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Abstract

Security checkpoints are an important matter of concern for airport operators. When function-
ing effectively, they not only maintain the airport overall safety at a high level, but also provide
passengers with a positive airport experience. The perceived quality of service at the airport
greatly depends on the time spent by passengers at the security lines. To ensure optimal safety
performance, screening lines have a limited capacity of passengers they can handle. Thus, to pre-
vent extended waiting times for passengers, airports can only adjust the number of simultaneously
open check lines. The airport operator must establish optimal schedules for opening security check-
points and allocating necessary staff. Building upon a prior study focused on predicting the flow of
passengers through the security checkpoints, this paper explores simulated annealing algorithm in
conjunction with a queue simulator and an integer programming algorithm to establish the most
effective opening schedule for security checkpoints based on the prediction given by this previous
study. The presented approach also determines the best allocation for dedicated staff based on
the forecasted passenger flow. This approach limits the number of open security lines and ensures
a waiting time below the maximum limit of 45 minutes set by the airport. It also complies with
the work regulations that security agents are subject to.

1 Introduction

In the wake of the Covid crisis, global air traffic is on the up again [1]. With air traffic back at full
capacity, large numbers of passengers are returning to airports. Airport operators are once again
having to adapt their procedures to handle the influx of travelers. The quality of service perceived by
passengers is directly correlated with the time spent in queues at key points around the airport. One of
the major key points that the airport operator can influence are the security checkpoints. In fact, the
airport decides how many security agents to hire and how many search lines to open for each security
checkpoint throughout the day. In the case of Paris Charles de Gaulle airport, decisions on security
agent requirements and scheduling are taken 45 days in advance. Minor adjustments can be made
to the schedule on D-7 and D-1, but these are limited and very costly. At Paris Charles de Gaulle
airport (CDG), and for the Aéroport de Paris (ADP) group in general, security agents represent a
major expense. For the ADP group, according to our interviews with their security teams, total yearly
expenditure on security agents is around $120 million. Therefore, allocating the optimal number of
security agents is necessary to guarantee low waiting times at security checkpoints for passengers, while
minimizing the number of security agents required. This paper investigates the use of guided simulated
annealing to create an optimal opening schedule of the security checkpoints of Paris Charles de Gaulle
airport (Figure 1) based on the passenger flow prediction determined with our previous method [2]. In
addition we propose an optimal staff allocation on the opening schedule determined through annealing.
Section 2 presents a brief state of the art, Section 3 summarizes how a security checkpoint is modeled
and presents an implementation of a dedicated simulated annealing algorithm. Section 4 presents the
method used to allocate the security agents to the checkpoints and Section 5 concludes and suggests
future improvements.
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Figure 1: Overview of Paris CDG Airport. (A full detailed map of the airport including the different
security checkpoints can be found in [3])

