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Modelling and hovering stabilisation of a free-rotating wing UAV

Florian Sansou1, Gautier Hattenberger1, Luca Zaccarian2, Fabrice Demourant3,1, Thomas Loquen3,1

Abstract— We propose a multibody model of a freewing
UAV. This model allows obtaining simulations of the UAV’s
behaviour and, in the future, to design a control law stabilising
the entire flight envelope (hovering and forward flight). We
also describe the realisation of a prototype and a comparison
of possible methods for estimating the UAV’s states. With
this prototype, we report on experimental hovering flights
with a non-linear incremental dynamic inversion controller to
stabilise the wing and a proportional derivative controller for
the fuselage stabilization.

I. INTRODUCTION

Tail-sitter UAVs are very sensitive to turbulence, as they
have a large vertical wing area when hovering. However,
there are many advantages with this type of architecture,
such as the possibility of transitioning to flying like an
aeroplane thus having a long range. However, a problem
arises when carrying a payload. Since the body rotates during
the transition, payloads such as cameras may end in an
undesirable position or orientation. Similarly, other sensors
are subject to this rotation, which can make them unusable
like airspeed sensors when not aligned with air stream.

In this context, we designed an architecture that retain the
properties of a convertible drone, but where we can mount
sensors whose orientation can be kept constant throughout all
the flight phases. The idea is to install the wing on a pivot on
its pitch axis, giving it freedom of rotation by separating its
movement from that of the fuselage. As the weights are on
the fuselage, the wing’s inertia is lower, allowing the wing to
naturally settle in the direction of the wind. This idea dates
back to a patent published by [1].

Since then, a great deal of work has been produced
using this architecture. Using a freewing has its advantages
and disadvantages as discussed in [2]. The compromise is
between gust attenuation and low-speed performance. The
gust attenuation is obtained from a fast convergence speed
of the pitch wing axis, which is proportional to the static
stability of the wing. However, the elevons generate an
out-of-balance force to stabilise the moment equation. In
addition, [2] mentions the possibility of wing flutter in this
configuration. As the motors are installed on the wing, they
generate a permanent air flow over part of the wing, thus
preventing stalling. In addition, the motors used for hovering
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also generate traction during forward flight, wherein it is
necessary to switch off the motor that stabilises the fuselage.
As a result, the drone carries very little unnecessary actuator
weight in the high efficiency forward flight phases. Others
architectures, such as coplanar UAVs generate large parasitic
drag such as Delair DT46, VTOL version [3].

Key parameter in the design is the position of the wing
pivot: by moving the wing pivot point, it is possible to vary
the wing’s natural modes [4].

An important part of the study of a UAV is in its
modelling. The complexity of freewing UAVs arises from
their multibody modelling, induced by the degree of freedom
between the wing and the fuselage. Modelling based on the
Newton-Euler equations, with a representation of the orien-
tation using Euler angles, makes it possible to appreciate the
complexity of such a system [5], [6]. Other studies show
the use of free links to reject disturbances, in particular
by cutting the wing to allow the tips to freely change
their incidence. Multi-body modelling is often carried out
to represent the different parts of the wing [7].

A long sequence of work has been proposed: modelling
and simulation-based analysis of the vibration modes [8],
hovering stabilisation of the UAV using a PI-Feed Forward
(PIFF) control law [9]. Finally, a work based on a multi-outer
loop dynamic inversion control law was presented in [10]
with simulations and outdoor flights in windy conditions.

Later work has studied tilt-wing UAVs, where the wing
is not free to rotate about the pitch axis, but is controlled
by an actuator [11]. However, nontrivial couplings between
the actuators (propeller and elevon) emerge. The interesting
aspect is the use of a control law based on the INDI [12].

A final important task after modelling is identifying the
coefficients, and a number of methods have been proposed
based on computational fluid dynamics (CFD) [13] or wind
tunnel measurements [14], [15].

