
HAL Id: hal-04636700
https://enac.hal.science/hal-04636700

Submitted on 5 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Crossing Waypoint Optimization in Free Route Airspace
Santiago Rodrigez, Daniel Delahaye

To cite this version:
Santiago Rodrigez, Daniel Delahaye. Crossing Waypoint Optimization in Free Route Airspace. In-
ternational Conference on Research in Air Transportation, EUROCONTROL FAA NTU, Jul 2024,
Singapore, Singapore. �hal-04636700�

https://enac.hal.science/hal-04636700
https://hal.archives-ouvertes.fr


ICRAT 2024 Nanyang Technological University, Singapore

Crossing Waypoint Optimization in Free Route
Airspace

Santiago Rodriguez
Instituto Superior Técnico
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Abstract—With the imminent growth in air travel, ensuring the
efficiency of airspace has become a necessity. This work addresses
this specific concern, namely, the optimization of a Free Route
Airspace (FRA). The FRA is a relatively recent concept applied
into the european airspace. Even though this approach has the
advantage of having the direct routing between origin and des-
tination, there are still aspects that can be improved, regarding
conflict handling and air traffic controllers’ workload. To face this
problem, we study the incorporation of Crossing Waypoints (CWs)
into the FRA. These CWs will cluster the locations of conflicts,
facilitating the controller’s task. However, identifying their best
locations and connections poses a challenge. Along this research,
the problem of finding the optimal topology will be modeled in
order to minimize potential conflicts between flights, reduce the
workload on controllers, and decrease airlines’ costs. This will
lead to a multi-objective optimization problem, involving a balance
between safety and fuel consumption. To find a solution to this
issue, meta-heuristics algorithms were employed and compared
(Particle Swarm Optimization, Simulated Annealing and Tabu
Search). Initially the model will be validated in simple cases in
order to compare the use of direct routing and the CW approach.
Then the procedure is evaluated in a case-study of sector LFEEKF
in Reims. Finally, we present a comparison between the algorithms
to evaluate their individual performances.

Keywords—Crossing Waypoint Optimization; Free Route
Airspace; Multi-objective optimization; Simulated Annealing;

I. INTRODUCTION

A. Motivation

As the number of civil aviation flights in Europe start returning
to their pre-pandemic values [1], the air traffic raise seems to
be an inevitable phenomenon. In Europe, the numbers seem
pretty promising, as the passenger traffic in 2022 nearly doubled
(compared to the year before), achieving just 21% below pre-
pandemic volumes [2].

This growth will demand a higher capacity from the Air
Route Network (ARN). Then, the optimization of this structure is
essential to keep up this demand. In order to do so, Eurocontrol
has already implemented Free Route Airspace (FRA) in some
parts of the European Airspace.

A FRA is a specified airspace within which users may freely
plan a route between a defined entry point and a defined exit
point, with the possibility to route via intermediate (published
or unpublished) significant points, without reference to the Air
Traffic Service (ATS) route network. Within this airspace, flights
still remain subject to Air Traffic Control (ATC) [3].

Despite the various benefits it offers for airlines and Air
Traffic Management, the FRA has some aspects that can be
improved. For example, a potential conflict can appear anywhere
throughout the sector, broadening the attention area of the air
traffic controllers. This high load of attention, and consequently,
workload can jeopardize safety or lead to a limitation within
ATC. Thus, the FRA approach still has some aspects to be
improved regarding conflicts.

The main purpose of this work is to study the implementation
of Crossing Waypoints (CWs) within a FRA, in order to face
these challenges described before. Those CWs could even be
activated when demand increases in order structure the traffic
for ATCOs to help them managing induced conflict. As a
matter of fact, ATCOs are efficient when conflicts appear at the
same location. CWs are a concept that have already been ap-
plied. Nevertheless, this paper searches the optimal positioning,
connections and quantity of them, i.e. to achieve the optimal
topology of the network to minimize the number of conflicts
and the deviation of each flight. An assessment will be made
regarding the number of CWs, their positions and the flow in
each CW in order to optimize the building of the network. This
will be done by conceiving a model to simulate and describe the
network, and then applying an optimization algorithm to find the
best locations of such CWs.

