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ABSTRACT
Over the past decade, precision tuning has become one of the key
techniques for achieving significant gains in performance and en-
ergy efficiency. This process consists of substituting smaller data
types to the original data types assigned to floating-point variables
in numerical programs in such a way that accuracy requirements re-
main fulfilled. In this article, we discuss the time and energy savings
achieved using our precision tuning tool, POPiX. We validate our
results on a set of numerical benchmarks covering various fields.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; •Hard-
ware→ Power estimation and optimization; Power estima-
tion and optimization; • Software and its engineering →
Source code generation; Source code generation; Software ver-
ification and validation; • Computer systems organization →
Embedded and cyber-physical systems.
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1 INTRODUCTION
Floating-point arithmetic operations are usually performed in high
precision, typically IEEE754 double precision [2] while such precise
results are not always useful. One reason to compute with high
precision is to avoid the round-off error accumulation that could
distort the results but, when no significant errors arise, which is the
most frequent case, high precision computations simply consume
resources unnecessarily.
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In floating-point arithmetic, mixed precision computations con-
sist in using variables and performing operations of different preci-
sion in the same computation [11]. Computations in lower precision
are faster and less energy-consuming than computations in higher
precision [5, 6, 13]. For example, computations are four time faster
in half precision than in double precision [5] and the power con-
sumption of floating-point operations is usually quadratic in the
size of the mantissa [6]. Although floating-point arithmetic offers
better precision, it is still exorbitant in terms of speed and power
consumption, particularly for embedded systems. Fixed-point arith-
metic is an alternative to floating-point arithmetic to perform fast
and energy efficient computations [13]. This arithmetic is specially
used in embedded systems, e.g. on FPGAs [10]. Fixed-point opera-
tions are emulated using the integer operations of the processor,
the position of the point being managed explicitly by the program-
mer which complicates the software development unless automatic
tools are used to generate the fixed-point code [4, 7, 12]. Many pre-
cision tuning tools have been developed [1, 8, 9, 14] to reduce the
precision of the computations while guaranteeing some accuracy
requirements on the results. On the other hand, most of these tools
aim to reduce the precision of floating-point operations, and do not
offer fixed-point arithmetic solutions.

In this article, we present POPiX a tool able to perform precision
tuning for floating-point programs and also to synthesize programs
with the minimal fixed-point arithmetic formats. We evaluate the
gains, in terms of energy consumption, that a precision tuning
tool can bring at compile-time on numerical code coming from a
variety of domains such as embedded systems, IoT, robotics and
control algorithms. We use our tool POPiX to tune our benchmarks
in floating-point and fixed-point arithmetic with different error
thresholds of 2−8 and 2−24.

2 TUNING AND ENERGY CONSUMPTION
2.1 POPiX in a Nutshell

Figure 1: Architecture of POPiX.

POPiX is an extension of the precision tuning framework POP [1]
with the new functionality of generating fixed-point formats. It is
based on a model of the numerical error propagation throughout
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1 ...

2 tmp_fix_1ℓ6 = xℓ1 *ℓ4 xℓ3 ;
3 tmp_fix_2ℓ13 = yℓ8 *ℓ11 yℓ10 ;
4 tmp_fix_3ℓ20 = tmp_fix_1ℓ15 +ℓ18 tmp_fix_2ℓ17 ;
5 resℓ25 = sqrt(tmp_fix_3ℓ22 )ℓ13 ;
6 𝑟𝑒𝑞𝑢𝑖𝑟𝑒_𝑛𝑠𝑏 (𝑟𝑒𝑠, 16) ;

(a) POPiX input program.