The main contribution of this paper is a model of
our freewing UAV architecture based on the Udwadia-
Phohomsiri equations [16], [17], [18], which represent the
dynamics of a multi-body UAV based on constraints ex-
pressed between the bodies. This method makes it possible
to express the forces on each part independently and to
obtain dynamical equations representing the coupling. In
future work, this modelling will enable designing nonlinear
controllers for the UAV. The complete model and simulation
of the UAV are discussed in the Section II. After obtaining
a model, we determine the ideal location for the autopilot.
Section III discusses the state estimation of the UAV on the
real model, obtained from a rotary encoder used to measure
the angle between the wing and the fuselage. We use a high-



gain filter to estimate the speed from the rotary encoder
measurements, allowing us to estimate all the states of the
model. Section IV describes the control architecture chosen
to stabilise the UAV (wing and fuselage) in a hovering
configuration. Based on two decentralized control loops,
we use Incremental Nonlinear Dynamic Inversion (INDI) to
stabilize the wing and a PD feedback loop to stabilize the
fuselage. Section V presents the results of the experimental
flights in a controlled environment using the Paparazzi UAV
(Unmanned Aerial Vehicle) open-source drone hardware and
software project. Paparazzi provides the guidance, navigation
and stabilisation layer for a set of UAVs based on a modular
architecture, where the user can choose the different codes
executed on the drone.
Notation. Given two vectors x1 and x2, we often denote their
juxtaposition as (x1, x2) := [x⊤1 x⊤2 ]

⊤. Given any vectors
u, v ∈ R3, the skew-symmetric matrix [u]× satisfies [u]× v =
u×v. The symbol I denotes the identity matrix of appropriate
dimensions. (G)† denotes the left Moore–Penrose matrix
pseudo-inverse of G.

II. DESIGN AND MODELLING OF COLIBRI UAV

The Colibri drone is derived from a tail-sitter drone with a
wing that generates lift during the forward flight. This wing
has several actuators: four motors ui, i = 1, 2, 3, 4 and two
elevons δl and δr. We can define the control vector uW of
the wing based on Figure 1 as uW = [u1 u2 u3 u4 δl δr]

⊤.
A fuselage linked by a pivot is secured at the aerodynamic
centre of the wing. This fuselage supports the autopilot, the
battery, a motor and a tail to keep it horizontal. In Figure 1,
all the aerodynamic control surfaces are shown in pink and
the propellers are shown in green. There are three reference
frames attach to the drone. (I) is a NED inertial reference
frame (or world frame) linked to the earth’s surface, (W) is
a wing reference frame attached to the drone wing and (F)
is a fuselage reference frame attached to the drone fuselage.

Fig. 1. Inertial (I) and wing (W) reference frames and the Colibri
architecture.

Some of the characteristic dimensions are shown in Ta-
ble I. Note that the motors are positioned symmetrically on

the wing, which means that the position can be described by
focusing on one side.

Parameter Value Units
mW (wing mass) 0.53 kg
mF (fuselage mass) 1.17 kg
JW = diag(JW

x , JW
y , JW

z ) diag(0.1677, 0.0052, 0.1634) kgm2

JF = diag(JF
x, J

F
y , J

F
z ) diag(0.0191, 0.0161, 0.0343) kgm2

kf (propeller thrust coeff.) 1.7800e-8 kgm

dMOW [0.383, 0,−0.167]⊤ m

dGOW [0.052, 0,−0.171]⊤ m

TABLE I
NUMERICAL PARAMETERS OF THE COLIBRI MODEL.

The modelling is based on the results of [16, Section 2.15].
The algorithm for computing matrices M , A, Q and B is
in [17], which provides us the equations of motion of a
constrained multibody system:

ẍ = M̂†
[
Q
B

]
=

[
(I −A†A)M

A

]† [
Q
B

]
(1)

whose expression is valid as long as M̂ has full rank and
where A, M , Q and B are described next.
We will use quaternions q =

[
η ϵ⊤

]⊤ ∈ S3 := {q ∈ R4 :

Fig. 2. Inertial (I), fuselage (F) and wing (W) reference frames and forces
acting on the Colibri UAV.

|q| = 1} to represent the orientations of the two bodies. The
ensuing rotation matrix R(q) ∈ SO(3) := {R ∈ R3×3 :
R⊤R = I, det(R) = 1} is uniquely defined as R(q) :=
I + 2η [ϵ]× + 2 [ϵ]

2
× = [R1 R2 R3].

