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Abstract: In this paper, the problem of automated generation of linear parameter-varying
(LPV) state-space models is addressed. A deep neural network (DNN) is developed to embed
the dynamical behavior of a nonlinear (NL) system into an LPV model with predefined number
of scheduling variables which are the NL functions of the states. Leveraging the Autoencoder
(AE) neural networks (NN) and using the input-output plant data, a scheduling NL mapping
is defined. The developed LPV model depends affinely on the scheduling variables. Since the
proposed method to derive LPV model is based on input-output plant data, the explicit NL
equations of the plant are not required. The upper and lower bounds on the scheduling variables
can be computed by solving convex optimization problems. The effectiveness of the proposed
method is evaluated on a benchmark example.
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1. INTRODUCTION

The linear parameter-varying (LPV) framework has re-
ceived significant attention for performance analysis and
control synthesis for nonlinear (NL) and time-varying
(TV) systems in the last few decades. This methodology
is capable to address versatile practical applications in
diverse fields (Hoffmann and Werner, 2015). However a
major limitation to a wider utilization of this powerful tool
is the lack of systematic approaches to embed a NL model
into an LPV one. Most of the available methods are ad-
hoc approaches and usually depend on the expertise of the
user. In the available automated procedures, the obtained
LPV model usually depends either affinely or polynomially
on the scheduling variables, see e.g. Schoukens and Tóth
(2018); Sadeghzadeh et al. (2020); Kwiatkowski et al.
(2006); Sadeghzadeh and Tóth (2022). Another challeng-
ing issue of the existing embedding procedures is that
they usually lead to an LPV model with a large amount
of scheduling variables. This has triggered a research line
for scheduling dimension reduction. Some methods based
on principle component analysis (PCA) (Kwiatkowski and
Werner, 2008), Kernel PCA (Rizvi et al., 2016), and Au-
toencoders (AE) (Rizvi et al., 2018; Koelewijn and Tóth,
2020; de Lange et al., 2022) have already been developed
for the scheduling dimension reduction. If a first-principles
NL model of a system exists, then one may resort to
conversion approaches to derive an LPV model for the NL
system, see e.g. Caigny et al. (2011); Kwiatkowski et al.
(2006); Robles et al. (2019); Petersson and Löfberg (2009);
Leith and Leithead (1998).

In this paper, thanks to AE NN, a novel method to embed
the dynamical behavior of a NL system into an LPV

� This work was partially supported by the projects ANR FEAN-
ICSES (ANR-17-CE25-0018) and ESA AITIVE-GNC.

model is presented. An AE is a NN structure capable of
compressing input data, and then reconstructing it as an
output. AE comprises two parts, encoder and decoder.
Using the compressing feature of the AE performed by
encoder part, the state variables can be encoded into
scheduling variables. This implies that the encoder can be
considered as a scheduling NL mapping based on which the
information of the state variables are encoded into a few
number of scheduling variables. The input to the decoder
are scheduling variables θ(k), plant input signal u(k), and
the current state variables x(k), and the output is x(k+1).
The decoder is trained based on these input and output
signals.Training an AE is considered an unsupervised
learning technique since the training is performed without
explicit labeled data.

In Koelewijn and Tóth (2020), a deep neural network
(DNN) is employed for the scheduling dimension reduc-
tion. The input to the DNN are the state-space matrices
of an initially given LPV model, while the output of the
DNN are the state-space matrices of the desired LPV
model having a reduced number of scheduling variables.
The embedding procedure proposed in de Lange et al.
(2022) is based on an AE NN. The input to the AE are
the state and plant input variables and the output of the
AE are the state space matrices of the desired LPV model.
The training is carried out by minimizing a cost function
representing the difference between an initially given LPV
model and the desired LPV model. In both these methods,
one requires an initially given LPV model for the original
nonlinear system. However, taking advantage of AE NN, it
is possible to bypass the requirement for having an initial
LPV model which can be problematic when an explicit
description of the NL dynamical behavior of the NL system
is not available. We provide a method that just requires the
input-output data of the NL system to train an AE NN,
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∗ École Nationale de l’Aviation Civile, Université de Toulouse, France
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∗ École Nationale de l’Aviation Civile, Université de Toulouse, France
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description of the NL dynamical behavior of the NL system
is not available. We provide a method that just requires the
input-output data of the NL system to train an AE NN,
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1. INTRODUCTION