B. State of the Art

Over the past few years, various methods have been developed
to address the CWO problem. In [4] the authors approached the
problem as a multi-objective optimization, for which they had
two objectives: minimize the total airline cost (TAC) and the
total flight conflicts coefficient (TFCC). To tackle this issue, they
joined the two sub problems transforming them into a single-
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objective formation with a weighted sum of TAC and TFCC.
They used the Particle Swarm Optimization algorithm to identify
the optimal position of the CW and for the flow assignment
component they applied the Floyd-Warshall algorithm ( [4]).

The authors, K. Cai, J.Zhang, C. Zhou, tested the provided
method in a comparative case study of the existing ARN
operating in China’s national airspace. The results showed a
significant reduction of airline cost and flight conflicts. It should
be noted that the topology of the network in this paper is fixed
regarding the number of nodes and the regions of location of
each node (a waypoint must be inside of a specified region
imposed, usually in the core area of sectors).

In [5] the authors attempt to optimize the location of the CW
in a determined ARN, also taking into account the Prohibited,
Restricted and Dangerous (PRD) areas. An adaptive method is
used for this purpose, implementing an Artificial Potential Field
(APF) model in order to minimize the total air route costs. The
APF model would attract the CW towards the optimal route,
which is the direct line between the origin and the destination.
Contrarily, there would be repulsive forces from the airports
and the PRD areas. They tested this approach in a real life
controlled airspace environment and they observed a reduction in
the number of conflicts, controller workload, cost-effectiveness
indicators and delays.

Furthermore, in [6] the authors tried to optimize the location
of CW and the links between them (Adjacency Matrix) and
designed a multi-objective evolutionary algorithm called CoM-
ARN. The principal objective of this work was to maximize
airspace safety and minimize flight cost. Their results show that
the CoM-ARN algorithm had an advantage over previous Multi-
Objective Evolutionary Algorithms used for the optimization
problem. Nevertheless they admitted that the number of nodes
was constant.

In [7], even though the author’s main purpose was different
from CWO, he analyzed an intermediate case in which he
optimized the location of the border waypoints between two
Flight Information Regions (FIR). He managed to improve the
location of the points by using the Interior Point Algorithm and
the Global Search Algorithm from MATLAB. By applying this
method, he succeeded in reducing the total path deviation from
flights.

This paper explores the same topics to the ones mentioned
above, using a distinct approach. The CWO problem will be
tackled by introducing more flexible network topology. In other
words, the solutions presented will include more decision vari-
ables. Our method will not only optimize the positions and
connections of the CWs, but also the number of CWs used and
the possibility for flows to be assigned to different paths.

The paper is organized as follows. Section 2 introduces the
associated mathematical model that will simulate our ARN. The
following section illustrates the interaction between our model

and the algorithm. Section 4 contains the results obtained using
our methodology. Lastly, a conclusion is made summarizing the
achievements of the work.

II. MODEL FORMULATION

A. Problem Description

Our airspace will be described by a set of inputs, O, outputs, D,
and CW nodes, CW . The first assumption made is that our FRA
will be laid out in a specific rectangular area, in order to simplify
the model. Later on, this simplification will be removed for the
operational case study. The entry and exits nodes are located
on the border of the considered area. Meanwhile, the CWs are
located inside the area. This layout is shown in Figure 1.

Figure 1. Airspace scheme with the graphical representation of the inputs,
outputs and CWs (green, red and blue points, respectively). The gray lines
represent the limit of the considered area.

It is noteworthy to mention that the airspace corresponds to
sets of flight levels (FL). This was considered to follow the semi-
circular rule, where airplanes that fly with an orientation between
0º and 179º must fly in a different FL than the flights having a
route between 180º and 359º. So, in the representation of our
model, the links between the nodes can be either black or pink.
The black links will be the links from east to west (180º-379º),
while the pink links will be the links from west to east (0º-179º).

The input/output nodes generate and transfer air traffic flow.
In this paper we consider that the positions of this type of node
will always be fixed. Contrarily, a CW can only transmit traffic
flow without generating or absorbing any traffic and will have a
position that can be modified.

In our model we will consider a set of routes. Each route will
be characterized by an origin and a destination, in this case, an
entry and an exit node. Every route will have a specific flow. A
flow will represent the quantity of airplanes that can pass in a
given amount of time. The flow of the routes will be constant
throughout the simulation.

