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Abstract—With the continued advancement of the air transport
industry, ensuring the safety and efficiency of air traffic operations
has become a major concern. Various efforts are being made to
achieve this objective, among which the prediction of delays in
air traffic is of significance. Current deep learning methodologies
for predicting network wide air traffic delays typically rely on
historical delay data as the primary input, often neglecting the
inclusion of air traffic flow data. In this paper, the FSTGMAN
model is developed to explore the efficacy of incorporating traffic
flow data as an additional input for predictive modeling, contrasting
its performance with a model that does not utilize flow data.
The findings reveal that the incorporation of flow data marginally
enhances the overall accuracy of the predictions. Furthermore, the
performance of our model is compared with that of baseline models
such as MLP, LSTM, Transformer, and Seq2Seq, demonstrating
notable advantages.

Keywords—flight delay; graph neural networks ; flight delay
prediction; airport network; machine learning

I. INTRODUCTION

According to the International Air Transport Association (IATA)
in 2020, there were a total of 46.1 million flights worldwide,
transporting over 4.4 billion passengers. The International Civil
Aviation Organization (ICAO) predicts in its 2019 Aviation
Benefits Report that air traffic will more than double in the next
20 years. Despite the significant impact of the epidemic on the
industry, the IATA’s statistics show that traffic in Novemeber
2023 is at 99.1% of November 2019 levels. This data highlights
the rapid development of air traffic and its increasing significance
in our transportation system. However, despite the growth of
the aviation industry, problems such as safety and flight delays
persist. Flight delays are a global challenge that directly impacts
operational efficiency and indirectly poses risks to operational
safety and environmental protection. Therefore, accurate predic-
tion of air traffic delays is a crucial area of research in the field
of air transportation. For passengers, precise delay prediction
can help make better flight choices, while for aircraft operators,
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delay information can help them prepare in advance and mitigate
risks. However, due to the complex and diverse reasons behind
delays, predicting flight delays is a complex task.

In recent years, with the emergence of machine learning,
researchers have started to explore the use of machine learning
methods to predict flight delays, with promising results. In
particular, graph-based networks have shown superior perfor-
mance in predicting network-wide flight delays. Graph-based
networks can capture the graph structure formed by airports and
flights. Several studies have shown the capability of improving
the performance of graph-based networks by introducing addi-
tional information (e.g. meteorological data). Existing studies
focused on understanding spatial-temporal dependencies, i.e.,
delay impacts between different time periods and surrounding
nodes. However, fewer studies have focused on understanding
the relationship between delays and traffic flow. The fact that
air traffic is dynamic and is highly correlated with the network-
wide flight plan should be considered. Therefore, we propose
a network-wide delay prediction model that considers external
factors such as weather, airport network structure, and flight plan
data.

Currently, most existing models are based on experimental
data from the United States. In the context of air traffic delay
prediction in China, Zanin et al. [1] analyzed delay patterns in
Chinese airports, focusing on the comparison of factors such
as weather and traffic flow in predictions. By examining the
correlation between traffic flow and delays during the high-traffic
summer seasons over multiple years, the study reveals that traffic
flow is not the main cause of delays. Further investigations using
the random forest technique elucidated the influence of various
factors on the accuracy of the predictions. In particular, traffic
flow factors significantly affect the accuracy of the prediction
at several airports, suggesting that traffic flow data retain their
relevance in predicting delay. These insights offer valuable
direction for our research on the incorporation of traffic factors
into networks and adapting them for Chinese datasets.

The main contributions of this paper are represented as
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follows:

o We propose a Flow based Spatial-Temporal Graph Multiple
Attention Network (FSTGMAN) framework to predict the
network-wide airport delays, which considers both histori-
cal delay data and flight plan data.

o The model uses flow-volume data that other models rarely
consider.

e Our model is based on graph networks and attention
mechanisms to capture spatial-temporal dependencies in the
network-wide delays prediction task.

o A real-world dataset is built to evaluate the performance
of the proposed model. Our model performs better for
network-wide delay prediction than all baseline models.

II. RELATED WORKS

There are two main types of methods to predict air traffic delay:
Simulation-based or Operations Research-based approaches, and
data-driven approaches [2].

