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Abstract—This paper presents an investigation into the de-
velopment of generic Quick Access Recorder (QAR) fuel flow
regression models applied to Automatic Dependent Surveillance-
Broadcast (ADS-B) data, with the aim of improving the accuracy
of fuel flow estimates for various aircraft operations. Given the
critical need for accurate fuel consumption estimates to mitigate
the environmental impact of aviation, this study explores a novel
approach that integrates derivative features and aircraft-specific
parameters into a unified model. This approach not only aims
to generalise across different aircraft types, thereby providing
scalability and flexibility for end users, but also demonstrates
adaptability to missing parameters through data augmentation
techniques. Using a dataset of QAR data from various aircraft type,
this paper evaluates the performance of the model across different
flight phases and aircraft types and compares it with other common
fuel flow models.
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I. INTRODUCTION

In the quest to reduce the environmental impact of aviation,
accurate estimation of fuel flow during aircraft operations has
been a long-standing research challenge. Responsible for a
significant proportion of global CO2 emissions [1], the aviation
industry is at a critical moment where the need to reduce its
carbon footprint cannot be overstated. This urgency is com-
pounded by the increasing focus on the environmental impact
of non-CO2 effects such as contrails [2], which also contribute
to global warming. In this context, the development of accurate
and scalable models is essential to this environmental challenge.

The development of models for accurate estimation of fuel
flow and other environmental metrics from aircraft operations is
of paramount importance, not only for Air Navigation Service
Providers (ANSPs) engaged in environmental monitoring, but
also for the academic community focused on research in this
area. These models offer a dual benefit: on the one hand, they
enable ANSPs to accurately measure, evaluate and monitor
environmental performance [3], which is crucial for achieving
ambitious environmental goals such as those set by SESAR 2020
[4] in Europe and NextGen in the United States, which aim to
significantly reduce CO2 emissions and fuel consumption per
flight by 2035. On the other hand, they serve as valuable tools

for academic researchers, providing a rich source of data for
studying the environmental impact of aviation [5]–[7], explor-
ing new ways to reduce emissions and developing innovative
solutions to analyse [8] and improve [9], [10] the sustainability
of air transportation.

II. STATE OF THE ART

A. Fuel estimation

In the field of air transportation research, understanding and
predicting aircraft fuel consumption remains a critical challenge
that is being addressed through various modelling approaches,
ranging from physical models [11] to advanced neural network
models [12] and other innovative methods [13].

Physical models: EUROCONTROL’s Base of Aircraft Data
(BADA) is the basis for simulating aircraft trajectories for
air traffic management, offering detailed kinetic modelling and
improvements in its latest iterations [11], [14]. An open source
model called OpenAP incorporates aircraft dynamics and fuel
estimates, aiming for transparency and improved simulation
accuracy [15]. The work of Poll and Schumann introduces a
method for estimating cruise fuel burn and performance char-
acteristics for turbofan aircraft, combining aerodynamic theory
with empirical data for more accurate predictions [16], [17].

Neural network models: Using machine learning, Chati and
Balakrishnan use Gaussian Process Regression (GPR) and op-
erational data to outperform traditional models such as BADA,
providing more accurate fuel consumption estimates [13]. Their
additional research uses CART and Least Squares Boosting al-
gorithms to predict fuel flow rates, improving the accuracy of the
emissions inventory [18]. Baumann and Klingauf use machine
learning algorithms that use full-flight sensor data to surpass the
accuracy of traditional fuel flow models [19]. Baklacioglu’s work
with advanced artificial neural networks, including multilayer
perceptron and radial basis function networks, demonstrates high
accuracy in predicting fuel flow rates [12].

Trani et al. present a neural network model validated against
specific aircraft types, demonstrating its potential in fast time
simulation models [20]. Li et al. use LSTM neural networks
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to accurately predict performance-based contingency fuel, sig-
nificantly improving operational efficiency [21]. Kayaalp et al.
develop an LSTM model for predicting combustion efficiency
and exhaust emissions, achieving high accuracy without exten-
sive experimental testing [22]. Metlek presents a CNN-BiLSTM
model that excels in predicting aircraft fuel consumption with
minimal error, outperforming existing methods [23]. Bakla-
cioglu’s Genetic Algorithm Optimised Neural Networks offer
a novel approach to fuel consumption prediction, achieving
remarkable accuracy during different flight phases [24]. Finally,
a very promising paper proposes to add a physics-based loss to
the training process to ensure the robustness of the model to
parameter variations [25]. This is an interesting hybrid approach
to increase the robustness of neural network models.

