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Abstract: Dilution of Precision (DOP) is routinely used in GNSS to assess the quality of the constella- 1

tion geometry for the positioning algorithm. Those DOP factors are computed from the estimation 2

covariance of a snapshot weighted least squares (WLS) estimate under certain hypotheses. This 3

paper proposes to define DOP factors for GNSS solutions based on Factor Graph Optimization (FGO). 4

FGO solutions have become popular in the GNSS domain. They allow to easily model probabilistic 5

contraints, called factors, over a large time window, by mixing observations and motion constraints 6

accross consecutive epochs. The solution is solved by performing a batch WLS estimation for the 7

states at all considered epochs, using all available factors. Due to the simple nature of the estimation 8

algorithm – a WLS solution – it is possible to derive the theoretical estimation error covariance, 9

which will indicate the accuracy of the computed solution. In this paper, a formula is proposed to 10

approximate the DOP for the FGO solution. Then, the formula is validated in various scenarios 11

involving fixed or changing satellite visibility. 12

Keywords: GNSS; Factor Graph Optimization; Precise Positioning 13

1. Introduction 14

The positioning algorithms implemented in GNSS receivers uses estimation techniques 15

to combine GNSS observations, such as code pseudo-ranges or doppler offset measure- 16

ments, to estimate the unknown position, velocity and clock bias of a GNSS receiver. 17

Several algorithms are commonly used, such as the Weighted Least Squares estimation 18

and the Kalman Filter [1],[2]. The Weighted Least Squares (WLS) estimation applied with 19

code pseudo-ranges is called the Single Point Positioning (SPP) solution, and is the most 20

basic solution provided by a GNSS receiver. Kalman filter-based techniques add a state 21

transition model, which corresponds to a motion model for the position/velocity/clock 22

states, in order to refine the estimate [3]. It can also be applied with phase pseudo-range 23

observations, leading the well-known Precise Point Positioning [4]. 24

Those algorithms provide both the estimate and the covariance matrix of the state 25

vector. The covariance matrix gives an indication of the uncertainty of the estimate, and its 26

validity depends on the matching of the assumed models with the real conditions of the 27

data collect. Among the usual quality indicators, the DOP (Dilution of Precision) factors 28

are often encountered [1]. The DOP factors are derived from the estimation covariance 29

of the WLS solution, assuming that all code pseudo-ranges are affected by a Gaussian 30

error that has the same variance and is independent from other pseudo-ranges. Given 31

those assumptions, the DOP factors only depend on the relative satellite positions with 32

regards to the receiver. They quantify the impact of the satellite constellation geometry 33

on the uncertainty of the WLS solution. In the context of this paper, satellite constellation 34

geometry refers both to the satellite position relative to the receiver, but also to the possible 35

masking of satellites by surrounding obstacles. DOP is used for assessment of solution 36

quality, filtering bad position estimates or planning data collections. 37
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More recently, Factor Graph Optimization (FGO) has been applied to the GNSS posi- 38

tioning problem with great success [5],[6]. FGO performs a batch WLS estimation over a 39

large time window, as opposed to a snapshot algorithm as used in the SPP solution. In order 40

to benefit from the optimization over a large time window, motion factors are introduced 41

in addition to GNSS observations to provide constraints between states in adjacent epochs. 42

Those motion factors are essentially similar to the state transition model in a Kalman filter. 43

Therefore, all observations contribute to the accuracy of the solution at each epoch, through 44

the correlation of the estimated states across epochs introduced by the motion factors. 45

While the impact of the constellation geometry on the solution accuracy is well de- 46

scribed for snapshot WLS solutions, such as the SPP solution, it is more difficult to deter- 47

mine how the constellation geometry will impact the solution accuracy in an FGO solution, 48

due to the intricate interactions between the GNSS observations at each epochs and the 49

propagation of the accuracy through the motion factors. 50

This paper aims at deriving a DOP-like factor for FGO solutions including a generic 51

motion factor, that will provide a quality assessment of a FGO solution at each epoch, based 52

on the constellation geometry and motion factor uncertainty only. 53

2. Materials and Methods 54

2.1. DOP in a snapshot least squares solution 55

The considered positioning algorithm is the SPP algorithm, consisting in the estimation 56

of the 3D ENU position and the receiver clock bias from GNSS code observations at a single 57

epoch k. j is used to index the scalar states within the state vector: xk = [xj,k]j∈J1,4K 58