2 State of the Art

2.1 Modeling and simulation of security checkpoints

Security checkpoints play a key role in ensuring an airport functions efficiently. The effective func-
tioning of security checkpoints is vital to provide adequate security measures while also ensuring quick
processing of passengers [4]. To manage the efficiency and safety of passengers passing through a
security checkpoint, it is necessary to construct a model of the checkpoint. In 2011 Leone and Liu
proposed a model for the screening of passengers in the United States [5]. In their work, they modeled
the time spent on each step like X-Ray scan, manual searching, explosive trace detectors etc. They
measured the performance of the security checkpoint using passenger waiting time as a metric. Their
objective was to reduce this time to ten minutes or less. The proposed model tends to maximize the
”primary inspection” (X-Ray etc) which are faster and reduce the number of secondary inspection (ex-
plosive detector, manual search) which take longer time, without reducing the overall level of security.
As shown in [5], the overall screening procedure at the security checkpoints in airport can be split
into several elements. The checkpoint’s operation can be altered to enhance performance. Objective
evaluations are necessary since security screening is different among passengers. Business travelers and
large families require different levels of attention and services at checkpoint. It is possible to imple-
ment different security policies for distinct passenger types if the airport’s configuration allows for it.
Simulations done by Mota et al. [6] indicate that the operational efficiency of Mexico City airport
can be improved by testing a passenger categorization model. Moreover the structure of a checkpoint
affects its processing capacity. Security checkpoints at airports have varying queue layouts. Li et al. [7]
describe and analyze the different queue layouts and their effects on checkpoint capacity. Their find-
ings enable the identification of the most effective checkpoint configurations for a given airport. The
large number of components of a security checkpoint makes its analysis and modeling complex. This
problem of simulating the behavior of a security checkpoint can be addressed using queuing theory.
Zhang and al. [8] published a method based on this principle, for which, authors modeled queues of
passengers between the US-Canadian border. They created a two stage queuing model, modeling the
primary inspection and the secondary inspections as in [5]. They calculated the optimal proportion of
secondary inspections needed to get an optimal waiting time for passengers and a checkpoint compliant
with the security requirement. However, the limitations of this kind of queuing model have been shown
by Stollez on different airport queues [9]. He showed that, given the very specific profile of demand in
airports, standard queuing models quickly reach limitations. These limitations were also mentioned by
Zhang et al [8], who indicated that if the distribution of passenger flow differs too much from a Poisson
distribution, standard queuing models became less efficient. To go beyond the estimates that may be
obtained using standard, but restricted, queueing models and associated ”closed-form” results, it is
profitable to create a full simulation of a security checkpoint to perform on it any type of optimization
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work needed. Perez and al. [10] used a simulation approach to optimize the resources allocation at the
different security checkpoints. In their paper the authors indicates that one of the major issues is the
uncertainties of the passenger flow at security checkpoints. In the absence of a satisfactory passenger
flow prediction model, they incorporate uncertainty directly into their simulation. In that way all the
decisions about staff allocation are made taking into account the uncertainties in the passenger arrival
model. Thanks to their method, authors achieved a great reduction of the passenger waiting time
during screening compared to benchmark scenarios. In fact, a simple change in one of the components
of a checkpoint can result in a very different operation of the checkpoint. To address such a change,
Wilson and al. created the Security Checkpoint Optimizer (SCO) [11]. In their paper, the authors
present a methodology capable of simulating a change in the screening process at a security checkpoint.
With this method, airport operators can optimize their process without the need for testing it each
time a change is introduced. To model the complete checkpoint, Ruiz and Cheu [12] build a model of
each component, allowing the simulator to be adapted to any configuration. With their approach, they
can simulate diverse scenarios and determine the performance of each checkpoint configuration such as
the size of the queue or the mean waiting time. Control and estimation of queue size can be achieved
iteratively through methods that include Markov chain models. These processes also take into account
the incorporation of probabilities associated with the number of passengers processed over time [13].
Kierzkowski and Kisiel [14] developed a security control system model for Wroclaw Airport, determin-
ing key parameters for passengers. Their algorithm computes the average time spent by passengers
at the checkpoint and simulates security agents requirements to limit queue size. Depending on the
specific criteria (such as queue size or queue time), their method can be utilized to establish varying
security agent schedules. They implemented their model into the management system of the security
checkpoints at the airport and, according to their computational model, they were able to increase
security checkpoint capacity from 750 passengers per hour to 1025 passengers per hour.

2.2 Security Staff Allocation

Once the checkpoint’s operation has been properly modeled, the necessary staff must be identified
to ensure its efficient operation. The allocation of security personnel to various checkpoints can be
viewed as an optimization problem. To achieve cost-effectiveness, the airport management aims at
minimizing its personnel. Simultaneously, the airport aims to assign adequate personnel to manage
passenger traffic while ensuring that the queue size and waiting time remain reasonable and security
is warranted. To efficiently distribute staff across checkpoints, accurate passenger flow predictions
are necessary. Hanumantha et al. [15] utilized flight schedules and a learning model to enhance the
estimate provided by the schedule. A mixed integer programming model was employed by the authors
to determine the optimal configuration for operating security checkpoints and assigning security agents.
Linear Integer optimization models are attractive because they can, in theory, run the optimization
process to optimality through branch-and-bound methods, for example. However, their magnitude and
complexity rise quickly with the number of variables. If problems become excessively large, alternate
methods may be preferred. Metaheuristics can generate high-quality solutions for large problems in
a reasonable amount of time. Valeva et al. [16] explain how metaheuristics are utilized to optimize
workforce planning for a manufacturer. Their model enables the fast computation of quality outcomes,
even for large instances that would be unmanageable with an ILP model even with the best solver
available. More recently, Scozzaro and al. propose a method to optimize the staff allocation at security
checkpoints in case of disruptions [17]. In this article, the authors consider the situation of an access
mode disruption at Paris Charles de Gaulle airport and describe an optimization method to re-allocate
the staff at the security checkpoints. Their numerical models indicate that, in case of an access mode
disruption, re-allocating the staff using their approach can reduce the passenger wait time by more
than 70%.

