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ABSTRACT

This paper presents a cascaded robust control scheme for fully actuated hexacopter drones. The
system model is first derived using Newton-Euler equations and subsequently linearized. H∞
synthesis is then used to design controllers for thrust, stabilization and guidance dynamics. A
structured constrained formulation is used to address the problem, allowing for a significant re-
duction in the controllers’ order compared to the classical full-order approach, while keeping the
same robustness and performance levels. 𝜇-analysis is then applied to further evaluate the robust-
ness properties of the closed-loop system in the presence of parametric uncertainties. The designed
controllers are finally tested on a nonlinear simulator using MATLAB. Two main operational sce-
narios are considered: hovering with a cable-suspended pendulum and flying through predefined
waypoints, each time in the presence of external perturbations.

Keywords: Unmanned Aerial Vehicle, Structured H∞ Control, Stabilization and Guidance, Fully Actuated Hexa-
copter, Cable Suspended Pendulum.

1 Introduction
Ensuring the safe and reliable flight of Micro Aerial Vehicles (MAVs) has been a significant driving

force behind the development and application of advanced control techniques. MAVs indeed find their
place in various multidisciplinary fields, where they assume pivotal roles in tasks such as inspection,
rescue operations, package transportation and photography. To execute these tasks effectively, particu-
larly in the presence of external perturbations such as gusts and winds, their control systems must be
able to reduce the impact of external disturbances as well as noisy measurements. The performance of a
drone is not only influenced by control design, but also by its geometric and hardware characteristics, and
establishing a connection between the two is imperative to attain optimal performances. Multi-rotor sys-
tems have gained widespread acceptance due to their distinctive features, including the ability to achieve
vertical takeoffs and landings, stationary hovering, and their mechanical simplicity. These vehicles are
categorized based on their actuation level, i.e. the way to control their six degrees of freedom (6DoF).
They can be under-actuated (UA), fully-actuated (FA) or over-actuated (OA), depending on the number
of actuators employed for control and the number of virtual control inputs. In numerous applications, the
design and operation of UA systems benefit from the use of well-tested control algorithms. However, the
potential applications of MAVs can be further expanded by achieving full actuation [1], to improve ro-
bustness and enhance maneuverability. Furthermore, OA vehicles can be leveraged to enhance reliability
in the face of mechanical failures and external disturbances. Both FA and OA systems have the ability to
be controlled either by decoupling their rotational and translational movements, or by assuming coupled

1

mailto:mohamad.hachem@enac.fr
mailto:clement.roos@onera.fr
mailto:thierry.miquel@enac.fr


dynamics. This work focuses on developing and updating existing control architectures for UA systems,
so as to apply them to fully actuated hexacopter drones (FA-Hex), such as the one shown in Fig. 1.

𝑥𝐼 𝑦𝐼

𝑧𝐼

𝑥𝐵

𝑦𝐵

𝑧𝐵

Fig. 1 Fully Actuated Hexacopter

1.1 Literature Review
Depending on the intended application, various control algorithms and architectures can be imple-

mented to control FA-Hex drones. First, nonlinear controllers can be used to independently regulate the
altitude and the attitude dynamics. For example, a feedback linearization controller is employed in [2]
with a linear PID controller. The authors introduce a decoupling dynamic scheme, with the measurements
of the drone’s position and altitude reference. Furthermore, the combined use of a feedback linearization
controller and a reference governor is discussed in [3] to mitigate the risk of actuator saturation. Con-
versely, the work presented in [4] proposes a control scheme for FA-Hex drones, allowing integration
with the established scheme for UA vehicles. The proposed approach involves predefined desired tasks
and specifying the desired altitude for the drone to be maintained during its flight. In terms of robust
nonlinear controllers, [5] introduces a backstepping technique for position dynamics and a geometric
control for attitude dynamics to handle external disturbances affecting both the position and attitude
of the vehicle. Nonlinear model predictive controllers (NMPC) are employed in [6, 7] to effectively
manage disturbances, while also ensuring compliance with safety constraints. Additionally, a geometric
Port-Hamiltonian approach is used in [8], in conjunction with an observer-based wrench/impedance
controller. The controller employs a wrench observer to estimate the interaction wrench, eliminating
the need for a force/torque sensor, and providing a practical and adaptable control solution for FA-Hex
drones. The author in [9] proposes a geometric approach involving the special Euclidean group of third
dimension, 𝑆𝐸 (3), for a precise position tracking. To ensure robustness, Lyapunov techniques are applied
to guarantee position tracking, even when dealing with challenging full-pose reference trajectories.

As highlighted above, most of the work in the field of FA-Hex control uses nonlinear techniques,
which are known to enable agile maneuvers and applications. However, when drones hover, they tend to
be close to their equilibrium points. In such situations, linear controllers can be efficient alternatives to
make the control architecture simpler, while ensuring safe flight by attenuating disturbances. One of the
most famous tools for designing such controllers is H∞ control, valued for its capacity to find an optimal
controller with predefined performances and characteristics. In [10], the authors design a full-order linear
H∞ controller to manage a UA quadcopter, which is then compared to an optimal Linear Quadratic (LQ)
controller in terms of robustness. Additionally, trajectory tracking controllers are proposed in [11], based
on a H2/H∞ approach involving Linear Matrix Inequality (LMI) techniques. Another H∞ controller is
also designed for attitude tracking in the presence of uncertainties and external perturbations. The Linear
Parameter Varying (LPV) framework is considered in [12–14]. The drone dynamics are represented
as an affine system that can be converted into a convex polytopic form allowing to apply an H∞ gain
scheduling control technique. Finally, [15] utilizes feedback linearization combined with 𝜇-analysis and
H∞ techniques to control the dynamics of a quadcopter.
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1.2 Contribution
As highlighted in Section 1.1, FA systems operate mostly with nonlinear controllers. A few studies