According to Figure 1 and 2, define the vectors pF =
−−−→
OIOF,

pW =
−−−→
OIOW, dFW =

−−−−→
OFOW satisfying dFW = pW − pF and

dMOW =
−−−→
MOW, dGOW =

−−−→
GOW.

The overall state vector is (x, v) ∈ R28 with x =
(pW, qW, pF, qF) ∈ R14 and v = (vW, q̇W, vF, q̇F) =
(ṗW, q̇W, ṗF, q̇F) = ẋ ∈ R14, where vW = ṗW ∈ R3 repre-
sents the linear velocity of the wing in the inertial reference
frame, q̇W ∈ R4 is the derivative of the quaternion, qW ∈ R4

representing the orientation of the wing, vF = pF ∈ R3 is the



linear velocity of the fuselage in the inertial reference frame
and q̇F ∈ R4 is the derivative of the quaternion qF ∈ R4

representing the fuselage orientation. It can be seen that
the state vector is not minimal. It should be noted that the
angular velocity ω ∈ R3 can be obtained from the quaternion
derivative q̇ using equation [17, equation (2.7)] recalled here:

ω = H(q)q̇

where H(q) ∈ R3×4 is a matrix defined by H(q) =
2
[
−ϵ ηI3 − [ϵ]×

]
. For deriving the equations of motion,

recalling that Ri(q) ∈ R3, i = 1, 2, 3 are the three columns
of a rotation matrix associated with quaternion q, define
matrices LW

i (qW) = ∂Ri

∂q (qW) ∈ R3×4, LF
i (qF) =

∂Ri

∂q (qF) ∈
R3×4 and LOW

F
=

∑3
i=1 dFW(i)LF

i (qF), i ∈ 1, 2, 3, where
dFW(i) denotes the i-th component of vector dFW = pW−pF.
Since OW is located at the wing’s center of rotation, the
distance dFW is a constant, since OW and OF can be assumed
to belong to the same solid (the fuselage). We deduce,
with homogeneity, L̇OW

F
=

∑3
i=1 dFW(i)LF

i (q̇F). With these
definitions, select the matrices in (1) as

M =


mWI3 03×4 03 03×4

04×3 H⊤
WJWHW 04×3 04

03 03×4 mFI3 03×4

04×3 04 04×3 H⊤
F JFHF

 ∈ R14×14,

(2)

where we denoted HW = H(qW), HF = H(qF), and

Q =


mWge3 +R(qW)Fb

−2Ḣ⊤
WJWḢWq̇W +H⊤

WMW
mFge3 +R(qF)FF

−2Ḣ⊤
F JFḢFq̇F +H⊤

F MF

 ∈ R14, (3)

where ḢW denote H(q̇W), coinciding with the time derivative
of H(qW) and ḢF denote H(q̇F), coinciding with the time
derivative of H(qF). Moreover, Fb and Mb represent, respec-
tively, all the forces and moments acting on the wing. The
expressions of M and Q are taken from [19, equations (45)
and (57)] where the ϕ theory is developed, a parametrisation
that allows the classical angles of incidence and sideslip to be
subtracted and the hover singularity to be avoided. For lack
of space, they will not be more detailed. Finally, FF = Fm et
MF represent respectively the set of non-gravitational forces
and moments acting on the fuselage expressed in the frame
OW. In particular, Fm = −kfutail

2 is the force generated by
the motor located at the tail of the fuselage and utail is the
motor rotation speed, while

MF = mFge3 × dGOW + Fm × dMOW , (4)

where dMOW is the distance between the motor location and
the center of rotation and dGOW is the distance between the
location of the fuselage’s center of gravity and the center of
rotation.