Other types of modelling have been proposed, such as Chat-
terji’s method for estimating jet fuel consumption, which uses
real flight data to produce estimates within 1% of actual fuel
consumption, validated against FAA data [26]. Senzig, Flem-
ing and Iovinelli are refining terminal area fuel consumption
modelling to an accuracy of ±5%, supporting informed policy
making [27].Clemons and his team aim to improve the accuracy
of aircraft fuel burn models on airport surfaces by addressing
simplifications in existing tools and improving the estimation of
baseline taxi fuel flow and taxi time [28].

In a previous work, we have benchmarked the use of neural
networks to estimate on-board aircraft parameters during ap-
proach and landing, suggesting a promising direction for air
traffic management systems to improve performance metrics
such as fuel flow and flap configuration [29]. Furthermore,
as part of the French ANSP’s ACROPOLE project, we have
used machine learning to assess the environmental impact of
air traffic, focusing on fuel consumption and CO2 emissions,
thus providing a novel perspective from an air navigation service
provider’s (ANSP’s) point of view [3].

B. Aircraft parameter estimation

More generally, several studies have made significant con-
tributions to improving the accuracy and reliability of estimat-
ing critical parameters that are essential for safe and efficient
operations. The studies by Delahaye and Puechmorel introduce
innovative methods for wind estimation from radar data, which
is crucial for accurate prediction of aircraft trajectories. Their
work focuses on linear models and Kalman filtering to derive
high quality wind estimates from radar track measurements
and to estimate local wind conditions respectively, highlighting
the importance of accurate environmental data for air traffic
management [30] [31]. Further advancing the field, Alligier et
al. evaluate and compare methods for estimating aircraft mass
from ground-based observations. Their research demonstrates
the effectiveness of adaptive and least squares methods, with a
particular focus on improving the accuracy of climb prediction -

a key factor in optimising air traffic control operations [32] [33].
This information is a key feature as it is not normally available
from ADS-B data.

Sun et al. propose a novel Bayesian inference method for esti-
mating aircraft initial mass, using empirical knowledge and flight
data to outperform previous techniques in terms of accuracy.This
method shows promise for improving aircraft performance anal-
ysis and air traffic management by providing more accurate mass
estimates, which are essential for various operational decisions
[34].

A different approach introduced an interacting multiple model
filtering technique for real-time identification of aircraft guid-
ance modes using surveillance data to improve the accuracy of
trajectory prediction. This methodology supports the advance-
ment of trajectory-based operations in air traffic management by
providing a reliable tool for guidance mode identification [35].
Askari and Cremaschi’s study presents a neural network-based
approach to estimating aircraft departure performance metrics,
illustrating the potential of machine learning applications in
predicting critical flight parameters from radar and ADS-B data
[36].

Finally, the research by Di Zhou et al. on hazard identification
in civil aircraft auxiliary power units uses a hybrid deep neu-
ral network that combines convolutional neural networks and
bidirectional long short-term memory models. This innovative
approach aims to improve safety and maintenance efficiency
by accurately identifying potential hazards, demonstrating the
potential of deep learning in civil aviation safety applications
[37].

C. Contribution

This paper presents several contributions that fill the gap in
the state of the art in fuel flow estimation models. First, a single
modelling approach using data augmentation is introduced to
deal with missing parameters such as mass or true airspeed,
allowing for easier use and scalability. Second, the previous
network architectures [3], [29] are modified to integrate both
derivative features instead of successive points, and aircraft fixed
parameters to pave the way for a single generic model that
generalises across aircraft. This allows flexibility for end-user
systems and increases scalability. Finally, an open source library
of the trained model is released as part of the Acropole project
of the French ANSP [38].

III. DATA AND MODEL ARCHITECTURE

This section describes the neural network architecture and the
performance achieved with our framework.

A. data description

The dataset consists of Quick Access Recorder (QAR) data
from various airlines. The available dataset includes different
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Aircraft A320-200 A330-223 ATR72-600 B737-85P B737-8GJ B737-8K2 CRJ-1000 CRJ-700 E-170 E-190
Flights 16 453 186 2 605 8 744 2 995 21 226 29 422 17 234 30 462 36 287
Percent (%) 9.93 0.11 1.57 5.28 1.81 12.82 17.77 10.41 18.39 21.91

TABLE I
TRAJECTORIES NUMBER OF DIFFERENT AIRCRAFT MODELS.

aircraft types such as A319-211, A320-214, B737-8K2, A330-
223, ATR72-600, E190, E170, CRJ100, CRJ700. The data set
does not cover the entire fleet as each aircraft type accounts for
a significant number of flights ranging from 186 to 30462. The
number of flights per aircraft type is summarised in the table
I. Each flight is gate-to-gate. The sampling rate is 1 second.
As the data is unbalanced between aircraft types, the number of
flights for training is limited to a maximum of 10,000 per aircraft
type and a weight inversely proportional to the number of flights
available is used during training to correct further unbalance.