have been carried out using linear techniques, but they mainly focus on quadcopters. In a scenario
where a drone hovers within a confined environment, for example to deliver emergency kits or capture
payloads, ensuring the safe execution of missions despite strong gusts or winds is essential. Linear control
techniques such as H∞ synthesis seem particularly attractive, since they are known to provide very good
guarantees of robustness and disturbance rejection. The use of FA-Hex drones is also appealing, as they
provide improved performance and maneuverability compared to UA drones. In this context, the main
contribution of this paper is to propose a structured H∞-based cascaded loop control architecture for
FA-Hex drones, which has hardly been explored in the literature within this specific application context. It
is shown that a 6th-order controller is sufficient to control the 6DoF, while keeping optimal performance.
The proposed architecture can also be extended to OA systems, offering increased reliability in cases of
motor failure and saturation, just by modifying the control allocation matrix. Furthermore, the cascaded
scheme presented in this paper is derived from an existing UA drone control architecture [16, 17], therefore
offering more flexibility for adapting the existing autopilot frameworks. In contrast to the existing control
architectures for FA drones, where nonlinear controllers are mainly used to control the drone dynamics
independently, the dynamics are coupled in the proposed architecture and the controller is tuned to use
mainly lateral forces before starting to bank. Using this approach, the drone can attenuate disturbances,
while avoiding reaching saturation for both translational and rotational dynamics.

The paper is organized as follows. The dynamical modeling of the drone is introduced in Section 2,
and theH∞ control problem in presented with the proposed cascaded architecture in Section 3. Numerical
validation of the linearized model of the drone and the designed controller is then shown in Section 4.
Finally, closed-loop simulation results are shown for two different scenarios in Section 5.

2 Dynamical Modeling

2.1 Nonlinear Model of the FA-Hex
To develop a model-based controller, it is crucial to obtain a dynamical model of the considered

FA-Hex. The Newton-Euler method is used in this paper to describe both the drone’s translational and
rotational dynamics [18]. The latter are characterized by taking the following assumptions into account:

• The drone is a rigid body.

• The drone is symmetric with respect to the axis 𝑧𝐵 (see Fig. 1), and its inertia matrix is diagonal
and denoted as 𝐼𝐵 = 𝑑𝑖𝑎𝑔(𝐼𝑥𝑥 , 𝐼𝑦𝑦, 𝐼𝑧𝑧).

The modeling approach for the drone incorporates two frames: the inertial frame F𝐼 characterized by its
axes (𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼), and the body frame FB characterized by its axes (𝑥𝐵, 𝑦𝐵, 𝑧𝐵). A visual representation
of these frames can be seen in Fig. 1. The relation between FI and FB is defined by the Euler angles
𝜇 = [𝜑, 𝜃, 𝜓]𝑇 and the corresponding rotation matrix 𝑅(𝜇) defined as:

𝑅(𝜇) =

𝐶𝜓𝐶𝜃 𝐶𝜓𝑆𝜃𝑆𝜑 − 𝑆𝜓𝐶𝜑 𝐶𝜓𝑆𝜃𝐶𝜑 + 𝑆𝜓𝑆𝜑
𝑆𝜓𝐶𝜃 𝑆𝜓𝑆𝜃𝑆𝜑 + 𝐶𝜓𝐶𝜑 𝑆𝜓𝑆𝜃𝐶𝜑 − 𝐶𝜓𝑆𝜑
−𝑆𝜃 𝐶𝜃𝑆𝜑 𝐶𝜃𝐶𝜑

 (1)

where 𝐶∗ = 𝑐𝑜𝑠(∗) and 𝑆∗ = 𝑠𝑖𝑛(∗). The drone’s position in the inertial frame is indicated by 𝜉 =

[𝑥, 𝑦, 𝑧]𝑇 , and its translational velocity is denoted as 𝑣 = [𝑣𝑥 , 𝑣𝑦, 𝑣𝑧]𝑇 . In the body frame, the angular
velocity is represented by Ω = [𝑝, 𝑞, 𝑟]𝑇 . The relation between the Euler rates ¤𝜇 and the angular body
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rates Ω is established through the transformation matrix𝑊 (𝜇). This relationship can be expressed as:

¤𝜇 = 𝑊 (𝜇)−1Ω ⇔

¤𝜑
¤𝜃
¤𝜓

 =


1 𝑆𝜑𝑇𝜃 𝐶𝜑𝑇𝜃

0 𝐶𝜑 −𝑆𝜑
0 𝑆𝜑/𝐶𝜃 𝐶𝜑/𝐶𝜃



𝑝

𝑞

𝑟

 (2)

where 𝑇∗ = 𝑡𝑎𝑛(∗). Using Newton’s laws of motion, the system dynamics are expressed as follows in F𝐼 :

¤𝜉 = 𝑣 (3)

¤𝑣 =

0
0
𝑔

 +
1
𝑚
𝑅(𝜇)

6∑︁
𝑖=1

𝐹𝐵𝑖 (4)