A. Simulation based or OR based approaches

Numerous methods have been proposed in the field of operations
research to predict flight delays. These methods are basically
based on modeling simulation and queuing theory. One such
method is the National Airspace System Performance Analysis
Capacity (NASPAC) developed by MITRE CAAS [3]. NASPAC
is a discrete-time simulation model that calculates flight delays,
identifies capacity constraints, and analyzes the adjusted system
performance of new airports, runway closures, and new flights.
Another example is LMINET, which is based on queuing the-
ory [4]. Unlike machine learning methods, operations research
methods employ explainable theoretical models for forecasting,
whereas machine learning methods are considered a “black box”
with no interpretability. Although machine learning methods can
achieve higher prediction accuracy, operations research methods
still hold practical value. Additionally, in recent years, complex
network theory, particularly the propagation model, has been
applied to research on air traffic delay. For instance, Baspinar et
al. have established an airport delay and flight delay propagation
model based on the infectious disease model [5].

B. Data-driven approach

With the advancement of machine learning and data science, a
growing body of research has focused on the use of big data
and machine learning techniques to predict flight delays.

1) Traditional machine learning: Bayesian networks and ran-
dom forests are commonly used in traditional machine learning
models to predict air traffic delays [6]. A Bayesian network is a
graphical representation of the probability relationship among a
set of random variables. It is a Directed Acyclic Graph (DAG)
consisting of nodes that represent variables and directed edges
that connect these nodes. The nodes represent random variables,
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and the directed edges depict the relationships between nodes,
with the parent node influencing the child node. The strength
of the relationship is expressed using conditional probability,
while nodes without a parent node are expressed using prior
probability. Bayesian networks offer a concise way to describe
the internal behavior and interdependencies of subsystems, mak-
ing them valuable for studying complex systems with multiple
factors. In 2005, Xu et al. developed the earliest Bayesian
airport network model [7]. This model focused on three air-
ports: Chicago O’Hare International Airport (ORD), New York
LaGuardia Airport (LGA), and Atlanta Jackson International
Airport (ATL). It used flight operation data from the Federal Avi-
ation Administration (FAA) of the United States from November
2003 to January 2004. Although this model only considered
three airports and weather factors, it effectively demonstrated
the propagation effect of delays, serving as an important study
for subsequent research based on Bayesian networks.

In subsequent studies, the model has been gradually improved.
Liu uses Bayesian networks to investigate flight delay prediction
in terms of running time and accuracy. They proposed an
improved Bayesian network model to improve the accuracy of
prediction and running speed [8]. Wu et al. studied the impor-
tance of delay propagation models and concentrated on resource
connections, including aircraft, crew, and passenger connections.
They developed a delay propagation model by merging delay
propagation trees with Bayesian networks [9]. Rodriguez-Sanza
et al. focused on the operational details of individual nodes in
the air traffic network. They took into account factors such
as weather, flight and airport configuration, then established
a Bayesian network arrival delay and congestion prediction
model based on airport nodes [10]. Although Bayesian networks
can effectively capture network propagation effects, constructing
them requires a substantial amount of prior knowledge.

The Random Forest (RF) is an extension of the Bagging
method, which combines multiple decision trees to make predic-
tions. It is specifically designed for decision tree classifiers and
has been shown to effectively avoid overfitting by converging
the prediction error to the generalization error [11]. In a study
conducted by Rebollo and Hamsa Balakrishnan in 2014, the
random forest classification and regression algorithms were
used to predict delays at key airport pairs in the National
Airspace System (NAS) [12]. The study considered a predefined
system delay state and incorporated spatial-temporal explanatory
variables. The prediction results demonstrated that the accuracy
of the two-hour prediction interval in classified delay prediction
was 81%, and the error in continuous delay prediction (i.e.,
regression modeling) was 21 minutes. Random forests have the
ability to automatically determine the importance of variables
and exhibit low sensitivity to outliers in training data. Addi-
tionally, they can still perform well even when the number of
variables exceeds the sample size.
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Figure 1. Structure of FSTGMAN.