The parameters used as input to the model are: altitude,
ground speed, true airspeed, vertical speed, derivatives of ground
speed and true airspeed, mass normalised by empty weight and
maximum take-off weight, aircraft maximum operating speed
and altitude, engine type (turboprop, jet). We apply min-max
normalisation before feeding into the network. Except for mass,
which is rarely available, and true airspeed, which may not be
available without Mode S information or weather reanalysis data,
all these parameters are available from ADS-B data and aircraft
parameter tables. This makes the model applicable to ADS-B
data during inference without access to QAR data. To evaluate
the model, we also used these input parameters from QAR data,
as the data are anonymised we cannot merge them with the
corresponding ADS-B data. However, it is assumed that the
difference between the QAR parameters and the corresponding
ADS-B parameters will be negligible.

As usual in machine learning, the data set at the flight level is
divided into training (71 623 flights), validation (16 557 flights)
and test (16 557 flights) sets.

B. Model architecture, data augmentation and training
The chosen model architecture is a simple feed-forward neural

network, as we have added derivative features as input to the
model, time features are already included. The model consists of
four fully connected layers with 50 neurons and relu activation,
and the last layer is a sigmoid.

Indeed, as explained, one of the aims of our model is to pave
the way towards a single generic modelling of engine fuel flow.
This idea was proposed by Chati et al. [18] but never applied
on a large scale. Therefore, to move in this direction, the last
layer was designed to return the fuel flow of a single engine
normalised by the take-off fuel flow given by the ICAO engine
database [39].

Finally, to deal with unavailable parameters when applying
to ADS-B data, we applied a data augmentation during training
(training the model with predefined values when unavailable).

The default value for the mass parameter is set to -1.0. The idea
here is to have a value outside the normalisation range (0.1)
to ensure that the model learns without any mass assumption.
For the true airspeed, we assume no wind hypothesis and fill
the value with the ground speed. This aspect and possible
improvements are discussed further in section V.

The learning phase was processed using the Adam optimiser
[40] with decay, and the loss function used is the mean absolute
percentage error.The learning rate is 10−3 and the decay is 10−9.
Each model is trained for 100 epochs and the best network over
the validation set is retained using a checkpoint. Performance is
then computed over the test set.

C. Model evaluation metrics and phases

Three different metrics are used to evaluate the performance
of the model: the Mean Error (ME), the Mean Absolute Error
(MAE) and the Mean Absolute Percentage Error (MAPE).

Let D be a set of input-output pairs (x, y) and h be a model
to evaluate, the first three metrics are calculated as follows:

ME(h,D) =
1

|D|
∑

(x,y)∈D

h(x)− y (1)

MAE(h,D) =
1

|D|
∑

(x,y)∈D

|h(x)− y| (2)

MAPE(h,D) =
1

|D|
∑

(x,y)∈D

|h(x)− y|
y

(3)

For MAE and MAPE, the smaller the value, the more accurate
the prediction. For ME, the closer to zero, the better.

We have also divided the data into Phases / Vertical Attitude
as follows. If the ground speed is less than 65kt, the aircraft
is considered to be on the GROUND. Then the split between
CLIMB, LEVEL and DESCENT is assessed in terms of vertical
speed. Between -150 ft/min and 150 ft/min (or below -150
ft/min, above 150 ft/min) the airplane is considered to be in
LEVEL (or DESCENT, CLIMB).

IV. MODEL EVALUATION AND COMPARISON

This section evaluates the performance of our model. As a
first illustration, Figure IV shows the prediction of the model
on an A320 from the test set when mass and true airspeed are
available.
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Figure 1. Example prediction of the model on an A320 flight when mass and
true airspeed are available.

A. Performance with unavailable parameters

In this section we will illustrate how the model deals with
unavailable parameters. To simplify the discussion, we will focus
on the results for the A320 aircraft.

Table II shows a comparative analysis of performance metrics
across different flight phases (GROUND, CLIMB, LEVEL,
DESCENT and an overall assessment), highlighting the effects
of removing aircraft mass data from the model. It shows that the
inclusion of mass data generally improves prediction accuracy,
as indicated by reduced MAPE and MAE values, with the
effect being particularly noticeable during the climb phase,
suggesting the critical role of mass data in accurately predicting
fuel consumption. While the LEVEL phase shows a decrease
in accuracy when mass data is excluded, the descent phase
is identified as the most challenging for accurate predictions,
with the highest errors observed. The analysis highlights the
significant improvement in model performance across all flight
phases when mass data is included, albeit with less consistent
changes in ME, indicating a primary influence on accuracy rather
than prediction bias.