3 Security checkpoints schedule

This section presents the modeling of the operation of a security checkpoint at Paris Charles de Gaulle
airport. It then presents the method used to generate security checkpoint schedules, the associated
results and a comparison with the method used at the airport.
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3.1 Model

At Paris Charles de Gaulle Airport, each security checkpoint is divided into screening lines, whose
number depend on the size of the corresponding boarding areas. The airport operator is free to
determine the desired number of lines to open for each checkpoint. The number of lines opened
simultaneously during a checkpoint is dependent of the checkpoint’s size and the availability of security
agents at that time. At Paris CDG airport, the number of security agents to be hired for a particular
day is determined 45 days in advance. This constraint is managed by forecasting passenger flow
utilizing historical data. The airport currently employs statistical analyses based on their past years
of operation. Several models have been developed to forecast passenger flow. Monmousseau et al.
[18] introduced a method that employs recurrent neural networks. The network consists of 200 Long
Short Term Memory (LSTM) cells, which are designed specifically for handling time series predictions.
However, one drawback of these networks is the large amount of data required for training and the
high computational power needed. In this paper, we use the predictions generated by a dense neural
network model that we proposed to address this particular issue [2]. One of the primary advantages of
the straightforward architecture of this compact, dense neural network is that it requires only minimal
computational power to train effectively. This low computational power enables experimentation with
multiple input and output scenarios to align with the requirements of the staff allocation problem.
Using this network, it is possible to adjust the time step of the time series prediction to match the
precision required for simulating the security checkpoint. To model passenger flow behavior at the
security checkpoint, a straightforward model has been implemented. The checkpoint is modeled as a
First in First Out (FIFO) queuing model and fed with a general FIFO queue. This model, adapted
from the generic queuing model of Neufville et al. [19], is illustrated by Figure 2. Passengers arrive
at the security checkpoint and join the general queue. They are then directed to available screening
positions and wait to be processed by agents (Queue in). The next step, ”Process,” is the activity of
agents screening the passengers. At present, processing is represented by a constant flow, or by the
number of passengers that can be handled per unit of time. According to CDG operators, one screening
line can process up to 120 passengers per hour. For future studies, modifications could be made to the
”Process” section to account for the potentially more complex behavior of the screening process such as
differentiating processing time according to passenger type, or adding uncertainty to processing time,
or introducing probabilities of secondary inspections [5]. The global structure of the checkpoint model
can be extended to accommodate more complex airport checkpoint configurations, including passenger
differentiation approaches like those proposed by Mota et al. [6], priority or dedicated queues for first
and business class passengers, and dedicated queues for connecting or delayed passengers.

Figure 2: Model of a security checkpoint at Paris CDG airport.

The operator’s decision process can be easily modeled with this security checkpoint model. At
the strategic level, the operator determines the number of lines to be opened simultaneously at each
security checkpoint during each hour of the day and each day of the week. Reassigning security agents
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every 15, 10, or 5 minutes, for example, is not feasible. Asking an agent to change positions every
10 minutes is not only an uncomfortable working environment, but the travel time between security
checkpoints makes this type of reassignment impossible. For each security checkpoint, the schedule
for opening lines can be modeled as a list of 24 positive integers, with each integer representing the
number of screening lines to be opened during every hour of the day. But to account for all passengers
going through security on a given day a list of 24 integers is not enough. In fact, the airport’s data
indicates that some passengers, due to very early or very late flight hours, may go through the security
checkpoint on the day before or after their flight in case it is delayed. Although most passengers arrive
two hours before their flight, some arrive as early as six hours ahead or three hours late (Figure 3).
Our list of 24 integers must therefore be extended to include passengers arriving between 6 p.m. on
the previous day and 3 a.m. on the following day, which increases its size to 33 positive integers.
Once the problem is modeled, assuming that no more than 10 screening lines are available at each
checkpoint, there are 1033 staffing configurations. While using a very efficient FIFO simulator, the
large number of possible lists prevents us from employing an exhaustive approach (Brut Force) to find
the best configuration. To efficiently explore this large state space, an efficient approach can be found
in metaheuristics. Metaheuristics yield favorable results on combinatorial and nonlinear optimization
problems while maintaining a reasonable computational time, even on large-scale instances [20][21]. In
the following, we discuss the simulated annealing method, which we will use because of its successful
implementation to solve many optimization problems. [22][23][24].

Figure 3: Percentage of passenger arriving at security checkpoint in function of the time before the
departure time of their flight.

3.2 Simulated Annealing

Simulated annealing is an optimization method that draws inspiration from the process used in metal-
lurgy, where a substance is heated and then gradually cooled to reduce its internal energy and increase
its strength. (Figure 4).