2) Deep learning methods: Traditional machine learning models
are known as “white box models” because their internal structure
can be understood and explained. This allows for better control
over the model’s details but also requires manual input and
significant experience, making them less effective for processing
large amounts of data. On the other hand, deep learning models
are often referred to as “black box models” because they are
more difficult to interpret. However, they are able to process
massive amounts of data more effectively by combining low-
level features to form abstract high-level representations of
attributes or features. Deep learning is rooted in the concept
of artificial neural networks, specifically multi-layer perceptrons
with multiple hidden layers. Significant progress has been made
in areas such as image recognition and speech recognition
using deep learning. While simple deep learning models such
as Artificial Neural Networks (ANNs) can handle various pre-
diction problems, they are not well suited for processing time
series data, such as air traffic delay data. To address this, more
advanced models such as Long Short Term Memory (LSTM)
[13], Recurrent Neural Networks (RNN) and Gated Recurrent
Unit (GRU) [14] have been proposed and considered.

The above models lack the ability to effectively adjust the out-
put length, which has led to the consideration of the Sequence-to-
Sequence (seq2seq) model [15]. The seq2seq model consists of
an encoder and a decoder. The encoder converts the input into a
fixed length vector and passes it to the decoder. The decoder then
receives the data and the flight delay information to be predicted,
and decodes it to obtain the desired output length. Although
the seq2seq model solves the issue of output length, it does not
consider the physical relationships between airports in the airport
system. To address this, Convolutional Neural Networks (CNNs)
have been explored, as they can capture the propagation of flight
delays through the network system [16]. Additionally, the Graph
Convolutional Networks (GCNs) model has been proposed to

better represent air traffic models [17]. The studies based on
graph-to-sequence normally use historical delay data, weather
data and spatial-temporal information. Most of them did not
take traffic flow data into account when predicting future delays.
Since a major cause for flight delay is the imbalance between
traffic demand and capacity. In fact, the demand for air traffic
at the airport is influenced by the flight plan. Therefore, it is
worth considering the use of flight flow data and exploring the
potential differences it may make. This will be discussed in the
upcoming sections.

III. FLow BASED SPATIAL-TEMPORAL GATED MULTI-
ATTENTION GRAPH NETWORKS MODEL

This work focuses on the Flow Based Spatial Temporal Gated
Multi Attention Graph Networks Model (FSTGMAN), which
is an extension of the pure STGMAN model without flow
input [18]. STGMAN is specifically designed to predict airport
network delays. The STGMAN model is based on the GMAN
model [19] and has the ability to accurately predict future airport
network delays over longer time periods. For example, it uses
data from past airport delays of 24 hours to predict future delays
of 24 hours with high accuracy. Figure 1 provides the structure of
the FSTGMAN structure in this study. The solid blocks represent
the original STGMAN model, while the dashed blocks represent
additional modifications that take into account flow data. The
original model will be used as a reference for comparison with
the modified model. The following sections will provide detailed
explanations of the different modules in the FSTGMAN model.

A. External Impact Modeling

Flight delays are often influenced by meteorological factors, and
historical data also includes the impact of these external factors.
Therefore, it is important to preprocess the historical data by
incorporating meteorological information before feeding it into
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Figure 2. Total volume of flights in 37 airports.

the prediction module. To achieve this, the weather data is passed
through multiple fully connected layers, followed by GCN and
GRN networks, which extract spatial and temporal information
separately. These extracted information are then subtracted from
the historical data that has also been processed by multiple
fully connected layers. As a result, the meteorological impact in
the historical data is effectively eliminated. However, since the
weather factors have been removed, they need to be reintroduced
before obtaining the final output of the entire algorithm.

B. Dynamic Embedding

The correlation between the delay trend and the temporal and
spatial characteristics of the airport should be considered. Re-
garding the spatial attributes, the Node2Vec technique [20] is
employed to transform each node (representing an airport) in
the airport graph into a vector that encompasses information
about the graph structure. Subsequently, this vector is processed
through two fully connected layers to obtain a vector of a
specified dimension. As for the temporal attributes, day-of-
week and time-of-day information are encoded using one-hot
encoding. This encoded information is then further processed
using two fully connected layers. Finally, the aforementioned
results are combined to generate an embedding that incorporates
both the graph structure information and the time information.