A flow can have one or two paths, which determines the
trajectory of its respective route flow, always passing through a
CW. In case of a route being spread across multiple paths, then
each path will have a percentage of the flow that will represent
the portion of flow that will pass through a specific CW.
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So, given the positions of entry and exit nodes and the demand
between these nodes, the main purpose of this work is to find the
optimal number of CWs, their optimal position and the optimal
path between them, in order to maximize airspace safety and
minimize air route cost. Therefore, the CWO is considered as
a multi-objective optimization problem. Since the positions of
CWs can vary continuously in our airspace and the routes are
assigned on the paths on the discrete domain, the optimization
of the CW in the FRA is a mixed discrete-continuous problem.

B. Input Data

Our model will receive the following information

• Number of entry nodes, Nin;
• Number of exit nodes, Nout;
• Location of the entry/exit nodes;
• Minimum and maximum number of CWs, Nmin, Nmax,

respectively;
• Flows between each entry and exit points;
• Entry and exit speeds in each entry/exit node;
• Shape of the considered area.

C. Decision Variables

The model that we propose gathers together three decision
variables. The first one is the number of CWs used, Ncw. The
second one is the position of each CW, represented by the
following vector:

P = {p1, p2, ..., pNmax
} ∀pi ∈ P, pi = (xi, yi)

Finally, the last variable contains the percentage of the flow
that will pass at a specific CW. This variable will be represented
by a 3D matrix, in which the entry point, exit point and CW
used represent the 1st, 2nd and 3rd dimension, respectively. In
(1), a 2D matrix was used to represent this decision variable, in
order to simplify the visual illustration.

L =


l11 l12 ... l1Nmax

l21 l22 ... l2Nmax

... ... ... ...
lNR1 lNR2 ... lNRNmax

 (1)

where NR is the number of routes between entries and exits, i.e,
NR = NinNout. In the illustration the variable lij will contain
the percentage of flow from route i that passes through the CW j.
Meanwhile, in the 3D matrix, lijk will represent the percentage
of the flow between the entry i and the exit j, that passes by
the CW k.

We define the decision variable vector as:

x = (Ncw, P, L)

D. Objective Function

As mentioned before, the objective function of the model is to
maximize safety and minimize flight costs. Safety is measured
by induced number of conflicts. A conflict is a predicted conver-
gence between two aircraft, which violate the separation minima
(5 NM horizontally and 1000 ft vertically) during the flight [8]
as it is illustrated in Figure 2.

Figure 2. Representation of a convergent conflict.

In order to calculate the number of conflicts, (2) was applied.

ϕk =
∑

i,j∈Fk
j ̸=k

2R

√
v2jk − 2vjkvikcosθ + v2ik

vjkviksinθ
λjkλik, (2)

where R = 5NM and Fi represents the adjacent nodes connected
to node i with an inbound link. Formula (2) measures the average
number of conflicts at a given crossing point. In this formula v
represent the average speeds of the flows λ and θ is the crossing
angle.

Regarding the second objective, we use as metric the deviation
of the selected path with respect to the direct path between the
entry and exit points of the route, δ. In (3) the difference between
the two trajectories is multiplied with the flow of the route. This
is due to the fact that the deviation of a route with more airplanes
has a bigger impact in cost than the same deviation for a smaller
flow.

δij = (ddev − ddirect)λij lijk

ddev − ddirect = ∥pi − pk∥+ ∥pk − pj∥ − ∥pj − pi∥
(3)

where i ∈ O, j ∈ D and k ∈ CW .
Taking into account these two criteria we obtain the objective

function of the model in (4). The purpose is to minimize it,
reducing the number of conflicts and the deviation of flights
from all the ARN.

min f = α
∑

i ∈ CW∪D
ϕi + (1− α)

∑
i∈O

∑
j∈D

δij. (4)

It should be noted that a weighting factor α has been added
to merge the two criteria into a single objective function. A
technique commonly referred to as scalarization. The value of
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α will denote the importance of the safety factor with regard to
the economical.

E. Constraints

Following the analysis of the CWO model, the subsequent
constraints were established:

1) Minimum distance between CW
The CWs must have a safety distance between them, in order to
avoid creating more conflicts directly between CWs.

dij ≥ Dwpmin ⇐⇒ ∥pi − pj∥ ≥ Dwpmin

where i, j ∈ CW .
2) Minimum distance between CW and Entry/Exit nodes
A CW must not be too close to an entry or an exit point to

give a margin of manoeuvering to the aircraft. Also, the CW
must be inside the sector. For a rectangular sector we have:

xmin +Dbord ≤ xi ≤ xmax −Dbord

ymin +Dbord ≤ yi ≤ ymax −Dbord

where i ∈ CW and Dbord is the minimum distance between the
border of the sector and a CW. It is noteworthy to mention that
the condition imposed above is just for the assumption that the
FRA under discussion is considered rectangular. In the case of
Reims’ section case study the condition would be just pi ∈ A′,
where A′ is the area of the airspace with a margin of Dbord.
The value of such a margin is fixed at 10NM.