1 y = 25.19890811711871 ⟨4, 18⟩;
2 x = 20.151364406488742 ⟨4, 18⟩;
3 tmp_fix_1 = x⟨4, 18⟩ *⟨8, 18⟩ x⟨4, 18⟩;
4 tmp_fix_2 = y⟨4, 18⟩ *⟨9, 18⟩y⟨4, 18⟩;
5 tmp_fix_3 = tmp_fix_1 ⟨8, 18⟩ +⟨10, 18⟩

tmp_fix_2 ⟨9, 18⟩;
6 res = sqrt(tmp_fix_3 ⟨10, 18⟩)⟨5, 16⟩;
7 𝑟𝑒𝑞𝑢𝑖𝑟𝑒_𝑛𝑠𝑏 (𝑟𝑒𝑠, 16) ;

(b) POPiX output program annotated with
pairs ⟨ufp, nsb⟩.

1 ...

2 int main(){

3 ...

4 y = 𝑓 𝑥_𝑑𝑡𝑜𝑥 (25.19890811711871 ,18);

5 x = 𝑓 𝑥_𝑑𝑡𝑜𝑥 (20.151364406488742 ,18);

6 tmp_fix_1 = 𝑓 𝑥_𝑚𝑢𝑙𝑥 (x,x,18);

7 tmp_fix_2 =𝑓 𝑥_𝑚𝑢𝑙𝑥 (y,y,18);

8 tmp_fix_3 = 𝑓 𝑥_𝑎𝑑𝑑𝑥 (tmp_fix_1 ,tmp_fix_2);

9 res = 𝑓 𝑥_𝑥𝑡𝑜𝑥 (tmp_fix_3 ,18 ,16);

10 res = 𝑓 𝑥_𝑎𝑑𝑑(𝑓 𝑥_𝑖𝑡𝑜𝑥 (1,16),𝑓 𝑥_𝑑𝑖𝑣(𝑓 𝑥_𝑠𝑢𝑏𝑥 (

res ,𝑓 𝑥_𝑖𝑡𝑜𝑥 (1,16)),𝑓 𝑥_𝑑𝑡𝑜𝑥 (2,16) ,16));

11 return 0;}

(c) Generated fixed-point program.

Figure 2: An illustrative example showing the different generated programs with POPiX.

a floating-point program. The originality of POPiX consists in its
ability to return solutions – at bit-level – for the IEEE-754 floating-
point arithmetic, the fixed-point arithmetic, and the MPFR library
for non-standard precision. The main pass hierarchy of POPiX is
summarized in Figure 1.

First, the tool analyzes a program written in an imperative lan-
guage and annotated with the precision desired by the user on the
output. Next, POPiX assigns to each node of the program’s syntactic
tree a unique control point as mentioned in Figure 2a. For example,
in Line 1, the variables tmp_fix_1 and x are assigned to ℓ6, ℓ1 et ℓ3.
Then, the workflow employs a dynamic analysis for producing an
under-approximation of the ranges of the variables for inputs taken
randomly in user defined ranges. Approximately 10000 randomized
simulation runs are performed. This step allows to compute the unit
in the first place of a real number 𝑥 , denoted by ufp(𝑥) as shown in
Equation (1). The ufp, once computed, is used to know the number
of bits in the integer part of the fixed-point number.

ufp(𝑥 ) =
{

min{𝑖 ∈ Z : 2𝑖+1 > |𝑥 | } = ⌊log2 ( |𝑥 | ) ⌋ if 𝑥 ≠ 0,
0 if 𝑥 = 0. (1)

Notice that we consider POPiX itself as comprising only the
precision tuning pass, therefore this dynamic analysis does not
make POPiX a dynamic framework, as the most important steps are
indeed static.

Now, in order to obtain the bit-level optimized program, the key
approach used in POPiX is to generate an ILP problem based on
a semantic modelling of the propagation of the numerical errors
throughout the program source. This is done by reasoning on the
most significant bit (Equation (1)) and the number of significant
bits of the values, denoted by nsb, which are two integer quantities.
Note that nsb is equal to the number of bits in the fractional part
of the fixed-point number. Formally, let nsb(𝑥) be the number of
significant bits of a real number 𝑥 , let 𝑥 be the approximation of
𝑥 in finite precision and let 𝜀 (𝑥) = |𝑥 − 𝑥 | be the absolute error. If
nsb(𝑥) = 𝑘 , for 𝑥 ≠ 0, then 𝜀 (𝑥) ≤ 2ufp(𝑥 )−𝑘+1.