This industrial process was transposed into an optimization technique, enabling the identification
of extrema for a given function. Kirkpatrick et al. [26] completed this transposition in 1983. The
analogy with the physical annealing method requires the minimized function to represent the material’s
internal energy (E) at a particular temperature (T ). The methodology initiates the process from a
starting point within the system and makes slight modifications to produce a new state. Once the
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Figure 4: Diagram of a material reaching a state of minimum energy (crystalline) by slow cooling [25].

state improves the criterion, it is accepted and becomes the new current state of the system. Simulated
annealing is valuable as it permits the acceptance of points in a space that deteriorate the criterion
with a set probability. Metropolis, et al. [27] described the probability of accepting a deteriorated
state (Equation 1). Given an initial state i of energy Ei and a new state j of energy Ej , if Ej ≤ Ei

then j improves the criterion and it is accepted. Otherwise j is accepted with probability

P (j accepted) = e
(
Ei−Ej

kbT
)

(1)

Where T is the temperature of the system in Kelvin and kb is Boltzmann’s constant (kb = 1.38×
10−23J.K−1).

Accepting a state that degrades the criterion can prevent the optimization process to be trapped
in a local minimum and allows for exploration of a larger area of the state space. The probability
of accepting such a state increases with higher temperature, similar to how higher temperature leads
to increased atom mobility in metals. And just like annealed metal, the algorithm’s temperature
T will decrease with every iteration, resulting in lower and lower acceptance probabilities. At each
temperature stage, numerous neighboring operations and evaluations may be conducted. The greater
the number of operations, the more extensive the exploration of the state space. Nevertheless, the
higher the number, the longer the algorithm’s execution time. This number of evaluations at each
temperature step will be denoted as K. Under these conditions, simulated annealing is asymptotically
optimal, i.e. with sufficient iteration successive solutions converge to the optimal solution [28].

3.2.1 Procedure

We are considering a state space S, an initial state sc ∈ S, and a function f defined on S that have
to be minimized. We are also considering a neighborhood function N which associates N(s) with
a neighbor in S of the element s. In addition, we are considering the cooling parameter λ and the
number of states explored at each temperature step K.

Under these conditions the simulated annealing cooling procedure proceeds as in Algorithm 1 [25].
The ending condition of this method is a low enough temperature to stop the annealing process when
reached by the cooling process. This final temperature is denoted Tf .

3.2.2 Definition of the Annealing Parameters

As described in Section 3.1, each element of the state space for security checkpoints consists of a list of
33 integers ranging from 0 to the maximum number of simultaneous screening lines available (assumed
to be 10).

The neighborhood operator N is defined in Algorithm 2 and displayed on Figure 5:
Similarly, the cooling process is controlled by a geometric law with the parameter λ. This parameter

can be adjusted between 0 and 1, with a smaller value of λ resulting in a faster decrease in temperature,
leading to a quicker program termination. On the other hand, if it approaches 1, the program explores
more states, leading to an increase in both execution time and the quality of the provided solution.
By recording the final annealing temperature chosen by the user as Tf , we can calculate the total
number of states explored during the process. This number is represented as ntot. According to the
geometric law of cooling :

Tn+1 = λTn (2)
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Algorithm 1 Cooling Procedure of the Simulated Annealing

Require: sc, T0, Tf , N , f , λ, K
while T > Tf do

for k ← 1 to K do
s′ ← N(sc)
if f(s′) < f(sc) then

sc ← s′

else
r ← random(0, 1)

if e(
f(sc)−f(s′)

T ) ≥ r then
sc ← s′

end if
end if

end for
T ← λT

end while
return sc

Algorithm 2 Neighborhood Operator

Require: s, MaxLine
index← Random integer ∈ [0, length(s)]
s[index]← Random integer ∈ [0,MaxLine]
return s

Figure 5: Neighborhood Operator application example.
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With T0 the initial temperature, Tf the final temperature and nT the total number of temperature
steps :

Tf = λnT T0 (3)

And the total number of states explored is then given by :

ntot =
K(ln(Tf )− ln(T0))

ln(λ)
(4)

Knowing the machine’s performance during program execution, one can choose the parameters K
and λ to explore the maximum number of states while maintaining a reasonable execution time. The
final temperature is set for testing at Tf = T0

10000 . With these parameters, and keeping an execution
time of around 30 minutes, we end up with :