The linear parameter-varying (LPV) framework has re-
ceived significant attention for performance analysis and
control synthesis for nonlinear (NL) and time-varying
(TV) systems in the last few decades. This methodology
is capable to address versatile practical applications in
diverse fields (Hoffmann and Werner, 2015). However a
major limitation to a wider utilization of this powerful tool
is the lack of systematic approaches to embed a NL model
into an LPV one. Most of the available methods are ad-
hoc approaches and usually depend on the expertise of the
user. In the available automated procedures, the obtained
LPV model usually depends either affinely or polynomially
on the scheduling variables, see e.g. Schoukens and Tóth
(2018); Sadeghzadeh et al. (2020); Kwiatkowski et al.
(2006); Sadeghzadeh and Tóth (2022). Another challeng-
ing issue of the existing embedding procedures is that
they usually lead to an LPV model with a large amount
of scheduling variables. This has triggered a research line
for scheduling dimension reduction. Some methods based
on principle component analysis (PCA) (Kwiatkowski and
Werner, 2008), Kernel PCA (Rizvi et al., 2016), and Au-
toencoders (AE) (Rizvi et al., 2018; Koelewijn and Tóth,
2020; de Lange et al., 2022) have already been developed
for the scheduling dimension reduction. If a first-principles
NL model of a system exists, then one may resort to
conversion approaches to derive an LPV model for the NL
system, see e.g. Caigny et al. (2011); Kwiatkowski et al.
(2006); Robles et al. (2019); Petersson and Löfberg (2009);
Leith and Leithead (1998).

In this paper, thanks to AE NN, a novel method to embed
the dynamical behavior of a NL system into an LPV
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model is presented. An AE is a NN structure capable of
compressing input data, and then reconstructing it as an
output. AE comprises two parts, encoder and decoder.
Using the compressing feature of the AE performed by
encoder part, the state variables can be encoded into
scheduling variables. This implies that the encoder can be
considered as a scheduling NL mapping based on which the
information of the state variables are encoded into a few
number of scheduling variables. The input to the decoder
are scheduling variables θ(k), plant input signal u(k), and
the current state variables x(k), and the output is x(k+1).
The decoder is trained based on these input and output
signals.Training an AE is considered an unsupervised
learning technique since the training is performed without
explicit labeled data.

In Koelewijn and Tóth (2020), a deep neural network
(DNN) is employed for the scheduling dimension reduc-
tion. The input to the DNN are the state-space matrices
of an initially given LPV model, while the output of the
DNN are the state-space matrices of the desired LPV
model having a reduced number of scheduling variables.
The embedding procedure proposed in de Lange et al.
(2022) is based on an AE NN. The input to the AE are
the state and plant input variables and the output of the
AE are the state space matrices of the desired LPV model.
The training is carried out by minimizing a cost function
representing the difference between an initially given LPV
model and the desired LPV model. In both these methods,
one requires an initially given LPV model for the original
nonlinear system. However, taking advantage of AE NN, it
is possible to bypass the requirement for having an initial
LPV model which can be problematic when an explicit
description of the NL dynamical behavior of the NL system
is not available. We provide a method that just requires the
input-output data of the NL system to train an AE NN,

Autoencoder Neural Networks for LPV
Embedding of Nonlinear Systems �

Arash Sadeghzadeh ∗ Pierre-Löıc Garoche ∗
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∗ École Nationale de l’Aviation Civile, Université de Toulouse, France
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2020; de Lange et al., 2022) have already been developed
for the scheduling dimension reduction. If a first-principles
NL model of a system exists, then one may resort to
conversion approaches to derive an LPV model for the NL
system, see e.g. Caigny et al. (2011); Kwiatkowski et al.
(2006); Robles et al. (2019); Petersson and Löfberg (2009);
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In Koelewijn and Tóth (2020), a deep neural network
(DNN) is employed for the scheduling dimension reduc-
tion. The input to the DNN are the state-space matrices
of an initially given LPV model, while the output of the
DNN are the state-space matrices of the desired LPV
model having a reduced number of scheduling variables.
The embedding procedure proposed in de Lange et al.
(2022) is based on an AE NN. The input to the AE are
the state and plant input variables and the output of the
AE are the state space matrices of the desired LPV model.
The training is carried out by minimizing a cost function
representing the difference between an initially given LPV
model and the desired LPV model. In both these methods,
one requires an initially given LPV model for the original
nonlinear system. However, taking advantage of AE NN, it
is possible to bypass the requirement for having an initial
LPV model which can be problematic when an explicit
description of the NL dynamical behavior of the NL system
is not available. We provide a method that just requires the
input-output data of the NL system to train an AE NN,