As an example, Figure 2 displays the carthesianToPolar bench-
mark from FPBench1 which convert cartesian coordinates to polar
coordinate system. The post-condition given at Line 6 of Figure 2a
informs POPiX that the user wants nsb = 16 bits for variable 𝑟𝑒𝑠 .
This information will be propagated throughout the program in

1https://fpbench.org/

order to determine the new precision of the inputs and interme-
diate results. POPiX’s static approach generates a linear number
of constraints and variables in the size of the analyzed program,
and therefore maximises scalability. Equation (2) shows the set
of constraints 𝐶 generated for the example of Figure 2. The pre-
computed values correspond to the unit in the first place of the
values. The function carry manages the carry bits that can occur in
the computations: returns 1 if there is a carry bit and 0 otherwise.

𝐶=



nsb(ℓ0 ) ≥ nsb(ℓ31 ), nsb(ℓ0 ) = nsb(ℓ29 ), nsb(ℓ29 ) ≥ nsb(ℓ1 ), nsb(ℓ25 ) ≥ 16
nsb(ℓ29 ) ≥ nsb(ℓ3 ), carry(ℓ4 ) = 1, nsb(ℓ1 ) ≥ nsb(ℓ4 ) + carry(ℓ4 ) − 1
nsb(ℓ3 ) ≥ nsb(ℓ4 ) + carry(ℓ4 ) − 1, nsb(ℓ4 ) ≥ nsb(ℓ6 ), nsb(ℓ31 ) ≥ nsb(ℓ8 ),
nsb(ℓ31 ) ≥ nsb(ℓ10 ), carry(ℓ1 ) = 1, nsb(ℓ8 ) ≥ nsb(ℓ11 ) + carry(ℓ11 ) − 1
nsb(ℓ10 ) ≥ nsb(ℓ11 ) + carry(ℓ11 ) − 1, nsb(ℓ11 ) ≥ nsb(ℓ13 ), nsb(ℓ6 ) ≥ nsb(ℓ15 ),
nsb(ℓ13 ) ≥ nsb(ℓ17 ), carry(ℓ18 ) = 1, nsb(ℓ15 ) ≥ nsb(ℓ18 ) + 13 + carry(ℓ18 ) − 14,
nsb(ℓ17 ) ≥ nsb(ℓ18 ) + 13 + carry(ℓ18 ) − 14, nsb(ℓ18 ) ≥ nsb(ℓ20 ),
nsb(ℓ20 ) ≥ nsb(ℓ22 ), nsb(ℓ22 ) ≥ nsb(ℓ23 ) + 2, nsb(ℓ23 ) ≥ nsb(ℓ25 )

(2)

Next, the integer solution to the problem – computed in poly-
nomial time by a classical linear programming solver2 – gives the
minimal number of bits needed with an accuracy guarantee on the
result. To obtain the optimal solution to our system of constraints,
cost functions are given to the linear solver as optimization objec-
tive functions. Depending on which cost function is used by POPiX,
different criteria may be considered for the tuning [3]. By default,
the cost function that we use consists in minimizing the sum of the
nsb quantities of all the variables assigned in the program.

Figure 2b depicts the formats required for each variable for both
the integer and fractional parts. For example, Line 6 computes the
square root on the variable tmp_fix_3 for which the fixed-point
format has 10 bits for the integer part and 18 bits for the fractional
part and therefore the result will have 5 bits for the integer part
and 16 bits for the fractional part as requested by the user.

Based on the tuning results, POPiX internally calls an open source
fixed-point library Fixmath3 to convert the associated indications
into ones that exploit fixed-point computation with the number
of bits required for each of the integer and the fractional parts.
Figure 2c depicts the C program generated with the fixed-point
instructions to perform the computations.