¤Ω = 𝐼−1
𝐵

( 6∑︁
𝑖=1

𝜏𝐵𝑖 −Ω × 𝐼𝐵Ω
)

(5)

Here, × is the cross product operator, whereas 𝑚, 𝐹𝐵𝑖 = [𝐹𝑥𝑖 𝐹𝑦𝑖 𝐹𝑧𝑖 ]𝑇 and 𝜏𝐵𝑖 = [𝜏𝑥𝑖 𝜏𝑦𝑖 𝜏𝑧𝑖 ]𝑇 represent
the drone’s mass, and the forces and torques exerted by the 𝑖-th motor expressed in the body frame,
respectively. 𝐹𝐵𝑖 and 𝜏𝐵𝑖 depend on the propeller’s angular speed 𝜔𝑖, as well as the motor’s orientation 𝛼𝑖
in the drone’s geometric frame, and the tangential orientation 𝛽 defined as the angle between the motor’s
axis 𝑧𝑚𝑖

and the drone’s axis 𝑧𝐵 [19].

2.2 Model Linearization
The H∞ control theory primarily deals with linear systems. However, the multi-rotor system

described in Section 2.1 is inherently nonlinear, and includes interconnections between the drone’s
dynamics. Its nonlinear model, described by equations (2-5), is represented in a general nonlinear form
with states 𝑥 = [𝜉𝑇 , 𝑣𝑇 , 𝜇𝑇 ,Ω𝑇 ]𝑇 and inputs 𝑢 = [∑𝑖 𝐹

𝑇
𝐵𝑖
,
∑
𝑖 𝜏
𝑇
𝐵𝑖
]𝑇 as follows:

¤𝑥 = 𝑓 (𝑥, 𝑢) (6)

It should therefore be linearized around a given equilibrium point defined as (𝑥𝑒, 𝑢𝑒), such that 0 =

𝑓 (𝑥𝑒, 𝑢𝑒). The linearization of the function 𝑓 around this defined equilibrium can be performed using a
first-order Taylor expansion:

𝑓 (𝑥, 𝑢) ≈ 𝜕 𝑓

𝜕𝑥

����
𝑥𝑒,𝑢𝑒

(𝑥 − 𝑥𝑒) +
𝜕 𝑓

𝜕𝑢

����
𝑥𝑒,𝑢𝑒

(𝑢 − 𝑢𝑒) (7)

The linearized model is then represented in the state-space form:

𝛿 ¤𝑥 = 𝐴 𝛿𝑥 + 𝐵 𝛿𝑢 (8)

where 𝐴 ∈ R12×12, 𝐵 ∈ R12×6, 𝛿𝑥 = 𝑥 − 𝑥𝑒 and 𝛿𝑢 = 𝑢 − 𝑢𝑒. Given the scenarios considered in this
paper (see Section 5), the chosen equilibrium point corresponds to the drone hovering with zero Euler
angles, i.e. 𝜉 constant, �̄� = 0, �̄� = 0 and Ω̄ = 0. It can be assumed without loss of generality that 𝜉 = 0,
therefore 𝑥𝑒 = 0. It is then easily shown that 𝑢𝑒 = [0, 0, 𝑚𝑔, 0, 0, 0]𝑇 , which means that a vertical force
should be applied to compensate the weight. The resulting 𝐴 and 𝐵 matrices are detailed in Sections 3.2
and 3.3. Most linearized dynamics being decoupled, they can be broken down into several sub-matrices
corresponding to vertical and horizontal translations – Eqs. (13) and (14) – as well as rotations – Eq. (15).
It is finally assumed that all states of the drone can be measured using a data fusion system connected
to different sensors (IMU, GPS, barometer and motion capture system for indoor flights), leading to the
transfer function 𝐺 (𝑠) = 𝐶 (𝑠𝐼12×12 − 𝐴)−1 𝐵 + 𝐷 of the FA-Hex, where 𝐶 = 𝐼12×12 and 𝐷 = 012×6.
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3 Cascaded Controller Architecture
The proposed control architecture follows a cascaded scheme consisting of two main control loops:

an inner-loop and an outer-loop, as depicted in Fig. 2. Such an architecture is mainly used for UA systems,
and it is extended in this paper to be used in a FA framework. The outer-loop generates the desired thrust
(i.e. vertical force) 𝐹𝑧 and the lateral forces 𝐹𝑥 and 𝐹𝑦, which are sent to the control allocation, as
well as the desired Euler angles 𝜑𝑟𝑒 𝑓 and 𝜃𝑟𝑒 𝑓 , which are transferred to the inner-loop. The latter is
responsible for the stabilization of the drone and the tracking of the desired Euler angles. It generates
the desired torques 𝜏𝜑, 𝜏𝜃 , 𝜏𝜓 , which are sent to the control allocation. The latter finally maps the virtual
control inputs (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧, 𝜏𝜑, 𝜏𝜃 , 𝜏𝜓) to the actual control inputs (𝜔1, 𝜔2, . . . , 𝜔6), which correspond to
the angular speeds of the individual motors. All controllers are designed in this section using structured
H∞ synthesis, based on the linearized model of the drone presented in Section 2.2.