3) Limited number of conflicts per CW
The number of conflicts associated to a given CW must be

limited since the controller in charge can not be overloaded.

ϕi ≤ Ncmax

where i ∈ CW and Ncmax is the maximum number of conflicts
that a controller can handle for a given waypoint. The value of
Ncmax has been fixed at 15 conflicts per hour.

4) Flow Balance
This condition will guarantee that the global entry flow at the
entry nodes will be equal to the entry flow of the CWs:∑

j∈D
λij =

∑
k∈CW

λik, ∀i ∈ O

Additionally, the total exit flow at the exit nodes will be equal
to the exit flow of the CW:∑

i∈O
λij =

∑
k∈CW

λkj , ∀j ∈ D.

These two constraints insure that all flows will pass through
the available CW, and also that the total flow will be maintained.

5) Flow conservation

This condition guarantees that the entry flow on a CW will be
the same as the exit flow.

∑
j∈D

λkj =
∑
i∈O

λik, ∀k ∈ CW

6) Entering/Exiting angle range

In order to avoid too small crossing angles between flows we
keep only large enough crossing angle. In the same way, in
order to avoid to sharp turn on the paths, we restrict the heading
changes for each waypoint.

Θmin ≤ Θij ≤ Θmax

where i, j are entry/exit links from the same node k (k ∈ I ∪
O∪CW). The values of Θmin and Θmax chosen were 30◦ and
120◦ respectively.

III. ALGORITHM IMPLEMENTATION

A. Evaluation-based Simulation

The resolution process of the CWO consists of an a evaluation-
based simulation. This evaluation can be divided into two main
parts: the simulation evaluation process and the optimization
algorithm. The interaction between these two parts will produce
a potential solution for the problem. The optimization algorithm
controls the set of decision variables, X . Meanwhile, the simula-
tion environment will receive these state decisions with the aim
of evaluating them through the simulation process, then used by
the optimization algorithm for improving the decision variables
in the next steps.

B. Neighborhood

In order to apply the SA algorithm [9] the neighborhood operator
had to be adapted to the CWO problem. To do so, we used
three methods to generate a neighbor, each one related to the
modification of one of the decision variables. The first type
of generator changes the number of CW used, by randomly
choosing a number between Nmin and Nmax. The second type
involves changing the position of a random CW. The chosen
waypoint will be moved through a predetermined distance (5
NM) with a random direction. Finally, the last type corresponds
to the change of L, in other words, the links between the CW
and the origins/destinations. A random route (R) and a random
CW will be chosen. Then, a specified percentage step (5%) will
be added or subtracted to the percentage of flow of R retained
by that CW. Later on, another random CW will be chosen and
modified with the objective of maintaining the total flow of R
(maintaining it in 100%), which is distributed between the CWs.
The Figure 3 shows an example of this operator being applied.
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Figure 3. Example of the neighbor operator for L with a step of 5%.

When a neighbor is generated we must choose one of the
methods mentioned above. It should be noted that the meth-
ods of generation have different probabilities of being chosen
throughout the cooling process. At the beginning, when the
temperature is high, it is more probable of creating a neighbor
with a modification in Ncw than any other type. When the
temperature is lower, the probability of creating a neighbor
with a modification in P becomes the most likely to happen.
Finally, at the the lowest temperatures, the modification of L
becomes the most probable. These shifting probabilities were
chosen due to the fact that a change in Ncw modifies also P
and L indirectly. So, a change in Ncw has a bigger impact in
the modification in the topology of our ARN than in the rest of
the decision variables. Consequently, a modification in this will
be more adequate in the phase of exploration. Meanwhile, the
modification in L is more suitable in the phase of exploitation,
i.e. when the temperatures are lower.

C. Penalizations

Some constraints were applied directly to the decision variables,
like the flow balance and the redistribution of flow. The rest of
them were addressed using penalization. This method was used
in order to have a deeper exploration of the state space.