The linearized observation model around an approximate position is: 59

yk = Hkxk + nk, nk ∼ N (0, Rk) (1)

where yk is observation vector comprising all GNSS code observations at epoch k, xk is the 60

unknown state vector, Hk is the Jacobian matrix of the code observation model and nk is 61

the observation error vector, assumed normally-distributed, centered with a covariance Rk. 62

The WLS estimate of xk [7], referred to as the snapshot solution is given by Eq. (2) and 63

its covariance matrix is given by Eq. (3): 64

x̂(snap)
k = (Hk

TRk
−1Hk)

−1Hk
TRk

−1yk (2)

P(snap)
k = (Hk

TRk
−1Hk)

−1 (3)

Assuming that the observation error is independent and identically-distributed accross 65

all available observations, i.e. Rk = σ2
obsI, we obtain: 66

P(snap)
k = σ2

obs(Hk
THk)

−1 (4)

where σobs is the standard deviation of the GNSS code observations. 67

This expression separates the contribution of the measurement noise from the geom- 68

etry of the constellation. We note Dk = (Hk
THk)

−1 the DOP matrix. The different DOP 69

factors are computed from Dk. For example, assuming that the 3D position is placed on the 70

first 3 elements of the state vector xk: 71

• Global DOP: GDOP = Trace(Dk) 72

• Position DOP: PDOP = (Dk)1,1 + (Dk)2,2 + (Dk)3,3 73

where (A)i,j refers to the element at row i and column j of a matrix A. 74
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2.2. Factor Graph model 75

Figure 1. Factor graph considered in this study.

In this study, a simple factor graph (Figure 1) is considered for one scalar state xj at 76

different epochs indexed by k ∈ J1, KK. xj,k refers to one of the scalar state at epoch k, such 77

as the position along one axis or the receiver clock bias. 78

We assume that the snapshot LS algorithm provides a solution for each of the K 79

epochs of a trajectory. From each snapshot solution, the snapshot estimation accuracy 80

σ2
j,k = (P(snap)

k )j,j is used as a factor to constrain the scalar state xj at epoch k and is referred 81

to as snapshot GNSS factor. 82

yj,k = xj,k + nj,k, nj,k ∼ N (0, σ2
j,k) (5)

An additional factor is introduced to model the probabilistic constraint linking the 83

scalar states at two consecutive epochs. It assumes that the evolution of the scalar state 84

between 2 epochs is known, with an uncertainty assumed to be normally-distributed with 85

a standard deviation q. This constraint is referred to as a motion factor in this document. 86

This generic motion factor uses the following affine model: 87

mk,k+1 = xj,k+1 − (xj,k + bk+1) + nmk,k+1 , nmk,k+1 ∼ N (0, q2) (6)

where nmk,k+1 accounts for the uncertainty of the motion constraint, assumed to be a cen- 88

tered normal random variable with a constant standard deviation q and bk+1 is a known 89

parameter, e.g. an integrated velocity coming from another sensor. 90

Examples of motion constraints are the estimation of the receiver displacement by 91

GNSS Doppler or Time Difference of Carrier Phase measurements [6], estimation of the 92

receiver displacement by an external sensor such as an inertial measurement unit or a 93

visual simultaneous localization and mapping solution [2], or simply a dynamic model, 94

such as a random walk or constant velocity model with Gaussian uncertainty [3]. 95

Finally, it is assumed that the errors of the snapshot GNSS factors and those of the 96

motion factors are independent between each other and across epochs. Therefore, when 97

stacking all the factors in a single vector y, we obtain the following estimation problem: 98

y =



yj,1
yj,2

...
yj,K
m1,2
m2,3

...
mK−1,K


=



1 0 0 . . . 0
0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . . . . . . . . 0
0 . . . 0 −1 1




xj,1
xj,2

...
xj,K

+



nj,1
nj,2

...
nj,K
nm1,2

nm2,3
...