• λ = 0.95

• K = 500

• ntot =
500(ln(

T0
10000 )−ln(T0))

ln(0.95) ≈ 89781

The initial temperature T0 should be sufficiently high to allow for broad state space exploration
during annealing. Nevertheless, as the initial temperature increases, so does the final temperature. Ac-
ceptance of states that violate the criterion may occur at a high final temperature when it is no longer
needed. To identify the initial temperature, a deliberately low starting temperature should gradually
increase until a sufficiently high state acceptance rate is attained. This procedure for ”heating” is
outlined in Algorithm 3 and illustrated in Figure 6

Algorithm 3 Heating process

Require: s, T , N , f , K, AcceptRate
r ← 0
while r < AcceptRate do

count← 0
for k ← 1 to K do

s′ ← N(s)
if f(s′) < f(s) then

count← count+ 1
else

if e(
f(s)−f(s′)

T ) ≥ 0.5 then
r ← r + 1

end if
end if

end for
r ← count

K
T ← 1.5× T

end while
return T

The objective function utilized in annealing aims to simulate solution quality from the perspective
of airport operations. A quality solution from the operator’s standpoint involves a schedule that
reduces passenger wait times while also limiting the number of simultaneously opened lines. The
maximum time that passengers spend in the queue can be determined using the First in First Out
(FIFO) simulator, as described in section 3.1. The objective function, which represents the quality of
the solution, can be calculated in a naive manner as

f(s) =
∑
i∈s

i+ FIFO(s) (5)

where s denotes the state proposed by the annealing algorithm, in our case a list of 33 integers described
in Section 3.1. i represents the number of simultaneously opened lines at a time step of s, and FIFO(s)

8



Figure 6: Diagram of the simulated annealing heating procedure

stands for the maximum time that passengers spend in the security checkpoint queue, calculated by
the simulator using an opening schedule described by s. However, the current model assigns equal
weight to both an open security line and an extra minute of passenger waiting time, but assigning
different weights to each part of the objective function is possible. Subsequent discussions with airport
operators revealed a better model that emphasizes passengers’ waiting times within a specified range
of acceptability, rather than solely minimizing them. The maximum allowable waiting time for a
passenger is a parameter determined by the airport based on various factors. These factors include
the average connecting time, airport layout, and number of passengers. For modeling purposes, we
will refer to this maximum allowable waiting time as Tmax. Taking into account this new parameter,
the objective function for the annealing process is

f(s) =
∑
i∈s

i+ αmax(0, F IFO(s)− Tmax). (6)

An extra parameter, α, has been incorporated into the objective function. This parameter allows
adjustment for penalizing overtime Tmax to a greater or lesser extent. For the remainder of the study,
the value of the α parameter will be set to 100. In this form, the function enables the annealing
process to initially decrease the waiting time below the Tmax threshold before restricting the number
of simultaneously opened security lines.
To begin the simulated annealing process, the initial state sc must be defined for the simulated an-
nealing algorithm to generate neighboring states and continue the optimization process. While initial
states are typically generated randomly, a different approach can yield better results. Each security
checkpoint has 1033 possible states, but with the parameters specified in Section 3.2.2, equation 4
gives us that only ntot ≈ 89781 states will be explored. To limit the exploration of trivially bad states
and ultimately obtain a better-quality solution, it is advisable to start the simulated annealing from
a good starting point rather than a randomly generated one. To be of interest, however, the starting
point needs to be determined very quickly. A greedy heuristic has been used to efficiently determine
the starting point for the annealing. The heuristic starts by opening all security lines at every time
step, and then gradually closes them until the Tmax limit is exceeded. Algorithm 4 provides a detailed
description of this heuristic.

3.3 Results

For the numerical experiments, the simulated annealing algorithm was executed based on the parame-
ters described in the preceding section. The chosen day is derived from our prior work’s neural network
test dataset [2]. The initial point of the annealing process achieved through Algorithm 4 is depicted in
Figure 7. As simulated annealing is a non-deterministic algorithm, the outcomes may vary from one
execution to another. Table 1 presents the results acquired from ten trials compared with the greedy
heuristic, which, being deterministic, gives the same result from one run to the next. Table 2 displays
the mean and standard deviation of results and execution time. The schedule for opening the security
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Algorithm 4 Greedy Heuristic for Annealing Start Point Creation

Require: MaxLine, MaxTimeStep, FIFO, Tmax

s← []
for k ← 1 to MaxTimeStep do

s+ = MaxLine
end for
s′ ← s
while FIFO(s′) < Tmax do

index← IndexMax(s′)
s′[index]← s′[index]− 1

end while
s′[index]← s′[index] + 1
s← s′

return s

Figure 7: Example of Start Schedule for the Annealing created with the Greedy Heuristic.

checkpoint, obtained through simulated annealing, is displayed in Figure 8. The open lines at a given
time step are shown as green boxes, the others are shown as red boxes. Each box also contains the
number of lines to be open at that time step.