Phase MAPE MAE) ME Samples
(%) (kg/min) (kg/min) #

GROUND 9.67 / 9.95 1.45 / 1.48 0.82 / 0.85 536 840
CLIMB 2.13 / 2.23 1.66 / 1.74 0.85 / 0.73 1 403 850
LEVEL 4.41 / 5.06 1.82 / 2.09 1.22 / 1.23 4 017 801
DESCENT 12.63 / 12.66 2.71 / 2.77 1.88 / 1.74 1 684 117
ALL 6.17 / 6.56 1.96 / 2.13 1.27 / 1.22 7 642 608

TABLE II
COMPARING THE MODEL WITH AND WITHOUT THE MASS PARAMETER (TRUE

AIR SPEED AVAILABLE). THE FIRST VALUE REFERS TO THE MODEL ERROR
WITH MASS AND THE SECOND WITHOUT THIS FEATURE.

Table III presents a detailed evaluation of the model per-

formance metrics, focusing on the influence of incorporating
the true air speed parameter into the prediction model. This
comparison shows that the inclusion of true air speed has a
significant impact on the prediction accuracy, as evidenced by
the variation in MAPE, MAE and ME values. In particular, the
inclusion of true air speed improves the prediction accuracy most
significantly during the CLIMB and LEVEL phases, highlighting
the critical role of this parameter in accurate fuel consumption
prediction.

Phase MAPE MAE) ME Samples
(%) (kg/min) (kg/min) #

GROUND 9.67 / 9.67 1.45 / 1.45 0.82 / 0.82 536 840
CLIMB 2.13 / 2.44 1.66 / 1.88 0.85 / 0.98 1 403 850
LEVEL 4.41 / 5.14 1.82 / 2.14 1.22 / 1.45 4 017 801
DESCENT 12.63 / 14.71 2.71 / 3.22 1.88 / 2.21 1 684 117
ALL 6.17 / 7.07 1.96 / 2.28 1.27 / 1.48 7 642 608

TABLE III
COMPARISON OF THE MODEL WITH AND WITHOUT THE TRUE AIRSPEED

PARAMETER (MASS AVAILABLE). THE FIRST VALUE REFERS TO THE MODEL
ERROR WITH TRUE AIRSPEED AND THE SECOND WITHOUT THIS FEATURE.

Finally, table IV highlights the compounded challenges when
both mass and true airspeed are excluded. The comparison
shows a more pronounced degradation in model accuracy across
all phases, with the most significant increases in prediction
errors observed during the CLIMB and LEVEL phases. This
table illustrates the synergistic importance of both parameters
in achieving high prediction accuracy and how their absence
significantly reduces the model’s ability to accurately predict
fuel consumption.

Phase MAPE MAE) ME Samples
(%) (kg/min) (kg/min) #

GROUND 9.67 / 9.95 1.45 / 1.48 0.82 / 0.85 536 840
CLIMB 2.13 / 2.55 1.66 / 1.98 0.85 / 0.91 1 403 850
LEVEL 4.41 / 5.69 1.82 / 2.37 1.22 / 1.44 4 017 801
DESCENT 12.63 / 14.73 2.71 / 3.28 1.88 / 2.07 1 684 117
ALL 6.17 / 7.4 1.96 / 2.44 1.27 / 1.44 7 642 608

TABLE IV
COMPARISON OF THE MODEL WITH AND WITHOUT THE MASS AND TRUE

AIRSPEED PARAMETERS.THE FIRST VALUE REFERS TO THE MODEL ERROR
WITH MASS AND TRUE AIRSPEED AND THE SECOND WITHOUT THESE

FEATURES.

B. Performance for different types of aircraft

In this section we will illustrate how the model performs for
different types of aircraft.

The table V provides a detailed analysis of the performance
of the prediction model for different aircraft types. Notably, the
table includes a wide range of aircraft, from narrow-body jets
such as the A320-214 and B737 variants, to regional jets such
as the CRJ-700 and CRJ-1000, and even turboprops such as
the ATR72. A number of key observations emerge from this
analysis.
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Phase MAPE MAE) ME Samples
(%) (kg/min) (kg/min) #

A320-214 6.17 / 7.4 1.96 / 2.44 1.27 / 1.44 7 642 608
A330-224 5.6 / 7.35 3.87 / 5.4 1.72 / 1.98 231 104
ATR72 7.83 / 8.55 0.48 / 0.55 0.19 / 0.18 1 058 484
B737-85P 7.38 / 8.96 2.37 / 2.78 0.08 / -0.48 1 361 170
B737-8GJ 6.44 / 7.48 2.2 / 2.49 0.29 / 0.0 330 212
B737-8K2 7.63 / 8.97 2.52 / 2.86 -1.24 / -1.44 2 540 614
CRJ-700 7.21 / 9.42 1.41 / 1.83 -0.07 / 0.02 4 122 830
CRJ-1000 8.01 / 10.32 1.54 / 1.99 0.1 / 0.02 4 085 026
E-170 8.96 / 110.39 1.81 / 2.36 1.14 / 1.18 4 422 710
E-190 6.27 / 8.77 1.46 / 2.13 0.29 / 0.19 4 645 568