The set of constraints associated with the nonminimality
or the state (x, v) and by the pivot connection between the

two bodies is given by:

φ1 := q⊤WqW − 1 = 0

φ2 := q⊤F qF − 1 = 0

φ3 := R2(qW)⊤R3(qF) = 0

φ4 := R2(qW)⊤R1(qF) = 0

φ5 := pF + dFA + pW = 0

(5)

The first two constraints impose the unit norm of the
quaternions qF and qW. The third and fourth constraints are
related to a moving pivot constraint, i.e. the orthogonality of
two vectors is imposed. The last one is a positional constraint
so that the point of the centre of rotation belonging to the
wing coincides with the point defined in the fuselage. This
constraint is based on a three-dimensional geometric closure.
It is more convenient to express the set of constraints as a
stable dynamical system converging to zero, so we convert
each one of the constraints in the form:

φ̈i + δ1φ̇i + δ2φi = 0, i ∈ 1, 2, 3, 4, 5, (6)

with the selections (δ1, δ2) = (0.5, 8) being the coefficients
of a stable polynomial, so that, regardless of the selection
φi(0) = 0, we have lim

t→∞
φi(t) = 0. By differentiating

constraints (5) twice and factoring them out in the form
A(x, ẋ)ẍ = B(x, ẋ), we obtain the expression of A(x, ẋ)
reported in equation (7) and B(x, ẋ) reported in the equation
(8) at the start of the next page.

A =


01×3 q⊤W 01×3 01×4

01×3 01×4 01×3 q⊤F
01×3 R3(qF)

⊤LW
2 (qW) 01×3 R2(qW)⊤LF

3(qF)
01×3 R1(qF)

⊤LW
2 (qW) 01×3 R2(qW)⊤LF

3(qF)
I3 LOW

F
−I3 03×4


(7)

The simulation of a drone remains complex, as it is
naturally unstable. We have chosen to use the control law
proposed in [20] extended to 6 DOF dynamics to stabilize the
system. This PI-based control stabilises the wing. Another
control law based on a proportional-derivative feedback
stabilises the fuselage to keep it horizontal. The closed-loop
simulation results are shown in Figure 3. Considering the
degrees of freedom of the pivot link, the coupling between
the two bodies is clearly visible from the lower three plots.
Indeed, the roll and yaw angles (ϕF, ψF) and (ϕW, ψW) of the
fuselage and wing coincide perfectly, while the pitch angles
(θF, θF) are radically different.

III. STATE ESTIMATION

In order to stabilise this two-body UAV system, it is
necessary to know the position and orientation of the two
bodies. Due to the pivot link between the wing and the
fuselage, the difference between the orientation of the wing
and the orientation of the fuselage is simply a rotation about
the pitch axis of the wing. The two other orientations (roll
and yaw) coincide. The position of the fuselage’s centre of
gravity can be deduced from the position of the wing’s centre



Fig. 3. Position and orientation simulation of the multi-body UAV Colibri
in closed loop with a simple double-loop controller.

of gravity and the angle between the fuselage and the wing.
This angle is measured by a quadrature rotary encoder (CUI
Devices AMT22, Absolute Encoders, 12 bit, SPI), which
returns a quantized angular measurement with a step size
of 0.09◦. Given this angular measurement, we discuss below
the estimation of the speed information, so as to reconstruct
the state of the UAV.

A. Sensors placement

A first question pertains to the sensors placements: the
IMU (accelerometer, gyroscope and magnetometer) can be
installed on the fuselage or on the wing. Installing the IMU
on the wing means that the measurements can be taken
directly in the desired reference frame, but the measurements
are noisier because the IMU is attached to the structure
supporting the motors. Given the size of the wing, their flex-
ibility can generate resonances and can perturb the measure-
ments. Installing the IMU on the fuselage reduces vibrations,

but means that the measurements must be transformed in
the wing reference frame. The corresponding transformation
can be computed from the rotary encoder measurement,
providing the angle between the wing and the fuselage, and
also from the measurements taken with the CAD software,
providing precise information about the distances between
the wing and fuselage frames. Our final choice is to attach
the IMU to the fuselage. Another consideration is that the
autopilot board, which already have an integrated IMU, is
also supposed to be connected to the payload and other
sensors attached to the fuselage. It is thus limiting the number
of cables at the pivot point to the actuators commands and
power supply.