which, in turn, results in the state-space representation of
an LPV model.

The paper is structured as follows, Section 2 is devoted to
problem definition. The details of the proposed method
are provided in Section 3. Application of the provided
approach on an inverted pendulum benchmark is explored
in Section 4. Finally, some conclusions are drawn in the
last section.

2. PROBLEM DEFINITION

Consider a NL discrete-time dynamical system with the
following state-space representation:

x(k + 1) = f(x(k), u(k)), (1)

y(k) = g(x(k), u(k)),

where x(k) ∈ X ⊂ Rn is the state vector, u(k) ∈ Rp is
the input, and y(k) ∈ Rm is the output of the system. X is
assumed to be a compact polyhedron with known vertices.
f : Rn×Rp → Rn and g : Rn×Rp → Rm are bounded and
smooth static real-valued nonlinear functions of x and u.
We consider the problem of embedding a NL model into an
LPV representation. This means that the goal is to obtain
the following LPV representation for the NL system (1):

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k), (2)

y(k) = C(θ(k))x(k) +D(θ(k))u(k),

such that θ(k) := μ(x(k)) where the nonlinear scheduling
map μ : X → Θ ⊆ Rnθ is automatically constructed, and

the scheduling variable θ(k) := [ θ1(k) θ2(k) · · · θnθ
(k) ]

�

is supposed to belong to the hyperrectangle Θ defined by

θi ≤ θi(k) ≤ θi, i = 1, · · · , nθ (3)

with θi, θi ∈ R which are defined in the procedure.
Furthermore, it is assumed that the embedding of (1) is
performed such that the state space matrices A,B,C, and
D of compatible dimension have affine dependence on θ(k),
i.e.,

�
A(θ) B(θ)
C(θ) D(θ)

�
=

�
A0 B0

C0 D0

�
+

nθ�
j=1

�
Aj Bj

Cj Dj

�
θj . (4)

Suppose that we have a representative dataset D defined
as

D : {x(k), u(k), y(k)}Nk=0 (5)

representing typical operational behavior of the system.
The error or the distance between the LPV model and
the original one can be captured by the error between the
output of the encoder, i.e., [ x̂(k + 1)� ŷ(k)� ]�, and the

ground truth [ x(k + 1)� y(k)� ]�. It can be expressed as
a mean squared error (MSE) or any relevant appropriate
error. Here we use the following index (note that it
corresponds to MSE when α = 1):

min
A,B,C,D,μ

1

N

N�
j=1

�x̂(k + 1)− x(k + 1)�22 + α �ŷ(k)− y(k)�22

s.t. x(k), u(k), y(k) ∈ D
(6)

where

x̂(k + 1) = A(θ(k))x(k) +B(θ(k))u(k),

ŷ(k) = C(θ(k))x(k) +D(θ(k))u(k),

The state space matrices A,B,C,D and the scheduling
map function μ are obtained by solving this optimization
problem with an appropriate weighting scalar α. Note that
D comprises system state, input, and output trajectories
obtained by closed-loop simulation of system (1) using any
arbitrary stabilizing controller.