nmK−1,K



=

[
IK

Hm

]
︸ ︷︷ ︸

H

xj,1:K +

[
nj,1:K
nm1:K

]
︸ ︷︷ ︸

nj

, nj ∼ N
(

02K−1,

[
diag(σ2

j,1, . . . , σ2
j,K) 0K×K−1

0K−1×K q2IK−1

])
(7)
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2.3. Batch least squares solution of the considered Factor Graph 99

When ignoring the motion constraints in Eq. (7), we find the trivial solution which is 100

called the snapshot solution. For this particular solution, the snapshot covariance matrix 101

for state xj accross all epochs from 1 to K is: 102

P(snap)
j = diag(σ2

j,1, . . . , σ2
j,K) (8)

The solution of the factor graph mixing both snapshot GNSS factors and motion factors 103

is referred to as the batch solution. The batch solution covariance matrix is obtained with 104

the following equation. 105

P(batch)
j = (HTCov(nj)

−1H)−1 =

[IK Hm
T][ P(snap)

j 0K×K−1

0K−1×K q2IK−1

]−1[
IK

Hm

]−1

=

(
(P(snap)

j )−1 +
1
q2 Hm

THm

)−1
(9)

The inverse of the batch solution covariance is a so-called a tri-diagonal matrix [8]. 106

P(batch)
j =



1
q2 +

1
σ2

j,1
− 1

q2 0 . . . 0

− 1
q2

2
q2 +

1
σ2

j,2
− 1

q2

. . .
...

0
. . . . . . . . . 0

...
. . . − 1

q2
2
q2 +

1
σ2

j,K−1
− 1

q2

0 . . . 0 − 1
q2

1
q2 +

1
σ2

j,K



−1

(10)

2.4. Efficient computation of the batch estimation covariance 107

To compute efficiently the batch solution covariance matrix, one can use the particular 108

shape of (10). Additionally, we are interested only in the diagonal elements of the matrix, 109

to characterize the uncertainty of the considered scalar state estimate at each epoch k. The 110

symbolic expression of the diagonal elements for the first few values of K is shown in 111

Annex A. It is observed that the k-th diagonal element is a ratio of 2 expressions: 112

(P(batch)
j )k,k =

Nj,k(q, σj,1, . . . , σj,K)

Dj(q, σj,1, . . . , σj,K)
(11)

where Nj,k and Dj are expressions depending on q, σj,1, . . . , σj,K 113

The denominator Dj is common to all epochs of the considered trajectory. It can be 114

computed using a second-order linear recurrence relation: 115

p0 =
1
q2 , p1 = 1 +

σ2
j,1

q2

pk = (q2 + 2σ2
j,k)pk−1 − σ2

j,kσ2
j,k−1 pk−2 , for 2 ≤ k < K

Dj = pK = (q2 + σ2
j,K)pK−1 − σ2

j,Kσ2
j,K−1 pK−2 (12)

The numerator Nj,k depends on the considered epochs within the trajectory and can 116

be computed using the following expression: 117

Nj,k = Dj(σj,k = 0)σ2
j,k (13)

where Dj(σj,k = 0) is the evaluation of expression Dj at σj,k = 0 and leaving other parame- 118

ters untouched. 119
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The expressions of Nj,k and Dj have been validated by comparing the diagonal ele- 120

ments of Eq. (10) to the values computed using Eq. (11), using a symbolic mathematical 121

software up to K = 10, and numerical simulations up to K = 100. Elements of the 122

mathematical demonstration to obtain those expressions are available in Annex B. 123

2.5. DOP computation for a Factor Graph Optimization solution 124

By definition, the DOP factor is defined as the ratio between the uncertainty of the 125

combined estimated states and the uncertainty of the GNSS observations, assuming that all 126

GNSS observations are independent and affected by an error with the same variance σ2
obs: 127

DOPk =

√
∑j∈S var(x̂j,k)

σobs
(14)

where var(x̂j,k) is the estimation variance of state xj,k, and S is the set of indexes of the 128

scalar states of interest. For example, if the state vector at a particular epoch is composed 129

of [east, north, up, clock_bias], to compute the horizontal DOP, one has to combine the east 130

and north position uncertainty and S = J1, 2K. 131

The previous section provided the estimation uncertainty computation for both snap- 132

shot and batch solutions, for a scalar element of the state vector. The computation can then 133

be performed for the scalar states of interest before combining them into a DOP factor. 134