3.3.1 Creation of security line opening schedules

Figure 8: Example of Security Checkpoint Opening Schedule Created via Simulated Annealing.

Table 2 indicates that the standard deviations produced by simulated annealing are consistently
low. This observation suggests that the optima obtained via simulated annealing are consistent across
experiments. Additionally, this method enables a quick determination of the number of lines that need
to be opened at various airport security checkpoints. Moreover, we observe that enforcing a strong
penalty for exceeding Tmax in the cost function has allowed us to uphold the corresponding constraint
in a systematic manner. Overall, we believe that simulated annealing produces a functional timetable
for the security checkpoints at the airport. This timetable can subsequently serve as a constraint in
our study to establish specific schedules for each security team.

3.3.2 Comparison of simulated annealing results with airport operational planning prac-
tices

At Paris Charles de Gaulle Airport, the opening hours for security checkpoints are scheduled according
to the following procedure. Airport operators create a prediction with a one-hour time step for the
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Simulated Annealing Greedy Heuristic
Execution Time (s) Max Waiting Time (min) Total Open MaxSimult Max Waiting Time (min) Total Open MaxSimult

976 45 507 31

45 887 32

970 45 495 36
961 45 494 32
944 45 494 32
943 45 501 34
933 45 510 34
963 45 491 33
954 45 496 33
1015 45 512 34
983 45 494 30

Table 1: Outputs of the Simulated Annealing and the greedy Heuristic for 10 runs. Total Open
corresponds to the total number of security lines open during the day and MaxSimult corresponds to
the maximum number of lines open simultaneously.

Execution Time (s) Max Wait Time (min) Total Open MaxSimult
Mean 964,2 45 499,4 32,9

Standard Deviation 23,70 0,00 7,60 1,73

Table 2: Mean and Standard Deviation of the outputs of the simulated annealing for 10 runs.

passenger flow, and consider a fixed handling capacity of 120 passengers per hour for each security line.
The security line opening schedule is then created to meet the demand for passenger flow. Generally,
the flow of passengers over an hour is not evenly divisible by 120. Therefore, the number of open lines
is always rounded up to adequately meet the demand. The application of this method for one security
checkpoint is illustrated on Figure 9.

Figure 9: Illustration of CDG method to determine the number of security lines to open for a check-
point. The number of lines needed with the fixed capacity of 120 pax/hour is displayed in blue and
the number of opened lines rounded up is displayed in orange and written above the bar

The airport’s announced security line handling capacity appears overly optimistic when compared
to observed reality. A processing rate of 120 passengers per hour corresponds to an ideal situation,
but in reality, this capacity frequently experiences disruptions. For instance, passengers who are
unfamiliar with the screening process may have kept a metallic item with them. Additionally, even
when operations run smoothly, random additional checks are conducted. The secondary inspections,
such as palpation and detection of traces of explosives, described by Leone and Liu [5], require longer
processing time and monopolize the security agents’ time, thereby reducing their capacity to manage
the flow of passengers. Consequently, the actual processing capacity of a security line falls short of the
ideal limit of 120 passengers per hour currently used to plan the opening of security check lines. For
the purposes of this study, we utilize a processing capacity of eight passengers per five-minute interval.
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Consequently, a security line has the potential to process a total of 96 passengers within the span of
one hour. This method, processing 96 passengers per hour, was employed on the same test day as that
of the simulated annealing approach. An example of a timetable obtained by employing the prevailing
methodology at the airport is depicted in Figure 10. A comparison of the opening schedules generated
by the straightforward method of the airport and the simulated annealing method is presented in
Table 3. The data was obtained by using the security checkpoint simulator (FIFO) on both schedules.
One can see from Figure 10 that the rise in the number of lines opened is reflected in the maximum
number of open lines at the same time. By applying the queue simulation to the airport schedule, it
becomes obvious that the maximum waiting time constraint is not met by the schedule. Specifically,
one passenger waited for over 2 hours, and such an extended waiting period can result in passengers
missing their flights. Table 3 also shows that the simulated annealing gives a schedule that keeps the
maximum waiting time below 45 minutes. This reduction is achieved by slightly increasing the total
number of lines to be opened during the day by 6%.

Max Wait Time (min) Total Open MaxSimult
Airport Method 125 470 46

Simulated Annealing 45 499 32
Improvement 64% -6% 30%

Table 3: Performance comparison of opening schedules created using the airport method and the
simulated annealing method.

