errors was calculated and present-

ed in Fig. 7. To ensure that all errors are plotted on the same scale, altitude units are 

adjusted to 1000 feet. The results indicate that the performance of X, Y, and Z predic-

tions, as shown earlier, aligns with the universal performance across these trajectories, 

with minor variations. In terms of altitude, ALI exhibits slightly higher accuracy 

compared to LI. This difference may be attributed to the fact that LI treats all data as 

equally important by maintaining a constant time interval, whereas ALI assigns great-

er importance to highly variable data by increasing its data density through additional 

training. For other phases of the trajectory, where the data is less complex, the model's 

performance is less affected by data density, as the data density doesn't significantly 

impact accuracy in these cases. This study highlights that ALI has the capability to 

restructure the data density pattern effectively, catering to training requirements and 

substantially reducing training time by filtering out less crucial data.   

 

 

MAE                                                    MAPE                                                      RMSE 

Fig. 7. Average prediction error.   

5 Conclusion 

This paper extensively discussed the Adjustable Interpolation Algorithm (ALI) and its 

impact on prediction accuracy when integrated into an LSTM model. ALI, as a vari-

ant of traditional interpolation methods, dynamically adjusts time intervals based on 

the ascent/descent rate of aircraft. The paper thoroughly examined its functionality by 

analyzing error metrics in three dimensions (longitude, latitude, and altitude) for ALI, 

Linear Interpolation (LI), and Raw Data (RD) through testing on individual and mul-

tiple trajectories. The findings revealed that ALI, while exhibiting slightly larger er-

rors than LI in longitude and latitude, and similar errors in altitude, offers significant 

advantages in reducing training time. ALI is deemed highly suitable for applications 

in Urban Air Mobility (UAM) scenarios where extensive training is required. Howev-

er, for commercial airspace operations where regular training is less essential, LI is 

recommended. Furthermore, ALI has the potential to aid Air Traffic Control Officers 

(ATCOs) during international flight handovers by providing timely information about 

the location and timing of handovers, enhancing situational awareness, and mitigating 

air traffic risks. For future research and development, the paper suggests exploring 

additional combinations of ALI time intervals to optimize the model setup. Alterna-
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tive machine learning methods will be also explored to determine which ones can best 

accommodate ALI. Additionally, future work will also focus on low-altitude ATM 

applications and, in particular, flight in urban airspace.  
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