TABLE V
COMPARISON OF MODEL PERFORMANCE BETWEEN AIRCRAFT TYPES FOR

ALL TEST PLOTS WITH MASS AND TRUE AIRSPEED (FIRST VALUE), WITHOUT
MASS AND TRUE AIR SPEED (SECOND VALUE).

a) Variation in prediction accuracy: The MAPE values,
which indicate the percentage accuracy of the model’s predic-
tions, vary between aircraft types. The A330-224 shows the best
performance with a MAPE of 5.6%, indicating a high level of
accuracy in predicting fuel consumption for this aircraft type. In
contrast, the E-170 has the highest MAPE at 8.96%, indicating
less accurate predictions for this model.

b) Differences in absolute errors: The MAE values, which
represent the average magnitude of error in fuel burn predictions
(in kg/min), highlight the differences in absolute performance
of the model.The A330-224 has a higher MAE of 3.87 kg/min,
reflecting the larger size and fuel consumption patterns of wide-
body aircraft compared to models such as the ATR72, which has
the lowest MAE of 0.48 kg/min, probably due to its smaller size
and efficiency on shorter routes.

c) Bias in predictions: The ME values provide an insight
into the systematic over- or under-prediction bias of the model.
For example, the B737-8K2 shows a significant negative ME
(-1.24 kg/min), indicating a tendency to under-predict fuel
consumption for this aircraft type. Conversely, the positive ME
of the E-170 (1.14 kg/min) indicates an over-prediction bias.

The large number of samples for each aircraft type, ranging
from over 7 million samples for the A320-214 to around 231,104
for the A330-224, provides a robust dataset for evaluating
the model’s performance.This analysis not only highlights the
model’s ability to adapt to different aircraft characteristics, but
also underlines the challenges of achieving consistently high
accuracy across different models, which can result from differ-
ences in aerodynamic properties, engine efficiency and operating
profiles. This comprehensive performance comparison provides
valuable insights for further refining the predictive model to
better reflect the unique fuel consumption patterns of different
aircraft types.

The table VI presents a detailed comparison of model per-
formance metrics during different phases of flight (GROUND,
CLIMB, LEVEL, DESCENT and ALL phases combined) for air-
craft considering different configurations of input variables (TAS

Category Phase MAPE MAE) ME
(%) (kg/min) (kg/min)

GROUND 15.52 (6.43) 2.33 (1.75) 1.22 (1.31)
TAS CLIMB 3.38 (0.81) 2.47 (1.62) 0.26 (1.39)

& LEVEL 4.18 (0.76) 1.56 (0.68) 0.10 (0.87)
MASS DESCENT 11.45 (1.49) 2.38 (1.33) 0.83 (0.96)

ALL 7.15 (0.97) 1.96 (0.85) 0.38 (0.79)
GROUND 15.84 (6.53) 2.36 (1.78) 1.12 (1.25)

TAS CLIMB 3.60 (0.99) 2.66 (1.79) 0.15 (1.29)
& LEVEL 4.76 (0.82) 1.84 (1.00) -0.08 (0.95)

No MASS DESCENT 11.88 (1.64) 2.47 (1.39) 0.56 (1.01)
ALL 7.60 (0.89) 2.15 (1.09) 0.21 (0.83)

GROUND 15.71 (6.54) 2.36 (1.78) 1.17 (1.30)
No TAS CLIMB 3.59 (0.85) 2.60 (1.65) 0.25 (1.47)

& LEVEL 5.58 (1.36) 2.02 (0.71) 0.20 (0.97)
MASS DESCENT 13.82 (1.89) 2.82 (1.43) 1.02 (1.08)

ALL 8.40 (1.42) 2.28 (0.88) 0.48 (0.88)
GROUND 16.07 (6.68) 2.38 (1.81) 1.06 (1.21)

No TAS CLIMB 3.79 (1.02) 2.78 (1.84) 0.26 (1.49)
& LEVEL 6.14 (1.30) 2.30 (1.07) -0.01 (1.05)

No MASS DESCENT 14.32 (1.88) 2.92 (1.47) 0.72 (1.12)
ALL 8.86 (1.24) 2.48 (1.15) 0.31 (0.94)

TABLE VI
COMPARISON OF MODEL PERFORMANCE PER PHASE AVERAGE ACROSS

AIRCRAFT TYPES FOR ALL TEST PLOTS WITH MASS AND TRUE AIRSPEED.
THE VALUE SHOWN IS THE AVERAGE BETWEEN AIRCRAFT AND THE

STANDARD DEVIATION BETWEEN BRACKETS.

and MASS, TAS only, MASS only, neither TAS nor MASS). The
performance metrics are reported together with their standard
deviations within aircraft types (in brackets) to indicate the
variability of model performance for different aircraft types. The
configurations are designed to assess the effect of including true
airspeed (TAS) and mass data on the prediction accuracy of the
model. In fact, mass is usually not available from the ground
side, the true air speed may be available with Mode S radar or
by interpolation of reanalysis weather data.

