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Abstract
In this article, we present a new method for implementing a

neural network whose weights are floating-point numbers

on a fixed-point architecture. The originality of our approach

is that fixed-point formats are computed by solving an inte-

ger optimization problem derived from the neural network

model and concerning the accuracy of computations and re-

sults at each point of the network. Therefore, we can bound

mathematically the error between the results returned by

the floating-point and fixed-point versions of the network. In

addition to a formal description of our method, we describe

a prototype that implements it. Our tool accepts the most

common neural network layers (fully connected, convolu-

tional, max-pooling, etc.), uses an optimizing SMT solver to

compute fixed-point formats and synthesizes fixed-point C

code from the Tensorflow model of the network. Experimen-

tal results show that our tool is able to achieve performance

while keeping the relative numerical error below the given

tolerance threshold. Furthermore, the results show that our

fixed-point synthesized neural networks consume less time

and energy when considering a typical embedded platform

using an STM32 Nucleo-144 board.

CCS Concepts: • Computing methodologies → Artifi-
cial intelligence; • Hardware → Power estimation and
optimization; • Software and its engineering → Source
code generation; • Computer systems organization→
Embedded and cyber-physical systems.

Keywords: Neural Networks, Code Synthesis, Constraint

Generation, Computer Arithmetic, Embedded Systems
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1 Introduction
Deep neural networks (DNN) are increasingly used in em-

bedded systems, which poses specific implementation chal-

lenges. In order to make DNN usable on smaller devices, it

is necessary to reduce the computing, energy and storage

requirements of these networks. One can achieve this by

a fixed-point translation of the network weights and com-

putations (also called quantization), which usually leads to

use 16 or 32 bits word-length integers. However, the main

difficulty lies in the fact that these DNN are generally trained

on a desktop computer with high computing power before

being ported to the target architecture with lower computing

power. Moreover, it is not uncommon for the target archi-

tecture to use fixed-point arithmetic [22] while the machine

used for training uses floating-point arithmetic [1]. It is then

necessary to perform this arithmetic change without degrad-

ing the performance of the network. It is this problem that

we address in this article.

Synthesizing the fixed-point code for a DNN from its

floating-point description presents several difficulties since

the formats of the numbers must be managed manually and

the DNN are very sensitive to the arithmetic used. A change

in precision or, even more, in the whole arithmetic, can

greatly affect the recognition. To overcome these challenges,

we propose in this article a method to synthesize fixed-point

code from the floating-point description of a DNN. Our ap-

proach consists in generating a set of constraints modeling

the accuracy of the computations across the network. The

solution of this system, whose unknowns are the fixed num-

ber formats, is used to guide the code synthesis [4]. We use a

SAT solver [2] and consider the most classical layers of DNN:

fully connected, convolutional, max-pooling, upsampling,

etc. For example, these layers allow the implementation of

a U-Net neural network [19]. Note that, we only generate

integer constraints, which greatly simplifies the resolution

https://orcid.org/0000-0002-0595-5231
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compared to real or floating-point constraints. We imple-

ment our approach in a prototype tool called Popinnswhich
takes as input a Tensorflow 2.0 model and generates the C

code of this model in fixed-point arithmetic. We evaluate

Popinns on several neural networks composed of different

layers and with thousands of parameters.

Our results show that the analyses carried out by our

tool to synthesis fixed-point codes take only a few seconds,

even for large neural networks. In terms of accuracy of the

codes generated, the relative errors of the fixed-point code

compared with the floating-point one for several thresholds

remain below the theoretical error, which corresponds to

the maximum theoretical error allowed by the user. In addi-

tion, the energy consumption results for our codes done by

software-defined PowerMeters
1
, show that the fixed-point

codes generated consume less energy for certain neural net-

works and, in the worst case, behave like the floating-point

codes. As our objective is embedding neural networks onto

low-power devices, we have tested our synthesized neural

networks on low-power 32-bit micro-controller. The results

show that our fixed-point neural networks consume less

time and energy on an ARM micro-controller..

The rest of this article is organized as follows. An overview

of our technique is presented in Section 2. In Section 3, we

introduce background material concerning the fixed-point

arithmetic and neural networks. Error propagation through

the different layers of a network is described in Section 4.

Constraint generation is introduced in Section 5 and the

experimental results are given in Section 6. Related work is

discussed in Section 7 and Section 8 concludes.

2 Overview of the Tool
In this section, we provide an overview of our method im-

plemented in Popinns to synthesize the fixed-point code of

a DNN. Popinns takes as input a Tensorflow 2.0 model and

we will use the following simple model as an example.

num_classes = 4

input_shape = (8, 8, 1)

model = keras.Sequential ([

keras.Input(shape=input_shape),

layers.Conv2D(1, kernel_size =(3, 3),

activation="relu"),

layers.MaxPooling2D(pool_size =(2, 2)),

layers.Flatten (),

layers.Dense(num_classes ,activation="relu")

])

Once the model has been trained, the following command

is all that is needed to generate the code in fixed-point arith-

metic.

threshold = 6

popinns(model ,input_shape ,imgs ,threshold)

1https://powerapi.org/

The threshold parameter gives the maximal relative error

allowed by the user between the floating-point and fixed-

point versions of the model. In our example, 6means that we

want 6 significant bits for the fractional part of each value

of the result vector, or, in other words, an absolute error less

than 2
−6
. In addition, imgs is a list of inputs (images in this

case) used to perform the dynamic range analysis (typically,

these inputs are a subset of the training set).