This relaxation consists in adding the terms to the objective
function with the goal of penalizing the violation of a constraint.
So, in practice, the objective function will be

min f + τζ (5)

where f is the original objective function seen in (4), ζ is the
penalization term and τ = 1− ratio temperature. τ will be an
indicator of the system temperature. Its value will increase as the
temperature decreases. Based on this trick, at the beginning of
the process, the algorithm can explore a wider range of solutions,
even though some of them do not respect the constraints. At the
exploitation phase, the algorithm will start penalizing more the
constraints with the aim of obtaining a solution that respects
them. Our penalization term can be broken down into

ζ = β1c1 + β2c2 + β3c3 + β4c4 + β5c5 + βηη (6)

where all β are penalty parameters to be set by the user.
Each parameter c represents a constraint violation. It is crucial
to highlight that the constraints are non-negative. c1 is the
distance between CWs. This constraint was explained in section
II-E, and it can be calculated using the following expression
c1 = max(0, Dwpmin − dij), where i, j ∈ CW . Regarding c2,
this parameter will contain the total number of angles between
routes in every node that are not within the acceptable value, as
it was described in constraint 5.

Furthermore, another element was added to the objective
function: the sum square of the conflicts in each CW, c3.
This was included due to the need to balance the workload in
each CW. When we try to minimize the square sum of them,
the variance of our conflicts will tend to decrease, reaching
the objective of having a balanced workload for every CW.
In addition to that the violation of distance between CW and
entry/exit points was added as c4. Regarding c5, this constraint
imposes the limit of conflicts per CW.

While performing the first tests, a factor that initially was
not taken into account appeared: undesired intersections. In this
work an undesired intersection is considered as any intersection
between routes at the same FL that does not occur in a CW. This
corresponds to link crossings at the same FL. To face this issue
and try to minimize the number of undesired intersections, η, a
penalization parameter was added. This parameter measures the
quality of flow crossings out of CWs.

IV. RESULTS

Initially it was decided to test the model using simple cases,
in order to check the model’s coherence and have an initial
comparison with the direct routing method. Later on, it was
decided to apply the model to a real case scenario.

A. Performance Metrics

As it was remarked in the implementation, our model’s priori-
ties are safety and fuel saving. In the optimization algorithm,
we primarily use the total number of conflicts and the total
deviation of flights to quantify these elements in the objective
function. However, in the results section, different metrics were
applied. This modification aims to enhance the readability and
comprehension of the solutions for the readers.

Safety will be defined by two metrics: the Average Number
of Conflicts per Flight (ϕavg), and the total number of undesired
intersections (η). Meanwhile, fuel saving will be characterized
by the Average Flight Deviation (θavg). Therefore, the two
averages will give an awareness of the solution’s impact on each
flight. In addition to that the number of undesired intersections
will help to analyze the global safety of the sector.
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B. Simple Cases
To test our approach, one decided to implement three simple
scenarios, a case of 3x2 (three entries and two exits), a 3x3 and
a 4x4 using the display of Figure 1. For these three cases, the
minimum and maximum number of CWs used were two and six,
respectively. The results can be observed in Table I.. It should be
noted that the time budget used for these tests were 30 seconds
for the grid 3x2 and 3x3, and 60 seconds for the 4x4.

It should be noted that since we are dealing with metaheuristic
algorithms, the results are going to be described using the mean
(x) and the standard deviation (σ). This is due to the use of
random and stochastic processes in this type of algorithms.
Computing the mean and standard deviation helps evaluating
on how robust the algorithm is to different initial configurations
and its overall performance. For the results, 10 iterations of each
algorithm were made in order to obtain these measurements.
Examples of the optimal CW placement found by the SA
algorithm can be seen in the Figure 4.

Additionally, it is worth noting that in these simple cases
we exclusively applied SA. This deliberate choice was made
to initially assess whether the CWO approach demonstrated
potential to enhance any of the metrics with respect to the direct
route method, before introducing any additional algorithm.

TABLE I. RESULTS IN DIFFERENT SIMPLE CASES. VALUES OF THE AVERAGE
NUMBER OF CONFLICTS PER FLIGHT (ϕavg ), AVERAGE FLIGHT DEVIATION

(θavg ), AND THE TOTAL NUMBER OF UNDESIRED INTERSECTIONS (η)

ϕavg [Ac/h] θavg [NM/Ac] η

x σ x σ x σ

Grid 3×2
SA 0.334 0.046 33.2038 2.374 1.2 1.1662

direct 0.1763 0.00 0.00 0.00 3 0
Grid 3×3

SA 0.412 0.025 72.317 5.232 7.2 1.7204
direct 0.466 0.00 0.00 0.00 9 0

Grid 4×4
SA 0.788 0.124 86.8929 7.533 6.46 1.362

direct 0.748 0.00 0.00 0.00 12 0

At first sight of Table I., it is clear that the use of CWs is
going to affect negatively the θavg . The concept itself of CW
makes the increase in deviation a necessary factor in order to
apply it properly. However, the goal of this optimization is not to
obtain the most profitable ARN, but rather the safest one, while
managing to reduce the most the impact on the routes.