Analysis of the data reveals the following trends and impli-
cations:

1) Avalaibility of parameters:
• TAS and MASS included: this configuration generally pro-

duces highest MAPE values across all phases, indicating a
reasonable level of accuracy in percentage terms. The MAE
and ME values also suggest that, on average, the model is
predicting with a good level of accuracy, particularly in the
LEVEL phase where the errors are lowest. This suggests
that the inclusion of both TAS and mass as inputs helps
the model to accurately predict outcomes in different flight
phases.

• TAS Only (No MASS): excluding mass slightly increases
the MAPE and MAE values in most phases compared to
including both TAS and mass, particularly noticeable in
the LEVEL and DESCENT phases. However, we expected
the model to show an even more significant drop in
performance without the mass. As the model is a neural
network, it is difficult to understand the reasons for this
result. However, one possible explanation could be that the
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model has somehow learnt statistics about the airline’s pref-
erence/average mass and optimises the output fuel based on
these statistics.

• MASS Only (No TAS): this configuration leads to a no-
ticeable increase in errors in all phases, especially in the
LEVEL and DESCENT phases where the MAPE and MAE
are significantly higher than when TAS is included, high-
lighting the critical role of TAS in the predictive accuracy
of the model.

• neither TAS nor MASS: excluding both TAS and Mass
results in the highest errors at almost all stages, highlighting
the importance of these variables in achieving accurate
predictions.

2) Specific Observations by Phase:
• GROUND Phase: the GROUND phase consistently shows

higher MAPE values compared to other phases, suggesting
that this phase may be more difficult to model accurately,
possibly due to the variability in ground operations.

• CLIMB and LEVEL phases: these phases generally benefit
from the inclusion of TAS, as evidenced by lower errors
when TAS is included. In particular, the LEVEL phase
shows a significant improvement in model performance
when both TAS and mass are considered.

• DESCENT Phase: The DESCENT phase shows a higher
sensitivity to the exclusion of TAS, with a significant
increase in errors when TAS is not included. This suggests
that TAS is particularly important for accurate modelling
of this phase.

C. Comparison with other models

Table VII gives a comprehensive comparison of the perfor-
mance metrics for different fuel flow models (current modelisa-
tion multi aircraft, our last modelisation with a single aircraft
[3], OpenAP [15] , BADA [11], [14] and Poll-Schumann [16],
[17]). The comparison in made on the 1000 test flights of A320-
214 over different phases. It also shows the processing time in
seconds to apply the model to 1000 flights.

To apply these models, sensitive features (vertical speed, true
airspeed) are smoothed using the Savitzky-Golay filter [41].
Dedicated Python implementations are used: pybada available
under the BADA 4.2 licence [11], [14], pycontrails [42] for
the Poll-Schumann model and OpenAP [15]. To speed up the
computation, we apply parallel processing to each trajectory. For
all models we used the mass and true air speed from the QAR
data and calculated the temperature using ISA conditions. As
some models are unable to estimate fuel flow on the ground, we
have removed this part of the trajectories for this evaluation.

Neural network based models (current our previous model)
shows higher accuracy in all phases, with the lowest MAPE,
MAE and ME values, indicating that it predicts aircraft perfor-
mance with the least deviation from actual measurements. This

is particularly evident in the CLIMB phase, where its MAPE is
significantly lower than the others, indicating a high reliability
of predictions during the climb. BADA and Poll Schumann
show slightly lowest accuracy, with Poll Schumann occasionally
outperforming BADA, as seen in the LEVEL phase for the
MAPE and MAE metrics; however, both models have higher
errors compared to neural network based model, but perform
better than OpenAP. The difference between a physical model
such as BADA and a neural network based model could also
be explained by the task for which they were designed. In
particular, the BADA model is designed to ensure prediction
accuracy in all areas of the flight envelope, whereas our model
does not guarantee this property. Further discussion of parameter
sensitivity is given in section V.. Addiationnaly, the data to
train BADA were given by the manufacturer and correspond
to performance of new aicraft. The model does not take into
account engine aging which implies additional consumption. In
the case of OpenAP, it has only been trained on open source
data, which is not an easy task and may explain its performance.
Finally, the distribution of the test set is likely to follow the
same distribution as that of the train set, potentially facilitating
the accuracy of our model.