2.2 Experimental Results
In this section, we introduce experimental results showing the
impact of mixed-precision tuning on the energy consumption of

2https://www.gnu.org/software/glpk/
3https://www.nongnu.org/fixmath/doc/index.html
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Table 1: Energy consumption and execution time of programs tuned following different thresholds, floating-point and fixed
point-arithmetic. Energy consumption is given in joules (J) and time in seconds (s). Dbl: All variables in double precision. Mix
8: Mixed precision tuning with an error threshold of 2−8. Mix 24: Mixed precision tuning with an error threshold of 2−24. Fix:
Fixed-point code with an error threshold of 2−8. The percentages indicate how much memory is saved by the tuning.

Pgm Dbl (J) Dbl (s) Mix 8 (J) Mix 8 (s) Mix 8 (%) Mix 24 (J) Mix 24 (s) Mix 24 (%) Fix (J) Fix (s) Fix (%)

PID 15.40 0.80 15.05 0.075 82% 13.52 0.075 15% 9.45 0.071 83%
Pendulum 13.91 1.18 13.45 1.05 78% 13.91 1.18 38% 12.80 0.69 84%
Odometry 59.92 3.21 44.93 3.19 78% 44.97 3.47 24% 104.85 7.15 84%

Kalman 104.88 6.97 74.99 6.69 71% 104.88 6.97 5% 74.88 5.55 80%
Accel. 44.89 2.44 29.94 2.41 67% 29.94 2.41 51% 119.3 8.11 80%

InverseK2J 149.98 10.19 134.5 9.38 9% 149.98 10.19 9% 74.89 4.68 46%

programs. We evaluate POPiX on six widely used benchmarks com-
ing from different domains such as internet of things, robotics,
physics, control algorithms, etc. Our first code, Pendulum, models
the movement of a simple pendulumwithout damping. PID encodes
a controller widely used algorithm in embedded and critical systems
e.g. aeronautic and avionic systems. The Accelerometer program
comes from the IoT field and measures the angle of inclination of
an object. Odometry is an example taken from robotics which con-
cerns the computation of the position (𝑥,𝑦) of a two wheeled robot.
The Kalman filter is applied to many industrial and academical
areas such as aerospace systems, vehicle systems, robots, power
prediction and weather forecast. Finally, InverseK2J comes from
the Axbench benchmark suite4 and uses the kinematic equation to
compute the angles of 2-joint robotic arm.

Our results are displayed in Table 1. Each program has been
tuned in floating-point mixed precision for error thresholds of 2−8
and 2−24 and in fixed-point for an error threshold of 2−8. For the
sake of comparison, we also display the measures obtained for the
original versions of the programs which work in floating-point
double precision. For each tuned version of the programs, we give
in Table 1 the energy consumed by its execution (in Joules), the exe-
cution time (in seconds) and the percentage of memory saved with
respect to the original double precision codes. We can observe that
the mixed precision versions of the codes consume significantly less
energy than the original codes (e.g. 33% less for the Accelerometer).
Obviously, better results are obtained for a threshold of 2−8 than
for 2−24 since the former enables to reduce the precision of more
variables and operations. The fixed-point code relies on integer
arithmetic operations only and generally enable one to reduce even
more the energy consumption (e.g. 50% for InverseK2J). However,
fixed-point computations introduce additional operations (shifts to
align the operands of some operations) and this may increase the
energy consumption. Let us note that our current implementation
of POPiX does not try to minimize the number of shifts, which
would improve the performances in terms of energy consumption.

3 CONCLUSION AND PERSPECTIVES
In this article, we have shown how precision tuning may improve
the energy consumption of numerical programs. Let us note that

4http://axbench.org/

our precision tuning tool, POPiX, has been designed to minimize the
memory needed for the computations with respect to an accuracy
threshold and not to reduce the energy consumption. This would
require to take care of type conversions (casts in floating-point and
shifts in fixed-point) in the cost function associated to our system
of constraints. We plan to address this point in further work.
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