3. PROPOSED METHOD

To tackle the optimization problem (6), we take advantage
of AE NN structure. AE NN has two main parts, i.e.,
encoder and decoder. Encoder maps the input into a
lower dimensional latent representation, then the decoder
reconstructs the output from the latent representation.
Conventional AE NN is meant to learn unlabeled data
and it typically used to reduce dimensionality. Here we
rely on this NN architecture to specifically address the
LPV embedding problem of NL systems. We specialize
the AE NN as follows: the encoder part encodes the state
variables of the original NL system into the scheduling
variables, so in our AE NN the latent representation is
the scheduling vector. Then, resorting to the obtained
scheduling variables θ(k) and using the state vector x(k)
and the input u(k) of the system, the decoder reconstruct
the next state vector , i.e., x(k + 1) and the output y(k).
Figure 1 reveals the idea for our modified AE NN. Without
loss of generality and just for the ease of representation,
we assume that the encoder has ne = 2 layers, and we
consider nθ = 2 scheduling variables in Fig. 1.

The encoder is a feed-forward fully-connected NN with ne

layers. Therefore, it can be represented as follows:

μ :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a[0]e (k) = x(k),

v[l]e (k) = W [l]
e a[l−1]

e (k) + b[l]e , l = 1, · · · , ne

a[l]e (k) = Φ[l]
e (v[l]e (k)), l = 1, · · · , ne

θ(k) = a[ne]
e (k),

(7)

where a
[l]
e is the output of the lth layer of the encoder.

Let nl denote number of neurons in layer l; thus, we have

W
[l]
e ∈ Rnl×nl−1 and b

[l]
e ∈ Rnl . Here, Φ

[l]
e (·) represents the

activation function of layer l and is applied element-wise on

v
[l]
e . Note that the input to the encoder is the state vector
x(k) of the original nonlinear system and the output is the
scheduling vector θ(k), and the encoder represents the NL

scheduling map μ. The weighting matrix W
[l]
e and the bias

vector b
[l]
e for all l = 1, · · · , ne are obtained by training the

AE NN.

Note that one may consider both x(k) and u(k) as the
input to the encoder. This way, the scheduling variables
would also be nonlinear functions of u(k).
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Fig. 1. Modified AE NN for embedding of NL systems into LPV model.

To proceed further, let a be defined as follows:

a = [ a1 a2 · · · aqr ]
� ∈ Rqr,

then

a←−−
q × r

:=

⎡
⎢⎢⎣

a1 a2 · · · ar
ar+1 ar+2 · · · a2r
...

...
. . .

...
aqr−r+1 aqr−r+2 · · · aqr

⎤
⎥⎥⎦ ∈ Rq×r.

Additionally, let us define q and r as:

q = n+ p, r = n+m.

The decoder part in Fig. 1 can be formulated as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ad = Wd θ(k) + bd,

M = ad←−−−
r × q

,

�
x(k + 1)
y(k)

�
= M

�
x(k)
u(k)

�
,

(8)

It is worth mentioning that the encoder just has one
layer having nd = (n + m)(n + q) neurons, and the
layer has a linear activation function. The output of this
layer is denoted by ad. Therefore, the elements of the
matrices A(θ), B(θ), C(θ), andD(θ) depend affinely on the
scheduling vector θ(k). The weighting matrix Wd and the
bias vector bd are obtained by training the AE NN.

It is worth mentioning that one may consider more layers
for the decoder. In that case, the state-space matrices of
the final LPV model would be nonlinear functions of the
scheduling variables.

To train the AE NN, we consider a MSE cost function
and the input and output data as (x(k), u(k)) and (x(k +
1), y(k)), respectively. The training data are constructed
utilizing the dataset D, given in (5). After training the

AE NN, the state space matrices of the LPV system are
obtained as follows:

�
A(θ) B(θ)
C(θ) D(θ)

�
:= M (9)

where A(θ) ∈ Rn×n, B(θ) ∈ Rn×p, C(θ) ∈ Rm×n, and
D(θ) ∈ Rm×p.

One can obtain the upper and lower bounds on the
scheduling variables, defined in (3), as explained in the
sequel.

Let v
[l]
i and v

[l]
i denote the upper and lower bounds on v

[l]
e ,

respectively. Then, for the first layer in the encoder we
have

v
[1]
i =max

x
W [1]

e x+ b[1]e (10)

s.t. x ∈ X

v
[1]
i =min

x
W [1]

e x+ b[1]e (11)

s.t. x ∈ X

for i = 1, · · · , n1 (n1 is the number of neurons in the

first layer of encoder). This way, we obtain v[1] and v[1]

as follows:

v[1] :=
�
v
[1]
1 v

[1]
2 · · · , v[1]n1

�
, v[1] :=

�
v
[1]
1 v

[1]
2 · · · , v[1]n1

�
.