Guidance 

Controller

Thrust Controller

Stabilization 

Controller

Control 

Allocation 𝜓𝑟𝑒𝑓

𝑥𝑟𝑒𝑓

𝑦𝑟𝑒𝑓

𝑧𝑟𝑒𝑓

𝐹𝑥

𝐹𝑦

𝜏𝜑

𝜏𝜃

𝜏𝜓

𝐹𝑧

𝜑𝑟𝑒𝑓

𝜃𝑟𝑒𝑓

𝜔1

𝜔2

𝜔3

𝜔4

𝜔5

𝜔6

𝑥
𝑦
𝑧

𝜙
𝜃
𝜓

Outer Controller Inner Controller

(𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦)

(𝑧, 𝑣𝑧)

(𝜑, 𝜃, 𝜓, 𝑝, 𝑞, 𝑟)

Fig. 2 Cascaded Control Architecture

3.1 H∞ Control Problem Formulation
The main challenge is to find a linear controller 𝐾 (𝑠) that not only stabilizes the dynamical system

𝐺 (𝑠), but also minimizes the impact of exogenous inputs on predefined performance metrics. This
problem can be rephrased using the Linear Fractional Transformation (LFT) as depicted in Fig. 3, where
each considered performance metric is represented by a transfer between an external input 𝑤𝑖 (𝑡) and an
external output 𝑧𝑖 (𝑡). Solving the general H∞ control problem then results in finding the controller 𝐾 (𝑠)
that stabilizes the closed-loop interconnection between the generalized plant 𝑃(𝑠) (detailed in Fig. 4 for
the considered application) and 𝐾 (𝑠), and minimizes the performance index 𝛾 under the following L2
induced norm constraint:

∥𝑧(𝑡)∥2 ≤ 𝛾∥𝑤(𝑡)∥2 (9)

This is equivalent to minimizing theH∞ norm of the transfer function𝑇𝑤�𝑧 (𝑠) = F𝑙 (𝑃(𝑠), 𝐾 (𝑠)) between
𝑤 and 𝑧, where F𝑙 denotes the lower LFT and the H∞ norm of a linear system 𝐹 (𝑠) is defined in Eq. (10),
where �̄� is the maximum singular value.����𝐹 (𝑠)����∞ = sup

𝜔∈𝑅
�̄�[𝐹 ( 𝑗𝜔)] (10)

In this paper, the principle goal is to stabilize the system and ensure four objectives: minimize the
reference tracking error, avoid control input saturation, and reduce the impact of noise and disturbances on
the tracking error. To achieve these goals, the generalized plant is formulated as depicted in Fig. 4, where
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K(s)

P(s)

u ത𝑦

𝑤 z

External Inputs

Controlled Input Measured Outputs

External Outputs

Fig. 3 Generalized Plant Configuration

G(s)K(s)

We(s)
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Wd

Wn

−

+

+

+

+
+

𝒓(𝒕)

𝒏(𝒕)

𝒅(𝒕)

𝒛𝟏(𝒕)

𝒛𝟐(𝒕)

𝑷

Fig. 4 H∞ Problem Formulation Scheme

𝐺 (𝑠) = [𝐺1(𝑠), 𝐺2(𝑠)]𝑇 is the linearized model of the drone obtained in Section 2.2 with two outputs,
position and velocity, and (𝑊𝑒 (𝑠),𝑊𝑑 ,𝑊𝑛,𝑊𝑢) are four weighting templates related to the aforementioned
objectives. These templates are used to minimize the H∞ norm of four sensitivity functions:

• The sensitivity function 𝑆(𝑠) between 𝑟 (𝑡) and 𝑧1(𝑡), weighted by 𝑊𝑒 (𝑠), minimizes system
tracking errors.

• The sensitivity function 𝑆𝑑 (𝑠) between 𝑑 (𝑡) and 𝑧1(𝑡), employing the weighting template 𝑊𝑑 ,
rejects input disturbances affecting system tracking errors.

• The sensitivity function 𝑆𝑛 (𝑠) between 𝑛(𝑡) and 𝑧1(𝑡), utilizing the weighting template𝑊𝑛, atten-
uates the impact of measurement noises on system tracking errors.

• The sensitivity function 𝐾𝑆(𝑠) between 𝑟 (𝑡) and 𝑧2(𝑡), with𝑊𝑢 as the weighting template, works
on minimizing the risk of reaching actuator saturation due to variations in the reference signal.

The considered control problem is reformulated as an LFT structured problem, illustrated in Fig. 3, where
𝑤(𝑡) = [𝑟 (𝑡)𝑇 , 𝑑 (𝑡)𝑇 , 𝑛(𝑡)𝑇 ]𝑇 is the exogenous input vector, 𝑧(𝑡) = [𝑧1(𝑡)𝑇 , 𝑧2(𝑡)𝑇 ]𝑇 is the external output
vector, and �̄� = [𝑟 (𝑡) − 𝑦(𝑡), ¤𝑦]𝑇 with ¤𝑦 the derivative of the system output. The generalized plant 𝑃(𝑠),
shown in Eq. (11), includes the system’s dynamics and all the weighting templates:

𝑃(𝑠) =


𝑊𝑒 (𝑠) −𝑊𝑒 (𝑠)𝐺1(𝑠)𝑊𝑑 −𝑊𝑒(𝑠)𝑊𝑛 −𝑊𝑒 (𝑠)𝐺1(𝑠)

0 0 0 𝑊𝑢

1 −𝐺1(𝑠)𝑊𝑑 −𝑊𝑛 −𝐺1(𝑠)
0 𝐺2(𝑠)𝑊𝑑 0 𝐺2(𝑠)


(11)