Regarding safety, there is a noticeable enhancement in η. It
manages to be reduced by 50% in some cases. Nevertheless,
the parameter ϕavg is generally increased significantly by using
CWs. It seems that this difference in ϕavg is reduced when the
network grows (more entries & exits), which infers a possibility
of improvement when the network becomes more complex. This
inference will be confirmed in the case study. This shows that
the CWO has a potential to simplify the controllers’ job by
concentrating the workload in some specific area.

Figure 4. Example of a solution obtained by SA for the grid 4x4.

C. Reims LFEEKF Sector Case

Once the model has been tested and validated with simple cases,
it was decided to test the model with a real case. The algorithm
was applied to a subsection of France’s UIR, more specifically
Reims’ section . Reims’ airspace can be divided according to
Figure 6 [10].

Figure 5. Reims ACC Sectorisation. [11]

The sector LFEEKF was chosen due to its simple geometry
and location (center of the Reims Area Control Center). This
sector contains 14 corners, from which 11 will be considered
as entry and exit nodes. It was admitted that the total demand
would be of 150 aircraft/hour for the whole center, which is
approximately the average of a peak day traffic in 2019, [12]. It
was decided to use this value to design a topology to support a
high demand in the network.
1) Initial Results: The sector was designed and inserted in the
model of the simulation environment, for which the results are
illustrated in Figures 6 and Table II. In addition to the SA, Taboo
Search (TS) [13] and Particles Swarm Optimization (PSO) [14]
are also applied on this problem. It must be noted that the time
budget chosen for this test is 150 seconds.

TABLE II. RESULTS IN THE REIMS LFEEKF SECTOR.

ϕavg [Ac/h] θavg [NM/Ac] η

x σ x σ x σ

SA 0.251 0.029 25.24 1.23 40.60 10.26
TS 1.272 0.344 19.25 3.34 90.53 25.68

PSO 0.556 0.042 30.22 1.78 52.51 8.14
direct 0.62 0.00 0.00 0.00 87 0

At a first glance, one can observe a significant difference
between TS and the other methods. It seems that the algorithm,
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Figure 6. Topology of a solution obtained by SA in LFEEKF sector.

due to its noticeable variability, did not have the time or the
exploration capacity to find a more adequate solution. This will
be examined deeper in the time budget analysis. Thus, in terms
of consistency, TS demonstrated the worst performance for this
time budget, giving it a significant disadvantage.

Regarding safety, it is evident that the SA has a better
performance in the number of conflicts and the number of
undesired intersections, lowering these metrics approximately
50% with respect to the classical FRA approach.

It is also evident that the average number of conflicts has
significantly decreased as well as the number of undesired
intersections. Also, as seen in the simple cases, the increase
in safety implies an increase in the detouring of flights, so
we verify an average detouring of approximately 30 nautical
miles per flight. This result shows that the use of CW can
improve the efficiency of an ARN regarding safety and workload
for controllers with a lower number of undesired intersections
compared to the direct route approach.

In spite of various tests, it was not possible to achieve a
solution where there were no undesired intersections. A main
cause for this issue can be the fact that this model only admits a
path using just one CW. This assumption limited the solutions’
space. A possible approach for this limitation will be mentioned
in the last section.
2) Time Budget Analysis: Although Table II. showed at first
glance that the PSO and SA had the best performance between
the algorithms regarding safety, it is essential to perform a time
budget analysis. This evaluation consists in carrying out various
tests with different time budgets. This approach will permit us
to see the evolution of each algorithm performance along time.
This way, one can check if the superiority of PSO and SA is
still significant.

For this evaluation a range of time budget where chosen
between 20s and 200s (time for which all the objective function
values are already stabilized). Figure 7 illustrates the global
performance analysis.