Figure 10: Example of Security Checkpoint Opening Schedule Created with the Method of CDG
Airport with a capacity of 96 passenger per hour per line. Red boxes indicate when the checkpoint is
closed, while the green boxes indicate when it is open and the number of simultaneous lines allowed.
The yellow boxes represent time steps with a higher number of simultaneously open lines than obtained
via simulated annealing.

With the schedule for opening security checkpoints now established, the subsequent stage of the
research will involve accommodating requests to open the checkpoints while adhering to the constraints
associated with the security agents’ schedules.

4 Security Agent Optimal Scheduling

The simulated annealing results can give the number of security checkpoint lines that must be opened
on a given day. However, security personnel must be assigned to operate these security checkpoints
while meeting several additional constraints, including maximum daily working hours and minimum
break durations. To address this issue, we formulate and solve an integer linear programming model.

4.1 Model

In France, security agents are limited to a 12-hour workday and must take a break of at least 20
consecutive minutes every 6 hours [29]. They are also limited to 48 hours of working hours per week.
There may be additional legal constraints, depending on the way the security company operates and
any agreements it has with the unions. Despite being legally mandated, these conditions are not
consistently enforced. The detrimental effects of 6 hours of uninterrupted work and 12 hours working
day on a security agent’s ability to concentrate can have consequences for airport overall security.
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Dealing with every constraints individually for every security agent at the airport can quickly increase
the model’s complexity. To address this issue, a standard shift of 4 hours of work, followed by a 1-hour
break and then 4 more hours of work is proposed. The structure of this standard shift is displayed on
Figure 11. In addition, following interviews with our partners at Paris Charles de Gaulle airport, the

Figure 11: Example of the structure of the shifts used in the model.

suggested shifts largely align with established airport protocols.
For each security checkpoint p, the simulated annealing process provides the minimum number of
security teams required to handle passenger flow for each time interval t. This number is denoted
as Npt. For shifts meeting the above criteria, we generate a three-dimensional array S such that any
element S(i, p, t) ∈ S equals 1 if shift i assigns a team of agents to position p at time t, and 0 otherwise.
Finally, we establish integer decision variables ns, denoting the number of shifts s necessary to meet
the demand Npt. Noting the sets of security checkpoints P , time steps T , and the total number of
created shifts NShifts, the optimization model can be formulated as :

min
∑

s∈[1,NShifts]

ns

s.t.
∑

s∈[1,NShifts]

nsS(s, p, t) ≥ Npt, ∀p ∈ P,∀t ∈ T,

ns ≥ 0, s = 1, . . . , NShifts

(7)

Note that the total number of shifts generated can be computed directly from the number of security
checkpoints P , the number of time steps T , and the criteria for an acceptable shift with D the duration
of a shift. This value is given by the following expression:

NShifts = P 2 × (T − ((D − 1)) (8)

The solver used to solve this problem is Gurobi version 10.0.2.

4.2 Results

The method is tested on a randomly selected day from the neural network’s test dataset used to forecast
passenger flow [2]. This dataset contains the complete list of flights at Paris Charles de Gaulle airport
for every day of the year. For each flight, the dataset contains its theoretical departure time and the
boarding hall from which it is scheduled to depart, allowing us to determine which security checkpoint
will be needed to manage its passengers. The dataset also contains information derived from the
chosen day, allowing to determine whether the day in question is a holiday, weekend, etc. This dataset
provides good predictive performance for passenger flow at the strategic level with our neural network,
but cannot help predict tactical changes such as schedule adjustments due to flight delays or connection
disruptions. At this strategic level, the airport can only rely on predictive models to determine the
number of passengers it will have to handle and therefore the number of lines of security checkpoints
to open, which is why we use the prediction of our neural network to test our method. The minimum
number of security teams required is obtained through the simulated annealing, described in section
3.2. The day used for our experiment had 13 security checkpoints (P ), 33 time steps (T ), and used
shifts in the format depicted in Figure 11. In total, there were NShifts = 4225 possible shifts, according
to equation 8. As shown in Figure 12, the algorithm can generate a timetable that allocates sufficient
personnel to different checkpoints. Nonetheless, the input data coming from predictions generated by
the neural network, has limited accuracy and may diverge from the actual passenger flow. To compare
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the obtained results with the actual passenger flow at the airport on that day, a second simulation
was conducted using the observed flow. Simulated annealing was used to redetermine the required
number of security agents based on this data. The corresponding schedule for the security agents was
then created using the linear programming algorithm. The additional curve in Figure 12 represents
the schedule of security agents created from the second simulation run on the observed flow on that
day.