Furthermore, to consider the effects of flow data, an extra
input branch is incorporated. As illustrated by the dashed
blocks in Figure 1, flow data pass through the fully connected
layers before being combined with the previously mentioned
embedding. This procedure can be understood in the following
way: Traffic flow exhibits a high degree of regularity over time,

typically being sparse in the early morning and dense throughout
the day, with corresponding temporal characteristics. Spatially,
major airports typically experience greater traffic volumes, and
the number of flights correlates with the geographical location
of the airports. This aspect may also hold significant relevance.
Experimental results have shown that incorporating traffic data
into the dynamic embedding module enhances the model’s
accuracy more effectively than integrating it into the external
influence module.

C. Prediction Module

This module utilizes multiple attention mechanisms to make
predictions about flight delays. The module consists of an
encoder, a decoder, and a relational attention layer that connects
the two. Each encoder and decoder is made up of several Att
Blocks internally. The Att block uses inter-node attention to
handle spatial attention scores and inter-time attention to handle
temporal attention scores. Here we have:
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where h 1 D is the hidden representations of nodes 7 at time

step ¢ in the (I - 1)-th Att Block, e; ; is the dynamic embedding
representations of node ¢ at time step %, f, W o 527 o ft2
denote four non-linear functions for the k-th head attentlon
mechanism that produce d-dimensional output representations,
<,> is the inner-product operation, || is the concatenation
operation, &Z(-fcv) is the attention score of the k-th head attention
mechanism that represents the importance of node v to node
i Eg’? is the attention score between time steps ¢ and 7, indicating
the importance of time step 7 to time step t. N; denotes a set of
time steps before time step t, i.e., only information from time
steps earlier than the target step is considered for causality.

Subsequently, the hidden state of node ¢ at time step ¢ is
revised as follows:

hsl) = 103" ) - 8 () ©)
veV

W) = 15030 B R )y ©6)
TEN;

where fs(?, ft(g are two non-linear function, hsglz , htglz

are the output representations of the inter-node and inter-time
attention mechanism in the [-th Att Block.

These results are then combined using a gate mechanism,
which dynamically controls the flow of inter-node and inter-
time correlations at each node and time step. The relational
attention layer is responsible for managing the relationship
between historical data and predicted results.
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IV. DATA
A. Air traffic flow and flight delay data

We have obtained four months of flight data from air traffic
management authority in China, specifically from March 2023
to June 2023. To ensure the reliability of the data, we selected
data from 37 major airports, taking into account factors such as
airport traffic volume and the availability of meteorological data.
Figure 2 illustrates the total number of inbound and outbound
flights at these airports during the selected time period. Notably,
Guangzhou Baiyun Airport (ICAO code: ZGGG) is the busiest
airport, with a total volume of over 55,000 inbound and outbound
flights. This equals to an average daily throughput of more than
1,000 flights. To maintain the integrity of the airport network,
we excluded flights that departed from or landed outside of these
37 airports. That is to say, we only considered delays and flight
flow between these airports. Experimental results have shown
that incorporating the complete airport flow, which includes
flights departing and arriving at airports not within the selected
network, into this model does not alter the prediction accuracy.
To ensure accurate results, we also excluded abnormal data with
excessively long delays (greater than 3 hours). After sorting the
data, we obtained the delay and flow data for departure and
arrival flights at each airport, consisting of a total of 2,640 hours
from March 2 to June 20. Following the standard approach in
deep learning, we divided this data into three parts for training,
validation, and testing. The ratio of these three parts is 7:2:1.

B. Weather data

Regarding meteorological data, we used the R language package
Pmeter to retrieve historical METAR messages from each air-
port. Subsequently, we evaluated and assigned scores to the data,
considering factors such as wind speed, dew point temperature,
temperature, and unusual weather conditions specific to each
airport. A higher score indicates poorer weather conditions at
the airport. These meteorological data will be incorporated into
the model as hourly meteorological scores for each airport.