Classically, an optimal controller is computed, which minimizes the value of 𝛾 such that | |𝑇𝑤�𝑧 | |∞ ≤ 𝛾.
It can be obtained by solving either Linear Matrix Inequalities (LMI) or algebraic Riccati equations, as
discussed in [20]. Nevertheless, it is important to note that full-order controllers are obtained, in the
sense that their order is equal to that of 𝑃(𝑠), which is usually high. Moreover, the following relation
always holds:

∥𝑇𝑤→𝑧 (𝑠)∥∞ ≤ 𝛾 ⇒


∥𝑇𝑟→𝑧1 (𝑠)∥∞ = ∥𝑊𝑒 (𝑠)𝑆(𝑠)∥∞ ≤ 𝛾
∥𝑇𝑑→𝑧1 (𝑠)∥∞ = ∥𝑊𝑑𝑆𝑑 (𝑠)∥∞ ≤ 𝛾
∥𝑇𝑛→𝑧1 (𝑠)∥∞ = ∥𝑊𝑛𝑆𝑛 (𝑠)∥∞ ≤ 𝛾
∥𝑇𝑟→𝑧2 (𝑠)∥∞ = ∥𝑊𝑢𝐾𝑆(𝑠)∥∞ ≤ 𝛾

(12)

but the converse if usually not true. So minimizing a single transfer function between all exogenous
inputs and outputs does not necessary lead to the lowest possible value of 𝛾, which can potentially impact
the overall system performance. These two problems are tackled by solving the 𝐻∞ control problem
using a non-smooth optimization technique, which makes it possible to freely choose the structure and
the order of the controller, and to directly minimize 𝛾 in the right-hand side of Eq. (12).
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As previously mentioned, four weighting templates are utilized here to achieve the desired perfor-
mance. They contribute to shaping the system’s response, enhancing its robustness against disturbances
and noises. They are designed as follows:

• 𝑊𝑒 is expressed as
𝑠
𝑀𝑠

+𝜔𝑏

𝑠+𝜔𝑏𝜖𝑒
, where 𝑀𝑠 specifies the robustness margin with maximum modulus gain,

𝜔𝑏 defines the system’s tracking speed and disturbance rejection capability, and 𝜖𝑒 accounts for
steady-state tracking error.

• 𝑊𝑢,𝑊𝑑 ,𝑊𝑛 are scalar gains tailored to avoid input saturation and attenuate disturbances and noises.

3.2 Outer-Loop Controller
Following the linearization of the system around the hovering equilibrium point, it appears that

the translational dynamics can be effectively decomposed into two subsystems – vertical and horizontal
motions – controlled by two distinct controllers: thrust and guidance. Let us consider the thrust controller
first. The translational motion along the 𝑧-axis is characterized by the linearized Eq. (13), showing a
Single-Input Multiple-Output (SIMO) system:[

¤𝑧
¤𝑣𝑧

]
=

[
0 1
0 0

] [
𝑧

𝑣𝑧

]
+

[
0
1
𝑚

]
𝐹𝑧 (13)

The controller is designed as depicted in Fig. 4, with two inputs (𝑧ref− 𝑧) and 𝑣𝑧, and one output 𝐹𝑧. When
addressing the problem using the classical approach, a full-order controller of order three is obtained,
since the design plant 𝑃(𝑠) is composed of the second-order model (13) and the first-order template
𝑊𝑒 (𝑠), all the other templates being constant. However, by formulating the problem with structured
constraints and solving it using a non-smooth optimization technique, the controller’s order decreases to
one, while achieving a nearly identical value of 𝛾.

Considering the guidance controller, the translational dynamics in the lateral axes (𝑥, 𝑦) are repre-
sented by Eq. (14), depicting a Multiple-Input Multiple-Output (MIMO) system:

¤𝑥
¤𝑦
¤𝑣𝑥
¤𝑣𝑦


=


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0



𝑥

𝑦

𝑣𝑥

𝑣𝑦


+


0 0 0 0
0 0 0 0
1
𝑚

0 0 −𝑔
0 1

𝑚
𝑔 0



𝐹𝑥

𝐹𝑦

𝜑

𝜃


(14)

It can be seen that there exists a coupling between the translational and rotational dynamics, i.e. between
𝑥 and 𝜃, as well as between 𝑦 and 𝜑. The designed controller has four inputs (𝑥ref − 𝑥), (𝑦ref − 𝑦), 𝑣𝑥 ,
and 𝑣𝑦, and four outputs 𝐹𝑥 , 𝐹𝑦, 𝜑ref, and 𝜃ref. Two first-order templates 𝑊𝑒 (𝑠) are used, as depicted in
Fig. 4, leading to a sixth-order controller in the full-order case (corresponding to a fourth-order model and
the two first-order templates). The controller’s order can be reduced to second-order using a structured
approach, with almost the same performance level 𝛾.