If we compare this paper proposed model, with our previous
model (single aircraft) [3], we can see that the new model with
multiple aircraft has a lower performance. There could be several
reasons for this. Firstly, the handling of multiple aircraft could
require more parameters in the model architecture. Here, we
kept the same architecture with the same number of layers and
weights. Secondly, and more likely, the multi-aircraft model
shows a higher bias (ME), which could be due to the fuel
flow normalisation by take-off fuel flow that we introduced and
the sigmoid output. The constraint could introduce a bias when
training on multiple aircraft. This will be further investigated
in future work to improve the performance of the multi-aircraft
model. Finally, the decision to augment the data by filling in a
default value when the data is not available could also introduce
bias. To address this issue, further modelling could be added, for
example by adding a dimension indicating whether the parameter
is available or not.

The processing time data for the different models (Neural
network based models, OpenAP, BADA and Poll-Schumann)
shows a contrast in computational efficiency. Neural network
based models stands out with a low processing time of just 3
seconds, indicating a highly efficient model that can provide fast
predictions, making it ideal for applications requiring real-time
data analysis. In contrast, BADA has the longest processing time
at 474 seconds, suggesting a much slower computational process
that could hinder its use in time-sensitive scenarios. OpenAP
and Poll Schumann fall in between, with processing times of
284 seconds and 28 seconds respectively, indicating moderate
efficiency. This results are consistent with neural networks,
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Model ACROPOLE Neural network OpenAP BADA Poll-Schumann
Phase Samples # Metric Multi-Aircraft Single Aircraft [3] [15] [11], [14] [16], [17]

MAPE (%) 2.13 1.93 30.35 6.53 6.85
CLIMB 1 403 850 MAE (kg/min) 1.66 1.42 25.81 5.53 5.65

ME (kg/min) 0.85 -0.15 -25.66 -5.27 -4.62
MAPE (%) 4.41 3.23 18.59 7.01 4.84

LEVEL 4 017 801 MAE (kg/min) 1.82 1.26 7.82 2.65 2.03
ME (kg/min) 1.22 -0.33 -7.47 -1.43 -0.73
MAPE (%) 12.63 11.67 51.69 21.50 21.55

DESCENT 1 684 117 MAE (kg/min) 2.71 2.27 8.62 3.71 4.71
ME (kg/min) 1.88 -0.92 -1.75 -0.64 -3.67
MAPE (%) 5.91 4.97 27.60 9.84 8.61

ALL 7 105 768 MAE (kg/min) 1.99 1.53 11.55 3.44 3.29
ME (kg/min) 1.30 -0.43 -9.92 -2.03 -2.09

Processing time (s) 3 3 284 474 28
TABLE VII

COMPARISON OF DIFFERENT MODEL PERFORMANCES PER PHASE FOR 1000 TEST FLIGHTS OF A320-214 AIRCRAFT USING REAL MASS AND TRUE AIRSPEED.

which are typically very fast at inference, and here benefit
from GPU acceleration (Nvidia RTX A4500), which optimises
the inference process for large batches that do not require
per-trajectory processing. Whereas physical models are highly
dependent on implementation optimisation and typically need to
be processed per trajectory. here there is no GPU but parallel
CPU processing with 36 chores. These variations in processing
time are critical for practical applications; faster models such
as neural network are more adapted for real-time performance
analysis and decision making or Big-Data application such as at
scale inventories, while slower models may be more suitable for
in-depth, non-time critical analysis.

V. DISCUSSION

In this section we discuss the limitations and potential im-
provements of this work in terms of unavailable parameters, fleet
coverage and generalisation, data imbalance in the training set,
and model sensitivity to physical parameters.

A. Unavailable parameters

When dealing with the unavailability of critical parameters
such as TAS (True Airspeed) and mass in predictive aircraft
performance modelling, a practical approach could be to extend
the model architecture to estimate these missing parameters.
This can be achieved by incorporating sub-models or algorithms
capable of inferring the missing data based on other available
inputs and historical data patterns. In addition, the inclusion of
a feature that explicitly indicates the absence of certain informa-
tion could significantly improve the adaptability of the model.
By flagging missing inputs, the model can adjust its predictions
to account for the lack of specific data and potentially apply
different weighting or inference mechanisms to compensate.
This dual strategy not only mitigates the impact of missing data
on model accuracy, but also enriches the model’s understanding
of the context of the data, leading to more robust and reliable
predictions even in the face of incomplete information.

B. Coverage and generalisation

Our study has a limitation in terms of aircraft type coverage,
in particular the sparse representation of wide-body aircraft,
which are central to long-haul operations and have a profound
impact on aviation’s environmental footprint. The predominance
of data from narrow-body jets, regional jets and turboprops in the
dataset, while valuable, leaves a significant gap in understanding
the fuel consumption patterns of wide-body aircraft. These heavy
aircraft, due to their size, engine configurations and cruising
altitudes, have different operational profiles, aerodynamics and
fuel burn dynamics than the lighter aircraft types included in the
study.