Figure 7 puts in evidence some key aspects. Firstly, the
algorithms managed to decrease the objective function value
effectively. Secondly, a considerable difference can be observed
between the standard deviation of TS and the rest. Finally, it is
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Figure 7. Global performance with respect to time budget. Comparison of
algorithms’ x (solid line) and σ (translucent areas).

visible that initially the performance of the PSO is the best but,
as the time budget increases, it is surpassed by the SA. In order
to deepen our analysis, an evaluation of the evolution of the main
criteria of the objective function was done. This is illustrated in
Figure 8.
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Figure 8. Performance of individual metrics with respect to time budget.
Comparison of algorithms’ x (solid line) and σ (translucent areas).

Using a weighted sum function as the objective function of our
multi objective problem, it is evident that although the number
of iterations increases, some metrics do not necessarily perform
better (decrease), specially in the route deviation, as illustrated
in Figure 8. This occurs because the algorithm finds a better
global solution, which means that it could have worsened one
characteristic, but the others have been enhanced so much so
that the overall score decreased. It is evident that, using our
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objective function, our algorithms give a huge priority towards
the conflicts and the undesired intersections.

We observe that there is a considerable difference between
TS and the other approaches. Initially, the assumption was that
the TS low performance could be attributed to not allocating
enough time. However, as the results of Figure 7 indicated
performance stagnation, this option was dismissed. It seems that
the TS exploitation phase is not as exhaustive as the other two
alternatives, leading to a high variability of the solutions given,
i.e. a high value of σ. The randomization employed in the initial
states is not being attenuated by the algorithm’s exploitation
phase. In another words, the algorithm is not able to converge
into the same solutions.

Meanwhile, the PSO and SA manage to reduce their variabil-
ity significantly, achieving an average conflict rate below 1 Ac/h
and a η below a 100. It is seen that the performance of PSO
is the best for few iterations. Later on, when the time budget is
higher than 50 seconds approximately, SA outperforms the PSO.
So, the PSO starts with a good performance due to its swarm
exploration strategy, which is pretty efficient. The fact of creating
Nparticles makes that the algorithm explores more states initially.
Nevertheless, as time budget increases, SA improves more, this
can be justified by two factors. The first is that SA’s exploration
phase is more efficient. This is attributed to the capability of SA
to use a greater number of iterations to explore a given solution,
in contrast to PSO, which employs significantly fewer iterations
per solution.

Secondly, the PSO exploration strategy seems to stagnate
thanks to the influence of the population trapped in local minima.
This way, the velocity of the swarm tend to converge towards
the area of the solution space, not arriving to the same level of
SA. Therefore, PSO can manage to be an adequate solver for a
low budget simulation, while SA will be fitter for a high budget
simulation were our main priority is performance.

V. CONCLUSIONS

The model proposed in this paper offers an improvement re-
garding the classical FRA model. The model tends to increase
safety by lowering the number of potential conflicts in the
considered area, and concentrating these conflicts within the
CWs. This improvement will decrease the workload of the air
traffic controllers, while trying to minimize routes’ deviations.

The optimization problem has been modeled as a CWO, where
the decision variables are the number of CWs, their positions
and the percentage of flow of each route that passes through
each CW. With these variables our model simulates the decision
variables and return the number of conflicts within the sector
from each CW, and the average deviation of each route. Then,
the problem is solved by using SA, PSO or TS algorithms which
aims to minimize the objective function. The objective function

was designed to minimize the total number of potential conflicts,
undesired intersections and the total deviation of the routes.

The results of this approach showed that the use of well placed
CW can improve the performance of a sector, even though there
will always be an increase in the distance traveled by all the
flights. However, the total number of conflicts and undesired
intersections can be reduced significantly. In addition to that, the
potential conflicts will be less scattered throughout the sector,
improving the work of the controller.

Despite the positive results, some points still have the possi-
bility of being improved. Firstly, although our method reduced
the number of undesired intersections, it was not possible to
reduce it to zero in a real case scenario. A proposal to achieve
this is to explore more types of topologies, since the flow
in our simulator can only be routed through a single CW.
Furthermore, some new factors could be added to the model
like the existence of PRD zones or the use of more than
two FLs in the sector. Moreover, another interesting approach
would be the implementation of a multi-objective algorithm like
NSGA-II. Finally, the model should be tested with more airspace
examples with different geometries and demands, increasing the
confidence in the methods developed. All of these proposals
could lead to a more adapted model to different types of airspace
sectors and a better structure of our ARN.
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