V. RESULTS

With the input of historical data of the last 24 hours, our pre-
diction range is 24 hours ahead. In other words, the input delay
Tin € R?**37%2 (representing the historical arrival/departure
delays of 37 airports over the past 24 hours) corresponds to
the output z,, € R**37%2 (forecasting the arrival/departure
delays of 37 airports for the next 24 hours). A 24-hour forecast
period is relatively extensive for delay prediction studies. On
the one hand, this duration demonstrates the robust capabilities
of our model. In contrast, such a long forecast period provides
ample data for decision makers to assess trends and formulate
long-term strategies. We performed 10 tests each on the original
STGMAN model and the modified FSTGMAN model with flow
data, and the performance is shown in Figure 3. Among them,
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TABLE I. PERFORMANCE OF STGMAM (IN MINUTES)

Model STGMAN FSTGMAN

Flights | Arr Dep. | Total Arr. Dep. | Total
MAE 5.77 373 | 478 5.66 3.61 4.67
RMSE | 13.56 | 817 | 11.29 | 12.23 | 8.02 | 10.42

TABLE II. HYPERPARAMETERS IN FSTGMAN

Hyperparameters Description Value
The number of Att Blocks 1
K The number of attention heads 8
Alpha The learning rate 0.01
Optimizer The selected optimizer Adam
D The dims of embedding size 64
d The dims of each attention outputs 8

the orange dots represent the original model, and the blue dots
represent the modified model with flow data, which can clearly
show that the MAE value of the modified model is generally
better than that of the original model. Additionally, the RMSE
value of the enhanced model is significantly reduced compared
to the original, suggesting a more consistent performance from
the FSTGMAN model. The detailed data on the optimal perfor-
mance of the two models are shown in Table 1., and Table II.
presents the hyperparameters used in the both FSTGMAN and
STGMAN model (they are the same).

Tablel. on the left side displays the outcomes of future
delay predictions utilizing the original STGMAN model. It is
evident that the prediction accuracy for arrival flight delays
is substantially lower compared to departure flight delays, po-
tentially due to the complex nature of inbound flight delay
data. The table indicates a total mean absolute error (MAE)
of 4.78, deemed to be a satisfactory outcome. Nonetheless, it
is important to note that this result might be influenced by the
lack of significant long-term variations in the aviation network
during the analyzed period. As discussed in the paper [1], flight
delays in China typically undergo notable fluctuations during the
summer months (around July). Regrettably, the dataset employed
in this study does not adequately encompass this timeframe to
capture pertinent data.

To the right of Tablel., the FSTGMAN model’s predictions for
future delays are displayed. This model demonstrates improved
precision, as evidenced by its RMSE (10.42) and MAE (4.67)
scores. Traffic flow data, in comparison to delay data, exhibits
more consistency and smaller variations across different days.
Therefore, temporally, it acts as the weight for each time period,
enhancing the model’s ability to assimilate the time-specific
traits. Conversely, during early morning hours with fewer flights,
the limited data samples might lead to notable delay fluctuations
due to changes in traffic flow. Such variability could deteriorate
the model’s performance by increasing randomness. Introducing

Nanyang Technological University, Singapore

traffic data at this juncture could mitigate these fluctuations.
Spatially, this approach also facilitates understanding the distinct
features of each airport. Furthermore, by leveraging attention
mechanisms, it is anticipated that flow data will assist in dis-
cerning the spread of air traffic across the entire airport network.
Once assimilated, the model could utilize this data to estimate
delays stemming from traffic overloads. Nonetheless, the actual
structure of the model might require further specialization to
fully realize this capability. Additionally, the current scope of
the airport network discussed in this study does not encompass
the majority of traffic and fails to include numerous aircraft
movements at smaller and medium-sized airports, potentially
limiting the anticipated outcomes.

To further examine the performance of the model, we illustrate
the average MAE of 24 hours and 37 airports, as depicted
in figures 5 and 4. Each prediction cycle during the model’s
evaluation outputs the predicted delay for 37 airports over a 24-
hour period. Given the variable traffic flow at different times
of the day, it is crucial to assess the model’s performance
throughout the day. Figure 4 presents a comparison of the delay
predictions between the original and modified models over a full
day, where the blue and orange lines indicate the results of the
modified model, and the green and red lines indicate those of the
original model. It is evident that the new model shows significant
improvements primarily in the early morning hours compared
to the original STGMAN model. However, during the day, the
performances of both models are nearly identical. Enhancements
in arrival delay accuracy are observed primarily at 2 AM and
between 4-7 AM, while enhancements in departure delay are
noted at 1 AM and between 3-4 AM, all during times with
fewer flights of the respective type.