3.3 Inner-Loop Controller
The stabilization dynamics are described by Eq. (15). The inner-controller designed for these

subsystems has six inputs (𝜑ref − 𝜑), (𝜃ref − 𝜃), (𝜓ref − 𝜓), 𝑝, 𝑞, and 𝑟, and provides three outputs 𝜏𝜑,
𝜏𝜃 , and 𝜏𝜓 . It should be sufficiently faster than the outer-controller to be able to track 𝜑𝑟𝑒 𝑓 and 𝜃𝑟𝑒 𝑓 . A
first-order template𝑊𝑒 (𝑠) is used for each of the three dynamic channels, yielding a ninth-order controller
in the full-order case (corresponding to a sixth-order model and three first-order templates). A third-order
controller is obtained with the structured approach, which is again significantly less.
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¤𝜑
¤𝜃
¤𝜓
¤𝑝
¤𝑞
¤𝑟


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





𝜑

𝜃

𝜓

𝑝

𝑞

𝑟


+



0 0 0
0 0 0
0 0 0
1
𝐼𝑥𝑥

0 0
0 1

𝐼𝑦𝑦
0

0 0 1
𝐼𝑧𝑧




𝜏𝜑

𝜏𝜃

𝜏𝜓

 (15)

3.4 Control Allocation
The mapping between the virtual control inputs 𝑣 = [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧, 𝜏𝜑, 𝜏𝜃 , 𝜏𝜓]𝑇 and the actual control

inputs 𝜔 = [𝜔1, . . . , 𝜔6]𝑇 can be achieved by solving:

𝑣 = 𝑀𝜔 (16)

where 𝑀 ∈ R6×6 represents the control effectiveness matrix. In general, the allocation matrix 𝑀 is
closely related to the specific geometric configuration of the drone. It is calculated by projecting the
forces and torques generated by each motor onto the relevant axes of the drone, see [19] for specific
information about the allocation matrix for this type of drone.

Various algebraic methods can be used to solve Eq. (16). In this application, 𝑀 is invertible,
which simplifies the process to some extent. But although this inversion approach is generally effective,
it is crucial to account for situations where the controller might request values beyond the attainable
moment set (AMS) and attainable force set (AFS) of the drone, potentially leading to actuator saturation.
Prioritizing the virtual inputs along the drone’s axes can help mitigate overall actuator saturation by
ensuring that virtual inputs included in the AMS and AFS are produced. This is important, since all
moments and forces within the AMS and AFS can be realized without reaching actuator saturation. But
the key with control allocation is then to guarantee that such a solution is actually obtained. Classical
methods, like weighted pseudo-inverse, might not always guarantee this. More intricate techniques
have therefore been developed, such as weighted-optimization based solutions (Weighted Least Square
Method) [21]. The control architecture used in this work employs a Weighted-Least Square optimization
problem formulation, as depicted by [22]. The general Eq. (16) is solved subject to the constraints
𝜔min ≤ 𝜔𝑖 ≤ 𝜔max, 𝑖 = 1, . . . , 6.

4 Numerical Validation
The numerical validation of the drone model and the designed controllers is conducted using MAT-

LAB, taking into account the numerical values outlined in Table 1. The parameters 𝑙, 𝑘𝑡 and 𝑘𝑞 refer to
the length between each motor and the center of gravity of the drone, and to the coefficients of the thrust
and drag exerted by each motor, see [19] for complete equations. 𝐼𝑥𝑥 and 𝐼𝑦𝑦 are not equal due to the
chosen principle axes in the body frame, as shown in Fig. 1.

𝑚 = 0.6656 kg 𝑙 = 0.15 m 𝑔 = 9.81 m/s2

𝑘𝑡 = 3.4 × 10−5 N.s2 𝑘𝑞 = 3.4 × 10−6 N.m.s2 𝐼𝑥𝑥 = 0.0411 kg.m2

𝐼𝑦𝑦 = 0.0478 kg.m2 𝐼𝑧𝑧 = 0.0599 kg.m2 𝜔𝑚𝑎𝑥 = 600 rad/s

Table 1 Drone Simulation Parameters

The templates used for H∞ control design are detailed in Table 2. It is worth noting that the yaw
controller, responsible for managing the heading (𝜓) of the vehicle, is designed separately from the
stabilization controller for roll and pitch (𝜑, 𝜃). Furthermore, the guidance controller utilizes two control
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input templates 𝑊𝑢1 and 𝑊𝑢2 , and two disturbance templates 𝑊𝑑1 and 𝑊𝑑2 , since each dynamic contains
two inputs, (𝐹𝑥 , 𝜃) and (𝐹𝑦, 𝜙) for the translation in 𝑥 and 𝑦 axes respectively.

Thrust Controller 𝑊𝑒 (𝑠) =
𝑠

1.7+0.3𝜋
𝑠+0.00015𝜋 𝑊𝑢 =

2
25 𝑊𝑑 = 1 𝑊𝑛 = 0.5

Guidance Controller 𝑊𝑒 (𝑠) =
𝑠

1.8+0.2𝜋
𝑠+0.0002𝜋 𝑊𝑢1 =

2
12 ,𝑊𝑢2 =

1
0.3 𝑊𝑑1 = 5,𝑊𝑑2 = 0.1 𝑊𝑛 = 0.6

Stabilization Controller
(Roll and Pitch)

𝑊𝑒 (𝑠) =
𝑠
2+0.6𝜋
𝑠+0.006𝜋 𝑊𝑢 = 1 𝑊𝑑 = 0.1 𝑊𝑛 = 0.1

Stabilization Controller
(Yaw)