Subsequently, since Φ
[l]
e (·) is a non-decreasing function

(usually ReLU, tanh, and sigmoid activation functions are

used) we can obtain the upper and lower bounds on a
[1]
e

as
a[1]e = Φ[1]

e (v[1]e ), a[1]e = Φ[1]
e (v[1]e ).
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...
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⎤
⎥⎥⎦ ∈ Rq×r.
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r × q

,
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�
= M

�
x(k)
u(k)

�
,

(8)

It is worth mentioning that the encoder just has one
layer having nd = (n + m)(n + q) neurons, and the
layer has a linear activation function. The output of this
layer is denoted by ad. Therefore, the elements of the
matrices A(θ), B(θ), C(θ), andD(θ) depend affinely on the
scheduling vector θ(k). The weighting matrix Wd and the
bias vector bd are obtained by training the AE NN.

It is worth mentioning that one may consider more layers
for the decoder. In that case, the state-space matrices of
the final LPV model would be nonlinear functions of the
scheduling variables.

To train the AE NN, we consider a MSE cost function
and the input and output data as (x(k), u(k)) and (x(k +
1), y(k)), respectively. The training data are constructed
utilizing the dataset D, given in (5). After training the

AE NN, the state space matrices of the LPV system are
obtained as follows:

�
A(θ) B(θ)
C(θ) D(θ)

�
:= M (9)

where A(θ) ∈ Rn×n, B(θ) ∈ Rn×p, C(θ) ∈ Rm×n, and
D(θ) ∈ Rm×p.

One can obtain the upper and lower bounds on the
scheduling variables, defined in (3), as explained in the
sequel.

Let v
[l]
i and v

[l]
i denote the upper and lower bounds on v

[l]
e ,

respectively. Then, for the first layer in the encoder we
have

v
[1]
i =max

x
W [1]

e x+ b[1]e (10)

s.t. x ∈ X

v
[1]
i =min

x
W [1]

e x+ b[1]e (11)

s.t. x ∈ X

for i = 1, · · · , n1 (n1 is the number of neurons in the

first layer of encoder). This way, we obtain v[1] and v[1]

as follows:

v[1] :=
�
v
[1]
1 v

[1]
2 · · · , v[1]n1

�
, v[1] :=

�
v
[1]
1 v

[1]
2 · · · , v[1]n1

�
.

Subsequently, since Φ
[l]
e (·) is a non-decreasing function

(usually ReLU, tanh, and sigmoid activation functions are

used) we can obtain the upper and lower bounds on a
[1]
e

as
a[1]e = Φ[1]

e (v[1]e ), a[1]e = Φ[1]
e (v[1]e ).

Afterwards, resorting to forward propagation through all
the layers of the encoder NN, we can obtain v[l] and v[l]

for the other layers. Using affine arithmetic (de Figueiredo
and Stolfi, 2004), we can define the center

v[l]c :=
1

2
W [l]

e

�
a[l−1]
e + a[l−1]

e

�

and the radius

v[l]r :=
1

2
abs

�
W [l]

e

�
a[l−1]
e − a[l−1]

e

��

and then

v[l]e := v[l]c − v[l]r , v[l]e := v[l]c + v[l]r .

for l = 2, · · · , ne. Note that

a[l]e = Φ[l]
e (v[l]e ), a[l]e = Φ[l]

e (v[l]e )

for l = 2, · · · , ne. This way, we can eventually obtain

θ := a[ne]
e , θ := a[ne]

e

where

θ :=
�
θ1 θ2 · · · θnθ

��
θ :=

�
θ1 θ2 · · · θnθ

��
.

4. NUMERICAL EXAMPLE

To demonstrate the effectiveness of our proposed method,
we consider the LPV embedding problem of an inverted
pendulum on a cart. To train the AE NN, we used Keras
(Chollet et al., 2015) in the TensorFlow library (Abadi
et al., 2016) used in Jupyter notebooks (Kluyver et al.,
2016) for Python 1 .