Figure 12: Need of security teams (blue) vs assigned security teams by the schedule created with
the predicted flow (green) vs assigned security teams by the schedule created with the observed flow
(orange) on a tested day for each of the boarding rooms of CDG airport. (To avoid overlapping, a
minor offset is applied to each curve.)

Although we can see directly from Figure 12 whether a sufficient number of security agent teams
have been assigned to meet the demand at each checkpoint, it is also necessary to look at the cumulative
demand over the day in the entire airport. In fact, this prediction of the number of security agents is
made at the strategic level, several weeks in advance. However, on the day of operation itself, since
the neural network’s prediction cannot be perfect, there is a gap between the need for security agents
and our planning. The question is whether overestimating the need for agents at certain checkpoints
can compensate for underestimates at other checkpoints. After all, if there is a shortage of agents at
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one checkpoint at a given time, but there is an excess of agents elsewhere, it will always be possible
to reassign those agents at the tactical level. Therefore, we need to check whether there are enough
security teams at the airport at any given time of the day. Figure 13 displays a comparison of the
total demand for security agent teams and the actual number of teams present at the airport on the
day of the test. Figure 13 shows that the proposed method achieves an adequate number of security
teams despite varying constraints such as working time and break schedules.

Nonetheless, our prior research found that the neural network passenger flow prediction tends to be
underestimated [2]. Therefore, simulated annealing allows opening security checkpoints to be based on
an underestimated passenger flow. This issue is illustrated in Figure 13, which shows two instances of
missing agent teams. The discrepancy is minor and distributed across multiple checkpoints, as demon-
strated by Figure 12. To validate these observations, several tests were conducted over ten consecutive
days in February 2023. The method presented was applied on each of these days to predict passenger
flow using our neural network. Security line opening schedules were created based on these predictions,
and corresponding security agent schedules were established. Table 4 compares the differences in cu-
mulative demand for security agents over these 10 days. This table displays the differences between the
number of security agents determined using our model and the actual number required, as determined
by the model. The table illustrates that the program’s predicted number of required teams closely
matches the actual number. The largest relative gap, at 9%, occurred on 2023/02/09. Thus, it is rea-
sonable to conclude that this predictive error would have only a minor impact on operations. Finally,
based on the increase achieved through the simulated annealing compared to the airport’s previous
method, additional teams can be planned without significantly diminishing this improvement.

Required Security Team Maximum Difference
01/02/2023 100 -5
02/02/2023 95 -4
03/02/2023 95 -4
04/02/2023 93 -3
05/02/2023 106 -2
06/02/2023 87 -4
07/02/2023 78 -5
08/02/2023 86 -6
09/02/2023 91 -8
10/02/2023 91 -9

Mean 92,2 -5
Standard Deviation 7,72 2,16

Table 4: Maximum difference observed between the cumulative demand of security teams and the
number provided using the method over ten consecutive days of February 2023.

5 Conclusion and Perspectives

The study concludes that effective scheduling of security agents can alleviate passenger congestion at
Charles de Gaulle airport. A process based on predictions of the passenger flow via a neural network
generates a schedule for to schedule staffing of security checkpoints. This process relies on simulated
annealing. Simulated annealing can generate a schedule for opening security checkpoints, ensuring
a waiting time below a predefined threshold. This optimal opening schedule serves as a constraint
for an ILP algorithm that assigns security teams to various checkpoints at the tactical level while
ensuring compliance with constraints related to legal work time of the agents. The number of security
agents required using this method is significantly lower than that obtained by the airport’s empirical
method. However, since the neural network’s predictions cannot be perfect, there may be times when
the number of predicted agents is insufficient to handle the passenger flow. This limitation presents
an opportunity for future studies. The neural network could be tuned and its parameters tuned to
reduce underestimation of passenger flow. Additionally, refining the simulated annealing parameters
and enhancing the execution time may ultimately lead to a more optimal security screening line
opening schedule. Further research could be conducted to assess the reliability of this method over
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Figure 13: Cumulative demand of security agents teams for the whole airport compared to the number
of security agents teams available on a tested day.
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an extended period, especially on days affected by disruptions such as strikes or adverse weather
conditions. Additional performance metrics may be developed to measure the quality of a security
checkpoint schedule. Furthermore, the security checkpoint simulator can be modified to reflect more
complex passenger behavior and security procedures. Finally, this approach could be validated at the
airport, specifically on designated security checkpoints, and eventually throughout the entire airport.
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