𝑊𝑒 (𝑠) =
𝑠

1.8+0.16𝜋
𝑠+0.00016𝜋 𝑊𝑢 =

0.1
0.2 𝑊𝑑 = 0.5 𝑊𝑛 = 0.1

Table 2 Templates used to Design the H∞ Controllers

4.1 Linearized Model Validation
Before proceeding with the design of linear robust controllers and their validation on the nonlinear

drone model, it is crucial to ensure that the linearized model of Section 2.2 accurately represents the
initial nonlinear system of Section 2.1 near the equilibrium point. To confirm this, an open-loop test is
conducted by applying a step input [𝐹𝑥 , 𝐹𝑦, 𝐹𝑧, 𝜏𝜑, 𝜏𝜃 , 𝜏𝜓]𝑇 = [2,−2,−11.523, 0.01,−0.01, 0.005]𝑇 . The
results are presented in Fig. 5 and Fig. 6 and confirm that the linearized system effectively describes the
nonlinear model in the neighborhood of the specified equilibrium point. However, a significant deviation,
compared to other dynamics, is observed in the yaw ouput almost 1 second after the step input is applied.
It is due to the assumption used in the linearized model, where the angular rate in the body frame is
considered equal to the Euler rate. From Eq. (1), it is evident that the yaw term is highly coupled with
both 𝜑 and 𝜃, resulting in greater nonlinearities. These can be observed when moving further from the
neighborhood of the equilibrium point.
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Fig. 5 Comparison of Euler Angles in Linearized
and Nonlinear Models with Identical Inputs
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Fig. 6 Comparison of Drone’s Position in Linearized
and Nonlinear Models with Identical Inputs

4.2 H∞ Design Validation and Sensitivity Analysis
Understanding the system’s physical limitations is a crucial step to design and tune the controllers. A

physical wrench analysis, as illustrated in Fig. 7 and 8, first enables the fine-tuning of control inputs and
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tracking templates (𝑊𝑢 and𝑊𝑒) based on the system’s physical constraints. [9] indeed classifies FA-Hex
drones as lateral bounded vehicles, where the lateral forces are restricted compared to the vertical forces.
This limitation arises from the constant tilting angle of each motor, resulting in a limited projected force.

Fig. 7 Attainable Force Set of the
Simulated FA-Hex

Fig. 8 Attainable Moment Set of the
Simulated FA-Hex

Then, as detailed in Section 3, the controllers are individually designed for each channel. Inter-
estingly, the methodology applied in designing all these controllers is identical. Hence, we present the
sensitivity analysis for the thrust controller only, which serves as a representative example for all the
other dynamics, and compare the reduced-order controller with its full-order counterpart. The sensitivity
analysis focuses on predefined performance metrics, as shown in Fig. 9.
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Fig. 9 Thrust Control Sensitivity Functions
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It reveals that the closed-loop system satisfies the four requirements defined in Section 3.1. The sensitivity
function related to tracking error (top left) assesses the system’s tracking speed (-3 dB,𝜔 = 1.25 rad/sec).
The system’s ability to reject disturbances at low frequencies (bottom left) and attenuate noise at high
frequencies (bottom right) are also guaranteed. And the control sensitivity plot (top right) demonstrates
that the system can achieve the desired performance while limiting the risk of reaching actuator saturation.
The sensitivity analysis also indicates that the reduction in the controller’s order has no impact on the
performance of the closed-loop system, since all sensitivity functions exhibit the same behavior in the
full-order and reduced-order cases.

Finally, it is worth mentioning that, following the controller design, an analysis of the damping ratio
and gain/phase margins is conducted for each subsystem. This step is crucial for ensuring strong stability
margins and preventing system oscillations. Satisfactory values are obtained, which are not reported here
for the sake of brevity.

4.3 Robustness Study via 𝜇-analysis
The control law is typically designed on the basis of an identified physical model. But in practice,

the system behavior may vary due to slight differences in its physical parameters. The variations
often come from inaccurate measurements, modeling assumptions, or changes during operation, such as
payload alterations or aerodynamic effects. To ensure that the controller remains effective despite these
uncertainties, 𝜇-analysis is applied [23, 24]. First, the drone’s actuators neglected during the design are
incorporated and modeled as first-order transfer functions 𝐴(𝑠) with time constant 𝜏. Then, 10 parametric
uncertainties 𝛿1, . . . , 𝛿10 are introduced on the physical parameters [𝑚, 𝐼𝑥𝑥 , 𝐼𝑦𝑦, 𝐼𝑧𝑧] and the time constant
of each actuator, as presented e.g. in Fig. 11 for the roll dynamics. All of them are normalized as follows:

𝑌𝑖 = (1 + 𝐾𝑚𝑖
𝛿𝑖)𝑌0

𝑖 (17)

where 𝑌0
𝑖

denotes the nominal value of the 𝑖th uncertain parameter 𝑌𝑖, and 𝐾𝑚𝑖
is a scaling factor used to

normalize the uncertainty 𝛿𝑖, which therefore belongs to [−1, 1]. Up to 20% uncertainty is considered for
each of the 10 uncertain parameters, i.e. 𝐾𝑚𝑖

= 0.2. The problem is reformulated using LFT modeling
using the Matlab GSS Library [25], as shown in Fig. 10, where 𝑁 (𝑠) is the nominal stable closed-loop
system, and Δ = diag(𝛿1, ..., 𝛿10) is a diagonal matrix with gathers all uncertainties.
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Fig. 10 LFT Representation with Structured
Model Uncertainties

1

𝐼𝑥𝑥−

+
−

+

𝟏

𝒔

𝟏

𝒔

1

𝜏

𝟏

𝒔

−

+

𝒚𝚫𝟓𝒖𝚫𝟓 𝛿5

𝑮(𝒔)

𝛿2𝐾𝑚5

𝑨(𝒔)

𝐾𝑚2

𝑨𝟎 𝒔 =
𝟏

𝝉𝒔 + 𝟏
𝑮𝟎 𝒔 =

𝟏

𝑰𝒙𝒙

𝟏

𝒔𝟐

𝒖𝚫𝟐 𝒚𝚫𝟐

u y

Fig. 11 Linearized Roll Dynamics with the Struc-
tured Modeled Uncertainties.