The dynamics of the inverted pendulum are described as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 =
h1(x1, x2)

Δ(x1)
+

h2(x1)

Δ(x1)
sat(u),

ẋ3 = x4,

ẋ4 =
h3(x1, x2)

Δ(x1)
+

h4

Δ(x1)
sat(u),

(12)

where

Δ(x1) =(M +m)(J +ml2)−m2l2 cos2(x1)

h1(x1, x2) =− f1(M +m)x2 −m2l2x2
2 sin(x1) cos(x1)+

f0mlx4 cos(x1) + (M +m)mgl sin(x1)

h2(x1) =−ml cos(x1)

h3(x1, x2) =f1mlx2 cos(x1) + (J +ml2)mlx2
2 sin(x1)−

f0(J +ml2)x4 −m2gl2 sin(x1) cos(x1)

h4 =J +ml2

1 All the codes are available on Github at:
https://github.com/AraSadz/Autoencoder-Neural-Networks-for-
LPV-Embedding-of-Nonlinear-Systems.git

where x1 and x2 represent the angle along the vertical
and the angular velocity of the pendulum, respectively.
x3 and x4 denote the displacement and the velocity of
the cart, respectively. g is the gravity constant; m and M
respectively refer to the mass of the pendulum and cart.
f0 and f1 stand for the friction factor of the the cart and
pendulum, respectively. l is the length from the center of
mass of the pendulum to the shaft axis; J is the moment of
inertia of the pendulum round its center of mass; u denote
the force applied to the cart. The numerical values for the
parameters are given in Table 1.

The sat(u) is defined as follows:

sat(u) =

�
u u ≤ u ≤ u
u u > u
u u < u

(13)

where u = −u = 105 is considered. It is also assumed that

−π

6
≤ x1(k) ≤ π

6
,

−5 ≤ x2(k) ≤ 5.
(14)

Table 1. Parameter values for the pendulum-
cart system

M m g f0 f1 l J

1.3282 0.22 9.8 22.915 0.007056 0.304 0.004963

Now, using Euler’s first-order approximation considering
T = 0.05sec., the following discrete-time model for the
pendulum-cart system is obtained:

x(k + 1) =⎡
⎢⎢⎢⎢⎢⎣

x1(k) + Tx2(k)

x2(k) + T
h1(x1(k), x2(k))

Δ(x1(k))
+ T

h2(x1(k))

Δ(x1(k))
sat(u(k))

x3(k) + Tx4(k)

x4(k) + T
h3(x1(k), x2(k))

Δ(x1(k))
+ T

h4

Δ(x1(k))
sat(u(k))

⎤
⎥⎥⎥⎥⎥⎦

(15)

where x(k) := [ x1(k) x2(k) x3(k) x4(k) ]
�
.

To obtain an LPV model for (15) using our proposed
method, an operational behaviour dataset D, given by
(5), is required. One can derive this dataset exploiting
closed-loop time-domain simulations. To do so, we need
first a stabilizing controller. To design the controller, (5) is
linearized around the equilibrium point x = 0 to obtain an
approximate linear model. Then, using the dlqr function in
Matlab, an stabilizing state feedback controller is designed
as follows:

K = [−109.3936 −21.1989 −8.0214 −43.1398 ] (16)

Now, using time-domain simulation, we obtain 10000 tra-
jectories of x(t) and u(t) considering different initial states
in the ranges given in (14). For the simulations, we assume
x3(0) = x4(0) = 0. The details of the encoder NN is
provided in Table 2.
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Fig. 2. Training loss and validation loss of training AE NN
for LPV embedding of pendulum-cart system.

Note that for this example g(·) is not defined. Therefore,
we can ignore the y’s in the output of the decoder by
modifying M, given in (8), as follows:

M = ad←−−−
n × q

,

and then

x(k + 1) = M
[
x(k)
u(k)

]
.

For this case, the number of neurons in the decoder layer
equals to n(n+ p) = 4× 5 = 20.