In addition, the ability of the model to generalise to different
aircraft types not included in the original training dataset is not
fully explored in this current work and requires further investiga-
tion. Specifically, future research could focus on training models
with a subset of aircraft types while intentionally withholding
data from certain aircraft models to serve as a hidden test set.
This approach would allow for a more rigorous assessment of
the model’s predictive accuracy and generalisation across various
aircraft types, including those not directly observed during the
training phase. Such studies would be crucial for validating
the model’s utility in real-world applications, where the exact
aircraft type may not be part of the historical dataset used for
model training. By addressing this aspect, future research could
significantly enhance the robustness and applicability of such
fuel flow regression models, making them more versatile and
effective tools for environmental monitoring and management
in aviation.

Furthermore, the bias potentially introduced by the last layer
(sigmoid multiplication by take-off fuel flow) also requires
further analysis. A global level metholdology should be sought.
It could be composed of different sub-models: dedicated models
for individual aircraft for which data are available, to maximise
performance, and a generic model for unseen aircraft to cover
the rest of the fleet.
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C. Data imbalance
Another significant limitation of the study is the data im-

balance observed between different flight phases within the
dataset, resulting from the disproportionate representation of
flight phases such as cruise, which could distort the model’s
learning process and potentially bias its predictions. In predictive
modelling, a balanced representation of each class ensures that
the model learns the characteristics of each phase accurately,
leading to more reliable and generalisable predictions in different
operational contexts. However, the predominance of certain
phases over others in the training dataset can lead to an overfit-
ting problem, where the model performs exceptionally well on
the overrepresented phases but poorly on the underrepresented
ones. To address the phase imbalance, an effective strategy could
be either to rebalance the dataset by oversampling underrepre-
sented flight phases, or to introduce a weighting scheme in the
model training process to compensate for the imbalance.

D. Model sensititity to physical parameters
Finally, it is important to ensure that sensitivity of the model

to variations in key parameters such as aircraft mass and speed
are physically realistic output. This sensitivity underscores the
importance of not only accurately capturing but also effectively
integrating these parameters into the modeling process. The
problem of parameter sensitivity could be mitigated by incor-
porating a physical-based loss function, as suggested by Uzun
et Al. [25]. Such an approach leverages domain knowledge to
introduce constraints derived from physical principles of flight
dynamics and fuel consumption, thereby guiding the model
towards more physically plausible predictions. Integrating a
physical-based loss function can help in aligning the model’s
predictions more closely with the underlying physical processes,
reducing the impact of parameter sensitivity and improving the
model’s overall predictive performance.

VI. CONCLUSIONS

In this study, we investigated the development of generic
Quick Access Recorder (QAR) fuel flow regression models to
improve the accuracy of the fuel flow estimation using Auto-
matic Dependent Surveillance-Broadcast (ADS-B) data during
various aircraft operations. Through a comprehensive review of
the state of the art, we identified and compared various modelling
approaches, including physical models such as BADA [11],
[14], Poll-Schuman [16], [17], and OpenAP [15], and advanced
machine learning techniques, which have shown potential to
outperform traditional methods in predicting fuel flow rates. We
presented a novel approach that integrates derivative features
and aircraft-specific parameters into a unified model, aiming to
generalise across different aircraft types, thereby providing flex-
ibility and scalability for end users. Despite not outperforming
single aircraft neural net approach [3], this first attempt show
promising results.

The dataset included QAR data from different aircraft, al-
lowing us to train and validate our model across an extended
fleet. We applied data augmentation techniques to deal with
unavalaible parameters such as mass or true airspeed. The
evaluation of our model highlighted its consistent accuracy and
efficiency in estimating fuel flow rates across different flight
phases and aircraft types. Furthermore, the ability of our model
to adapt to missing parameters demonstrates its potential for
real-world applications where complete data may not always be
available. We have compared our model with existing methods
and demonstrated its competitive advantage not only in pre-
diction accuracy but also in computational efficiency, which is
particularly relevant for real-time applications where rapid data
processing is essential. The global model is available in an open
source library [38].

Nevertheless, several improvements and future work will be
carried out to further refine the accuracy and robustness of the
model. In particular, we plan to extend the aircraft type coverage
and explore its generalisation capabilities to unseen aircraft
types to ensure its broader applicability. We will investigate
the integration of physically informed losses and architecture to
improve the robustness of the model and perform a sensitivity
analysis. Finally, we aim to analyse a pure physical model fit
to the QAR data to assess the modelling error versus the error
induced by the train data set difference.
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