B. Angular speed estimation

As explained above, we can measure the angle κ ∈ R
between the wing and the fuselage using the rotary encoder.
Then, to estimate the angular velocity we use the high-gain
observer proposed in [21] (see also [22] for the use of high-
gain observers to estimate time derivatives). This method is
preferable to a finite difference derivative, as the quantized
information generated by the rotary encoder can result in
bursts in the estimated angular velocity values.
Denote by κ ∈ R the measured position variable, by ωκ :=
κ̇ ∈ R its derivative, to be estimated, and by ξ = [κ, ωκ]

⊤ ∈
R2 their juxtaposition in a single vector. Denote also ξ̂ the
estimate of ξ as follows:

ξ̂ = [κ̂, ω̂κ]
⊤ ∈ R2.

Following [21], the estimator dynamics is given by

˙̂
ξ =

[
0 1
0 0

]
ξ̂ +

[
kp

ϵκ
kv

ϵ2κ

]
(κ− κ̂), (9)

where κ is the angular measurement recovering from the
sensors, kp and kv are two positive scalars gains such that
the characteristic equation s2 + kvs + kp = 0 has roots
with negative real part. For our estimators, we have selected
kp = 1 and kv = 1.3 so as to get a damping factor ζ = 0.65
leading to a slightly underdamped response as a suitable
trade-off between a fast rise time and a mildly oscillatory
response. The high-gain scaling factor ϵκ can be conveniently
adjusted in order to obtain a trade-off between smoothing
action (obtained by increasing ϵκ) and reduction of the time
lag of the estimator (obtained by reducing ϵκ). Moreover,
the smoothing action of the proposed approach mitigates
the effect of the quantized position measurements. We have
selected ϵκ = 0.05 for our experiments. Figure 4 shows
the experimental results obtained after implementation of the
high-gain filter (9) in the case of a flight generating high-
amplitude angular oscillations. We carried out differentiation
by finite difference (in green) in post-treatment to compare
the results. Due to the quantized nature of the rotary encoder,
we observe that the angular velocity obtained by finite
difference is very noisy. We can see that the high-gain filter
makes it possible to estimate the angular velocity more
accurately (in red), albeit with a slight delay. Thanks to the



B =


−δ1q⊤Wq̇W − δ2

2 (q
⊤
WqW − 1)− q̇⊤Wq̇W

−δ1q⊤F q̇F − δ2
2 (q

⊤
F qF − 1)− q̇⊤F q̇F

−R3(qF)
⊤L̇W

2 q̇W −R2(qW)⊤L̇F
3q̇F − 2q̇⊤WL

W
2

⊤
LF
3q̇F − δ1(R3(qF)

⊤LW
2 q̇W +R2(qW)⊤LF

3q̇F)− δ2φ3

−R1(qF)
⊤L̇W

2 q̇W −R2(qW)⊤L̇F
1q̇F − 2q̇⊤WL

W
2

⊤
LF
1q̇F − δ1(R1(qF)

⊤LW
2 q̇W +R2(qW)⊤LF

1q̇F)− δ2φ4

L̇OW
F
q̇F − δ1(vW + L̇OW

F
q̇W − vF)− δ1φ5

 (8)

Fig. 4. Angular position measurement (black,top plot), wing gyro velocity
measurement (blue,bottom plot), finite difference velocity estimation (green,
bottom plot) and high-gain estimates (red curves)

addition of an extra IMU on the wing in a specific flight
test, it is possible to compare the velocity estimate with the
wing’s gyroscope (MPU9250) measurements, visible on the
bottom graph of Figure 4 (blue trace). We can see that the
gyroscope readings are somewhat noisy, due in particular to
the vibrations generated by the motors.
In order to perform the necessary transformation among the
reference frames, define the quaternion qκ̂ ∈ S3 as follows:

qκ̂ =

[
cos

(
κ̂

2

)
0 sin

(
κ̂

2

)
0

]⊤
(10)