Note that in our dataset D, the state variables are of
different scales. Therefore, to improve the trained model
and make the training procedure faster, we need to scale
the state variables. One can use MaxAbsScaler from the
scikit-learn library (Pedregosa et al., 2011) for the Python
to scale each state variable by its maximum absolute value.
This way, the maximum absolute value of each state in the
training set will be 1. However, it does not shift the data,
and thus does not shift the state values from 0 (the final
state values in our time-domain simulations).

To train the AE NN, we use the well known Adam opti-
mization (Kingma and Ba, 2014). Our dataset comprises
1980000 data samples. To train the AE NN, we consider
a batch size of 1024 samples with 300 epochs and the
MSE loss function. We consider 20% of the data for cross-
validation. In Fig. 2, the training loss and validation loss
versus epoch are depicted.

Consider a time-domain simulation of the original NL
system using the state feedback controller (16) from the

initial state x(0) = [ π/6 5 0 0 ]
�
. This way, we obtain two

time series for x(k) and u(k). Now, for the comparison
purposes, let compare the output of the AE NN, i.e. x̂(k),
with x(k). In Fig. 3, x(k) and x̂(k) are depicted. One can

Table 2. Details of the encoder NN.

Layer 1 Layer 2 Layer 3

No. neurons/Activation 20/ReLU 10/ReLU 1/ReLU

Fig. 3. Comparison between the LPV model and the
original NL model.

see that the output of the AE NN perfectly matches the
ground truth.

As we mentioned earlier, the output of the encoder NN
provides the scheduling variables. In Fig. 4, the scheduling
variable θ1 is depicted for the time-domain simulation we
mentioned earlier. One can easily see that the proposed
method provides an accurate LPV model for this bench-
mark example.

5. CONCLUSION

A novel method to systematically embed the dynamical
behavior of a NL system into an LPV model is proposed.
Using AE NN, a NL mapping from the state variables to
a predefined number of scheduling variables is introduced.
Even though the introduced NL scheduling mapping just
depends on the state variables, extension to the case that
the mapping depends on both state and input signals
is also straightforward. Leveraging this NL mapping, an
LPV model is developed using the input-output data. The
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Fig. 3. Comparison between the LPV model and the
original NL model.

see that the output of the AE NN perfectly matches the
ground truth.

As we mentioned earlier, the output of the encoder NN
provides the scheduling variables. In Fig. 4, the scheduling
variable θ1 is depicted for the time-domain simulation we
mentioned earlier. One can easily see that the proposed
method provides an accurate LPV model for this bench-
mark example.

5. CONCLUSION

A novel method to systematically embed the dynamical
behavior of a NL system into an LPV model is proposed.
Using AE NN, a NL mapping from the state variables to
a predefined number of scheduling variables is introduced.
Even though the introduced NL scheduling mapping just
depends on the state variables, extension to the case that
the mapping depends on both state and input signals
is also straightforward. Leveraging this NL mapping, an
LPV model is developed using the input-output data. The

Fig. 4. Scheduling variable θ1 for the obtained LPV model
for the inverted pendulum benchmark.

proposed method does not require the exact NL state-
space representation of the original NL system; in return,
the input-output data of the operational behavior of the
NL system is employed. The state-space matrices of the
LPV model are affine functions of the scheduling variables.
Nevertheless, by increasing the number of the layers in the
decoder part, one can attain a more complex dependency
on the introduced scheduling variables. This method has
already been applied with success in an ESA project on
a larger use case of a Mars lander scenario. It was able
to provide a faithful LPV model for a large and complex
input Simulink model containing many nested subsystems,
lookup tables and nonlinearities. For future work, we
aim to perform more comparison with the other available
approaches, and to quantify the impact of increasing the
number of the layers in the encoder and decoder on the
overall quality of the model.
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Petersson, D. and Löfberg, J. (2009). Optimization based
LPV-approximation of multi-model systems. In Proc. of
the European Control Conference, 3172–3177. Budapest,
Hungary.

Rizvi, S.Z., Abbasi, F., and Velni, J.M. (2018). Model
reduction in linear parameter-varying models using au-
toencoder neural networks. In 2018 Annual Amer-
ican Control Conference (ACC), 6415–6420. doi:
10.23919/ACC.2018.8431912.

Rizvi, S.Z., Mohammadpour, J., Tóth, R., and Meskin, N.
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