We define the DOP factors coming from the snapshot solution, noted DOP(snap)
k , and 135

the one coming from the batch solution including a motion factor, noted DOP(batch)
k 136

DOP(snap)
k =

√
∑j∈S (P

(snap)
k )j,j

σobs
=
√

∑
j∈S

(HT
k Hk)j,j (15)

DOP(batch)
k =

√
∑j∈S (P

(batch)
k )j,j

σobs
≈

√
∑j∈S

Nj,k(q,σ1,...,σK)

Dj(q,σ1,...,σK)

σobs
(16)

Note that while the snapshot DOP does not depend on σobs, the batch DOP depends 137

on the ratio between the motion uncertainty and the observation uncertainty q/σobs. 138

3. Results 139

3.1. Validation method of the proposed batch DOP formula 140

The formula, Eq. (11), to obtain uncertainty for a batch solution from the snapshot 141

scalar uncertainty has been validated for a single scalar state. 142

However, when combining the uncertainty of several scalar states to compute a DOP 143

factor, the correlated impact of an observation error on the different states should be 144

accounted. This is not the case for the batch DOP computed using Eq. (16), since the 145

diagonal elements of the covariance matrix of the batch solution are approximated by 146

considering each scalar state uncertainty independently from the other states. 147

The following subsections aim at quantifying the impact of this approximation. To do 148

so, the batch DOP obtained from Eq. (16) and the exact batch DOP, obtained by computing 149

the covariance of the full state vectors with Eq. (10), are compared based on the difference 150

of HDOP and the ratio of HDOP. The results are summarized in Table 1. 151

Table 1. HDOP difference and ratio between proposed formula and exact computation.

Scenario Factor graph length K Motion to observation
uncertainty ratio q/σ

Max HDOP difference Max HDOP ratio

fixed geometry [10, 50] [0.01, 0.1, 0.5, 1] 0.008 1 %
varying geometry 50 [0.01, 0.1, 0.5, 1] 0.02 3 %

urban scenario 1009 [0.01, 0.1, 0.5] 0.15 22 %
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3.2. Validation the FGO DOP formula in a fixed constellation case 152

When considering several consecutive epochs at a high rate (typically higher than 0.1 153

Hz), the constellation geometry can be considered as fixed over a window of a few tens 154

of epochs. In the case of an open sky receiver, the snapshot DOP will typically remain 155

constant, except when one satellite appear or disappear in the antenna’s field of view. 156
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Figure 2. HDOP comparison for fixed (a),(b) and time-varying (c) constellation geometry

Figure 2 (a),(b) shows the batch HDOP for all epochs for a mix of factor graph length 157

K and motion to observation uncertainty ratio q/σ. The HDOP value computed with the 158

formula is close to the exact HDOP value, especially for low values of q/σ. 159

On the general shape of the batch DOP, we can observe that the DOP is lower in the 160

middle of the graph. This is due to the fact that all surrounding epochs contribute to the 161

accuracy at a particular epoch. Secondly, the overall accuracy depends on the value of q/σ: 162

the lower q/σ is, the better the accuracy is. Finally, for larger q/σ, the DOP usually reaches 163

a floor value for the central part of the trajectory that is common for different values of K. 164

This points towards the fact that increasing the factor graph length may not result in better 165

accuracy once the floor has been reached. 166

3.3. Validation of the FGO DOP formula in a varying constellation case 167

In this section, the nominal GPS constellation from IS-GPS-200M is considered. The 168

scenario considers a fixed receiver in Toulouse on the day 2023-01-01 with a 5-min in- 169

terval over the first hours of the day. This scenario allows to have varying and realistic 170

constellation geometries, leading to temporal variations of the snapshot DOP. 171

Figure 2 (c) shows the exact HDOP and the HDOP computed using equation (16) for a 172

fixed value of K = 50 and various values of q/σ. Again, the HDOP values obtained with 173

the formula are close to the exact values. 174

An interesting observation can be made. For high accuracy motion constraints (e.g. 175

q/σ ≤ 0.1), variations of HDOP are attenuated and the batch HDOP reaches a floor value 176

for central epochs. In this particular cases, the accurate motion constraints allow to have a 177

good relative accuracy between consecutive position estimates, and the observations from 178

every epoch to contribute to the absolute accuracy of the whole trajectory. 179

3.4. Validation of the FGO DOP formula in constrained urban case 180

In this section, we study the case where the constellation geometry is changing in time 181

due to the masking by building as a GNSS receiver is moving across a city. The considered 182

trajectory comes from the Google Smartphone Decimeter Challenge 2021 [9], and has 183

been chosen as one that passes through an urban center. Figure 3 shows the 2D trajectory. 184