C. Wing state estimation

Based on the estimated angle κ̂ and the estimated angular
velocity ω̂κ, it is possible to transform the measurements
from the fuselage to the wing frame. All the sensors are
installed on the autopilot board, which is itself attached to
the fuselage. However, as mention in introduction, we want
to use INDI to stabilize the wing. So this control law requires
the state information in the wing reference frame, where all
the forces are applied (aerodynamic and traction). Then, two
viable solution are possible: perform the state estimation in
the fuselage reference frame and rotate the estimation, using

the estimate of the angle κ̂, or rotate the raw measurements
in advance to express them in the wing reference frame, and
then perform the state estimation on the latter. Given the
current architecture of the software in the Paparazzi1 system,
it is cumbersome to have two joint state estimation structures,
so it is difficult to implement the first solution, where the
controller directly retrieves the current state estimation. For
this reason, we have chosen to estimate the state of the wing
from data measured on the fuselage. To this end, we detail
below the coordinate transformation for the three sensors:
gyroscope, accelerometer and magnetometer.

For the gyroscope-based angular rate measurements, we
may compute the angular velocity of the wing expressed in
the wing frame as

ωW = R(qκ̂)

ωF
gyro +

 0
ωκ

0

 (11)

where ωF
gyro is the angular velocity measured by the gyro

on the fuselage, expressed in the fuselage frame, ω̂κ is
the estimated angular velocity of the wing relative to the
fuselage, as per (9), and qκ̂ is the quaternion defined in
(10). Expression (11) is similar to a composition of angular
velocities and a reference frame transformation.

For the acceleration measurement with the accelerome-
ter, we may use the following relation Expression (12) is
obtained from the rate of change transport theorem [23],
where we find the Euler acceleration term ω̇F × dAF and
the centripetal acceleration term ωF × (ωF × dAF ). Coriolis
Acceleration 2ωF × d(dFW)

dt

∣∣∣
OF

and the rate of acceleration
d2(dFW)

d2t

∣∣∣
OF

are zero because dFW is contant.

aW = R(qκ̂)
(
aFacc + ω̇F

gyro × dFW + ωF
gyro × (ωF

gyro × dFW)
)

(12)

where aFacc ∈ R3 is the acceleration measured by the
accelerometer on the fuselage, expressed in the fuselage
frame and ωF

gyro, the angular velocity of the fuselage, same
as the equation (11). The angular acceleration ω̇F

gyro in (12)
is computed by a finite difference.

For the magnetometer measurements, we have

EW = R(qκ̂)Emag (13)

where Emag ∈ R3 is the magnetometer output, expressed
in the fuselage frame and EW ∈ R3 is the computed

1https://github.com/enacuavlab/paparazzi/tree/
rot_state_est

https://github.com/enacuavlab/paparazzi/tree/rot_state_est
https://github.com/enacuavlab/paparazzi/tree/rot_state_est


measurement expressed in the wing frame.
To obtain the wing state estimate, we use a sensor mea-

surement fusion algorithm: extended Kalman filter2 (EKF)
which provide an estimate of the following states: pW, vW,
qW from measurements transformed in the wing reference
frame ωW (eq. (11)), aW (eq. (12)), EW (eq. (13)) and
external vision system pose data, which provides a precise
measurement of the drone’s position pW and speed vW in the
inertial reference frame (I).

D. Fuselage orientation estimation

To determine the orientation of the fuselage, we may
perform a composition between the quaternion representing
the orientation of the wing qW result of EKF and the
quaternion constructed from the filtered measurement of the
rotary encoder qκ̂ in (10),

qF = qW ⊗ qκ̂ (14)

where the operator ⊗ denotes the qaternion product. The
knowledge of qF is needed to keep the fuselage perfectly
horizontal.