All nominal closed-loop poles have a real part lower than -0.65 and a damping ratio higher than
0.7. The first objective is to check that they do not become too slow or badly damped in the presence of
uncertainties, i.e. that their real part and damping ratio remain below -0.6 and above 0.55 respectively.
This modal performance analysis can be carried out using the Matlab SMAC Library [26], by computing
bounds on the structured singular value 𝜇 along the boundary of a sector instead of the imaginary axis, as
shown in Fig. 2 of [27]. An upper bound of 0.96 is obtained, which corresponds to a robustness margin
of 1.04 > 1. The uncertainties being normalized, it can be concluded that the closed-loop poles remain
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sufficiently fast and well-damped when all uncertain parameters vary by ±1.04× 20% = ±20.8% around
their nominal values, which is satisfactory.

The second objective is to evaluate the performance degradation under these uncertainties. Due
to space limitations, only disturbance rejection for the thrust control loop is analyzed here, but similar
results are obtained for other specifications and control loops. An upper bound on the worst-case H∞
norm is computed for the transfer between the input disturbance 𝑑 and the tracking error 𝑧1, using again
the Matlab SMAC Library. A value of 0.0189 is obtained, which is much lower than 1 and only slightly
larger than the nominal value of 0.0180 that can be read on the bottom left plot of Fig. 9. Performance
degradation is therefore marginal for uncertainties of ±20%.

5 Simulation Results
5.1 Hovering Scenario With Cable Suspended Pendulum

Hovering with a cable-suspended pendulum can be essential for various applications such as in-
spections or delivering packages. The objective is to ensure the drone’s stability during hovering and
its ability to mitigate disturbances due to oscillations of the load. To simulate the complete system,
a cable-suspended pendulum is incorporated into the drone’s equations using the Lagrangian’s Euler
modeling approach. It offers a coherent method to model the payload using energy equations [28, 29].
Results are shown in Fig. 12 and 13. The payload mass is 𝑚𝑐 = 0.05 kg. It is assumed that the drone
hovers while releasing the cable, whose length varies between 0.1 m ≤ 𝐿𝑐𝑎𝑏𝑙𝑒 ≤ 3 m.

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

Fig. 12 Position of the Drone, while Hovering in
the Presence of Disturbances (Circled in Black)
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Fig. 13 Hovering Drone Euler Angle with Payload

The worst-case configuration is assumed, where the oscillation frequency 𝑓 = 1
2𝜋

√︃
𝑔

𝐿𝑐𝑎𝑏𝑙𝑒
of the cable

suspended pendulum is the highest. Step inputs are introduced in the lateral dynamics and load’s angle
at various sampling times to assess the controller’s robustness in handling these dynamics. The results
illustrate the controller’s capability to reject disturbances and stabilize the drone. However, it is evident
that the drone needs to adjust its banking angle to prevent force saturation and enhance disturbance
rejection, aligning with the controller’s design objectives. In particular, the controller was designed
based only on the drone’s mass, and its ability to accommodate the additional payload mass underscores
its robustness in term of handling mass uncertainties.
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5.2 Flying Through Predefined Waypoints
Navigating through predefined waypoints is a common application for FA-Hex drones. The waypoints

can be either generated by a higher-level controller or sent to the drone from an external monitoring station.
In the considered scenario, the drone flies through different waypoints while adjusting its altitude. The
simulation includes external disturbances affecting the torques and the forces on different axes, along with
measurement noises. As seen in Fig. 14, the controller demonstrates its ability to stabilize the system
with good performance. Position tracking is excellent and noises are significantly attenuated. Moreover,
disturbances are rejected efficiently, as can be seen in the black circles.
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Fig. 14 Drone Position Tracking in the Presence
of Disturbances (Circled in Black)
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Fig. 15 Euler Angles Tracking and Drone Behavior
in the Presence of Disturbances

Fig. 15 also illustrates how the guidance controller generates Euler angle references that request the drone
to bank. During the periods when disturbances are injected, the drone’s roll and pitch angles exhibit
variations that contribute to its disturbance rejection capabilities. This observation confirms that the
drone can effectively counteract these disturbances using input forces in collaboration with adjusting its
banking angle. It is important to highlight that the saturation value for the controller’s output can be
adjusted to ensure that the drone maintains zero Euler angles when countering disturbances. However,
this adjustment should always consider the physical constraints of the system to effectively manage and
reject these disturbances.

6 Conclusion
AnH∞-based robust method is used in this paper to control a FA-Hex. A cascaded loop architecture is

proposed, which consists of stabilizing, guidance, and thrust controllers. Instead of using the classical full-
order approach, reduced-order H∞ controllers are designed using a non-smooth optimization technique.
A control law of order six only is obtained, which allows to control the 6DoF of the drone. It is validated
using two main scenarios including disturbances and measurement noises, and satisfactory results are
obtained. Moreover, adaptation to OA multi-rotor systems can be done easily by changing the control
effectiveness matrix. Future work will be dedicated to the experimental validation of the proposed
control architecture on a real FA-Hex platform. A comparison with previously existing architectures is
also planned, so as to better highlight the main performance improvements achieved by the proposed
reduced-order H∞ controllers.
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