Frequent satellite masking occur leading to frequent snapshot HDOP degradation. 185

Figure 4 shows the exact HDOP and the HDOP computed using Eq. (16) for K = 1009, 186

i.e. all available epochs at 0.5 Hz, and various values of q/σ. Again, the HDOP values 187

obtained with the formula are close to the exact values. The largest difference corresponds 188

to epochs where fewer satellites are available. At those epochs, sparse GNSS observations 189

results in larger correlation between the east and north position estimation errors, and 190

therefore, larger approximation error of the proposed formula. 191
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Figure 3. Trajectory "2021-04-28-US-SJC-
1/Pixel4" from the GSDC2021 dataset.
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Figure 4. HDOP comparison for urban masking scenario

The FGO solution improves the accuracy of the solution, even in the epochs without 192

enough satellites to compute a solution. For those epochs, the snapshot uncertainty has 193

been clipped to a value of 100 m for each position state. Again, the temporal DOP variations 194

are attenuated in the case of highly accurate motion uncertainties. 195

4. Discussion 196

This paper proposes a definition of the notion of DOP for batch solution including 197

a generic motion factor, applicable to FGO solutions. The obtained DOP factor mainly 198

depends on the snapshot DOP, the FG length K and the motion to observation uncertainty 199

ratio q/σ. Depending on q/σ, the batch DOP reaches a floor value for large FG length, 200

meaning that increasing the FG length provides low marginal gains in terms of accuracy. 201

A formula is derived for fast computation of batch DOP factors. The approximation 202

error comes from ignoring the correlated impact of observation errors on multiple states 203

when computing the scalar uncertainty for each state. The error on HDOP is of the order of 204

a few percents in open sky conditions, and rises to 22% in constrained conditions, when a 205

lower number of satellites is available. 206

Based on this formula, a future work could try to derive an optimal factor graph length 207

depending on the satellite visibility conditions of consecutive epochs, in order to limit the 208

computational complexity of large factor graph solution. 209

The formula could also be improved by considering partial observability of the state 210

vector, where the snapshot solution cannot be computed (e.g. when less than 4 satellites 211

are available). Solutions to consider the covariance between the scalar state of the snapshot 212

solution could also be investigated in order to reduce the approximation error. 213

Finally, the proposed formula could be applied to other types of states, such as the 214

float carrier ambiguities. This could provide insight to optimize factor graph length of a 215

float solution, before trying to fix the carrier ambiguities. 216
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Appendix A. Symbolic expression of the first few diagonal elements of P(batch)
j 224

In the annexes, a simplified notation will be used by dropping the index j referring to 225

a particular scalar state in the state vector: P(batch) ≜ P(batch)
j and σk ≜ σj,k. 226
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It can be observed that the k-th diagonal element of P(batch) is a ratio of 2 expressions: 227

(P(batch))k,k =
Nk(q, σ1, . . . , σK)

D(q, σ1, . . . , σK)

where Nk and D are expressions depending on q, σ1, . . . , σK 228

The first few diagonal elements of P(batch) are given in Table A1. 229

Table A1. Symbolic expression of the diagonal elements of P(batch)
j for the first values of K.