IV. INCREMENTAL NONLINEAR DYNAMIC INVERSION
COMBINED WITH PD PENDULUM CONTROL

The theory of Incremental Nonlinear Dynamic Inversion
(INDI) used in the context of micro-UAVs is presented
in [24]. We use the notation proposed in [25], without
providing extra details, due to length constraints. The central
underlying assumption is that the so-called timescale sepa-
ration principle holds w.r.t. the actuator dynamics and the
dynamics of aerodynamic forces and moments. The control
signal can then be computed incrementally using the actuator
effectiveness matrix G.

uW = uW +G†(ν −
[
ω̇W
TW

]
) (15)

where ω̇W ∈ R3 is the measured angular acceleration obtain
by finite difference from equation (11), TW ∈ R is the current
thrust, ν is define in [25, equation (4)] and G is the control
effectiveness matrix, determined as follows :
∂ϕ
∂θ
∂ψ
∂T

=Guf =


−7.5 −15 7.5 15 0 0
0 0 0 0 15 15
0 0 0 0 4 −4

−0.6 −0.6 −0.6 −0.6 0 0

uf
This selection of efficiency matrix has been determined for
the hovering flights, but it is necessary to carry out a different
study for the forward flight.

To stabilise the fuselage, we use a PD feedback from the
angle θF formed between the fuselage and the horizontal,
which we want to keep at zero. This is obtained by converting
the quaternion qF of equation (14) into an Euler angle by
following the ’ZYX’ Euler convention. The PD feedback
provides the reference utail for the angular speed of the motor
generating the force Fm (see Figure 2), as follows

utail = ueq + kpθF + kdθ̇F,

2https://github.com/PX4/PX4-ECL/tree/master

where ueq is the equilibrium motor command to keep the
fuselage horizontal in the absence of disturbance and kp,
kd are tunable scalar gains. The value ueq was obtained by
applying a moment theorem to the fuselage at the point OW.
In fact, the two moments that come into effect on the fuselage
are the torque due to the thrust force of the tail motor and
the torque due to the position of the fuselage’s centre of
gravity. The gains kp et kd were adjusted in flight to ensure
satisfactory flight behaviour. We obtain θ̇F from ωF

gyro =

[ϕ̇F θ̇F ψ̇F]
⊤.

V. EXPERIMENTATION

An experimental prototype was developed, as shown in
Figure 5. A selection of the experimental results in controlled
flight is shown in Figure 6.
About Figure 6, from 0 s to 8 s, the drone is on the ground.

Fig. 5. Colibri experimental prototype.

From 8 s to 16 s, the drone takes off to reach a height of 2
metres visible from the third plot. This height is reached after
a 10 % overshoot. The drone is held in this position for 54 s.
Incidence oscillations are observed in the fifth and last plot,
generating oscillations in the drone’s horizontal position.
This is due to the coupling between the two bodies, which
is not properly stabilized. From 70 s, the UAV starts heading
towards the point pc =

[
3 0.9 −1.5

]⊤
and ψc = 90◦.

VI. CONCLUSIONS AND FUTURE WORK

We present a novel architecture of a freewing UAV with
a powered fuselage, with the aim of keeping the fuselage
as stable as possible. Modelling based on the Udwadia-
Kalaba equations has been used to describe the UAV multi-
body system dynamics. We plan to use this model with
the addition of constraints to obtain control law that will
cover the entire flight domain. We also described the state
estimation method used for this multi-body UAV, with a
comparison between ground truth measurements temporarily
placed on the wing and on the fuselage. The experimental
phase enabled validating the hovering behaviour of the UAV
without disturbances using two control loops. However, we
observed the limits of the double loop architecture in the
presence of disturbances, such as unmodeled forward wind
generated by an open wind tunnel. Future work includes
designing a centralized control architecture that will enable
us to control the UAV over its entire flight domain, by taking
into account the coupling between the two bodies.

https://github.com/PX4/PX4-ECL/tree/master


Fig. 6. Position and orientation of the reference frame wing in the first
six graphs and pivot angle measurement on the last graph below during real
flight.
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