The FSTGMAN model partially addresses the accuracy short-
comings of the original model during early morning periods,
enhancing the prediction accuracy by almost five minutes. Figure
5 displays the MAE values for both the original and the
updated model at various airports, with points indicating the
MAE of the original model and bars for the modified model.
Variations in arrival delay errors are kept under one minute,
whereas departure delay errors remain largely the same. There
are minimal differences between the old and new models in
this aspect. Random initialization of model parameters might
lead to suboptimal initial values, occasionally preventing the
model from achieving peak performance at certain times or
airports. Overall, the FSTGMAN model has notably improved
performance in areas where the original model was lacking,
particularly by improving accuracy during early morning hours,
thus offering greater utility to professionals and pilots active at
these times.
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TABLE III. PERFORMANCE OF OTHER MODELS USING DELAY AND FLOW
Model MLP Seq2Seq LSTM Transformer STGMAN FSTGMAN
Type of flights | arrival | departure | arrival | departure | arrival | departure | arrival | departure | arrival | departure | arrival | departure
MAE 13.79 9.66 11.69 8.39 11.84 8.41 11.68 8.22 5.77 3.73 5.66 3.61
RMSE 23.41 17.37 20.16 15.29 20.33 15.34 20.10 15.08 13.56 8.17 12.23 8.02

A. Comparison with other models

In this section, we compare the performance of delay prediction
with other commonly used models for predicting time series.
These models include multilayer perceptron (MLP), Long-Short
Term Memory Networks (LSTM), Seq2Seq and Transformer.
The input of these models is the historical delay data of 24 hours,
and the output is the prediction of delay of future 24 hours, same
as FSTGMAN. MLP is a fully connected neural network with
a forward structure. LSTM, a special type of recurrent neural

network (RNN), is capable of learning long-term dependencies
by using gates to add or remove information from the cell state.
Unlike LSTM, MLP does not incorporate any additional state
information from previous time steps. The Seq2Seq model is
an encoder-decoder architecture that can be applied to various
tasks. In this paper, the Seq2Seq model consists of an encoder
and decoder, each with three LSTM layers. Transformer, on the
other hand, utilizes attention mechanisms to capture information
in time series data and is the only method that employs feed-
forward neural networks. The Transformer model retains loca-
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TABLE IV. HYPERPARAMETERS IN OTHER MODELS

Model Hyperparameter Description Value
MLP n the number of hidden layers 2
n number of hidden layers 3
LST™M H the hidden size 128
Optimizer the selected optimizer Adam
Seq2Seq Alpha the learning rate 0.001
H the hidden size 64
d the dims of embedding size 64
Dy the dims of Feed Forward size 128
Transformer L the num of Att Blocks 1
K the number of attention heads 2
Alpha the learning rate 0.0001
Optimizer the selected optimizer Adam

tion information in the input through position encoding. When
testing the prediction using flow data in the Transformer model,
we simply modify the encoder input to incorporate flow data.
Table IV. provides the hyperparameters for the baseline models,
and the corresponding results are presented in Table III..

From the results we can see that the performance of FSTG-
MAN and STGMAN is much better than the baseline models.
With delay information, spatial information, weather informa-
tion, and aircraft flow volume information being considered, it
is natural that the model can achieve great result. While the
enhancements with input of flow data may appear insignificant in
comparison to the substantial advancements made by the original
STGMAN, even small improvements are valuable. However, as
our method of incorporating flow data is rather straightforward,
there is room to further refine the network structure to identify
an improved approach for integrating flow data.

VI. CONCLUSIONS

In this work, we use delay and flow data from April to June
2023 in China to predict airport network delays. By adding the
processed flow data into the dynamic embedding module, we
successfully incorporate flow data into the model. The results
demonstrate that the predictive accuracy of our method surpasses
that of the original model that does not incorporate flow input,
and is notably superior to other baseline models. Analysis of
the prediction results reveals enhancements that occur primarily
in the early morning, with a more stable prediction outcome.
Nonetheless, significant predictive errors persist during the early
morning hours, suggesting that further steps could be imple-
mented to even out the Mean Absolute Error (MAE) across
different airports and time intervals. Given the basic nature of
our current study, further investigation into a more appropriate
framework is warranted in future research endeavors.
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