Factor
graph
length

Epoch
index Numerator Nk Denominator D

K = 3 k = 1 σ2
1 (q

4 + q2(2σ2
2 + σ2

3 ) + σ2
2 σ2

3 )
q4 + q2(σ2

1 + 2σ2
2 + σ2

3 ) + σ2
1 σ2

2 + σ2
1 σ2

3 + σ2
2 σ2

3

K = 3 k = 2 σ2
2 (q

4 + q2(σ2
1 + σ2

3 ) + σ2
1 σ2

3 )

K = 4 k = 1 σ2
1 (q

6 + q4(2σ2
2 + 2σ2

3 + σ2
4 ) + q2(3σ2

2 σ2
3 + 2σ2

2 σ2
4 + σ2

3 σ2
4 ) + σ2

2 σ2
3 σ2

4 ) q6 + q4(σ2
1 + 2σ2

2 + 2σ2
3 + σ2

4 ) + q2(σ2
1 σ2

2 + 2σ2
1 σ2

3 + σ2
1 σ2

4 + 3σ2
2 σ2

3 +

2σ2
2 σ2

4 + σ2
3 σ2

4 ) + σ2
1 σ2

2 σ2
3 + σ2

1 σ2
2 σ2

4 + σ2
1 σ2

3 σ2
4 + σ2

2 σ2
3 σ2

4K = 4 k = 2 σ2
2 (q

6 + q4(σ2
1 + 2σ2

3 + σ2
4 ) + q2(2σ2
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Appendix B. Computation of the denominator of the elements of P(batch)
j 230

The denominator D of the elements of P(batch) is equal to the determinant of (P(batch))−1. 231

This comes directly from the Laplace formula to compute the inverse of a matrix. 232

This section reveals how to compute the determinant of matrix (P(batch))−1. The partic- 233

ular shape of (P(batch))−1 allows to have interesting expressions to compute its determinant. 234

Indeed, (P(batch))−1 is a tri-diagonal matrix, i.e. a banded matrix with 3 non-zero diagonals 235

elements. For such matrix, a recurrence formula exist to compute its determinant. 236

Theorem A1 (Determinant of a tri-diagonal matrix). (Muir, 1960) [8] 237

Let us consider the following K × K tri-diagonal matrix 238



a1 b1 0 . . . 0 0

c1 a2 b2 . . . 0 0

0 c2 a3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . aK−1 bK−1

0 0 0 . . . cK−1 aK


The determinant of such matrix, noted dK, can be computed with the following recurrence relation: 239

d0 = 1, d1 = a1

dk = akdk−1 − bk−1ck−1dk−2 , for 2 ≤ k ≤ K

When applying this theorem to (P(batch))−1, we obtain a ratio of 2 expressions where 240

the denominator is always q2(K−1) ∏K
n=1 σ2

n . Therefore, noting the numerator pK, we have: 241

dK =
pK

q2(K−1) ∏K
n=1 σ2

n
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As we may have to evaluate this expression for σn = 0, it is more convenient to work 242

with pK = dKq2(K−1) ∏K
n=1 σ2

n . 243

Lemma A1 (recurrence relation considering the sequence sk = dk ∏k
j=1(q

2σ2
j )).

s0 = 1, s1 = q2 + σ2
1

sk = (q2 + 2σ2
k )sk−1 − σ2

k σ2
k−1sk−2 , for 2 ≤ k < K

sK = (q2 + σ2
K)sK−1 − σ2

Kσ2
K−1sK−2

Proof. 244

sk = dk

k

∏
j=1

(q2σ2
j )

= (akdk−1 − bk−1ck−1dk−2)
k

∏
j=1

(q2σ2
j ) (using Theorem A1)

= akq2σ2
k dk−1

k−1

∏
j=1

(q2σ2
j )︸ ︷︷ ︸

sk−1

−bk−1ck−1q4σ2
k σ2

k−1 dk−2

k−2

∏
j=1

(q2σ2
j )︸ ︷︷ ︸

sk−2

= akq2σ2
k sk−1 − σ2

k σ2
k−1sk−2 (replacing bk and ck by their values)

Theorem A1 provides the initial values of the sequence dk, which are used to define 245

the initial values of sk. 246

The term pK is actually equal to pK = 1
q2 dK ∏K

j=1(q
2σ2

j ) =
1
q2 sK. The common factor 247

to all terms 1
q2 is applied to the initial values of a new sequence pk. Finally, we can also 248

replace by the values of ak. Then, we have: 249

p0 =
1
q2 d0 =

1
q2 , p1 =

1
q2 d1q2σ2

1 = 1 +
σ2

1
q2

pk = (q2 + 2σ2
k )pk−1 − σ2

k σ2
k−1 pk−2 , for 2 ≤ k < K

pK = (q2 + σ2
K)pK−1 − σ2

Kσ2
K−1 pK−2
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