After a range analysis, Popinns generates a system of

constraints from the model. The range analysis is used to

determine the weights of the most significant bits of the

values at each control point of the DNN. This information

is needed to generate the constraints. The constraints them-

selves are inequalities between linear expressions among

integer variables and constants. They are not linear because

they also contain implications to encode the min and max

operations. The variables are the precision (number of bits)

of the inputs of each layer as well as the precision in which

each operation is carried out inside each layer. For a dense

layer, a different precision is used for the computation of

each output. Alternative solutions have been introduced in

[5]. Our constraints also depend of constants related to static

parameters such as the size of the layer, the weights of a

dense layer or of a convolutional kernel, etc. For example,

for a dense layer, we generate the set 𝐶𝑘 of constraints such

that

𝐶𝑘 =

f
𝑘
𝑦𝑖

≤ max

©«
iΨ − f𝑘

𝑖
,

iΩ𝑖 − f𝑘𝑥𝑖 ,
1 − f𝑘

𝑖
− f𝑘𝑥𝑖 , f

𝑘
𝑖

ª®®¬ + log
2
(𝑛) + 1 : 0 ≤ 𝑖 < O𝑘


where 𝑛 is the size of the input vector, 𝑦𝑖 , 0 ≤ 𝑖 < 𝐿, is one

of the 𝐿 outputs of the layer, Ω𝑖 = max{|𝑤𝑖 𝑗 |, 0 ≤ 𝑗 < 𝑛}
where 𝑤𝑖 𝑗 are the synaptic weights of the layer and Ψ =

max{|𝑥 𝑗 |, 0 ≤ 𝑗 < 𝑛} where 𝑥 𝑗 is the input vector (note

that the 𝑥 𝑗 are intervals thanks to the range analysis). The

round-off errors on the weights are denoted by 𝜀𝑤𝑖 , where

𝜀𝑤𝑖 = max {𝜀 (𝑤𝑖 𝑗 ), 0 ≤ 𝑗 < 𝑛} and the round-off errors on

the inputs are denoted by 𝜀𝑥 , where 𝜀𝑥 = max {𝜀 (𝑥 𝑗 ), 0 ≤
𝑗 < 𝑛}. We also have f𝑘𝑖 = ⌜log

2
(𝜀𝑤𝑖 )⌝ and f𝑘𝑥𝑖 = ⌜log2 (𝜀𝑥𝑖 )⌝

the precision of the 𝑖𝑡ℎ neuron of Layer 𝑘 and of the 𝑖𝑡ℎ input,

respectively.

The solution to the system of constraint, given by an opti-

mizing SMT solver (we use Z3 [7, 18] in practice), provides

the formats of the fixed-point numbers (size of the integer

and fractional parts). Using this information, Popinns gener-
ates a C code in fixed-point precision. For example, the code

of the dense layer of our example network is given below.

...

fixed_t W_3 [36] = { -416, -1392, -2547, 1925,

... };

tmp = 0;

for (int j=0;j<9;j++) {

tmp=fx_addx(tmp ,fx_mulx(W_3 [0*9+j],x[3][0][j

][0] ,12));

};

x[4][0][0][0] = RELU(fx_xtox(tmp ,12,8));

https://powerapi.org/
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Figure 1. A fixed-point number in format 𝑄i,f, with i = 6

and f = 9. The leftmost bit is used for the sign.

tmp = 0;

for (int j=0;j<9;j++) {

tmp=fx_addx(tmp ,fx_mulx(W_3 [1*9+j],x[3][0][j

][0] ,12));

};

x[4][0][1][0] = RELU(fx_xtox(tmp ,12,8));

...

The code synthesized by Popinns uses the fixmath2 li-
brary for fixed-point arithmetic. For example, the function

fx_mulx(a,b,n) multiplies a and b and return a result with

n bits of fractional part and fx_xtox converts the format of

a fixed-point number. The fixed-point numbers are stored

into 32 bits integers. The first values of W_3 correspond

to the floating-point numbers −0.10160828, −0.33981544,
−0.6217438, 0.4698881 stored with 12 bits of fractional part.

For example, evaluations of our network in floating-point

and fixed-point arithmetic yields the following results.

𝑦𝑓 𝑙𝑜𝑎𝑡 =
(
0.034995, 0.313115, 0.000000, 0.427760

)𝑇
(1)

𝑦𝑓 𝑖𝑥𝑒𝑑 =
(
0.031250, 0.312500, 0.000000, 0.421875

)𝑇
(2)

The worst relative error between elements of 𝑦𝑓 𝑙𝑜𝑎𝑡 and

𝑦𝑓 𝑖𝑥𝑒𝑑 is 1.3% (less than the threshold) and the cross-entropy

between both vectors is 1.36.

3 Background Material
In this section, we introduce the concepts and notations

needed to understand this article. Section 3.1 is devoted to

fixed-point arithmetic and the roundoff errors generated by

this arithmetic. Section 3.2 presents the different types of

neural network layers considered in our work.

3.1 Fixed-Point Arithmetic
Fixed-point arithmetic [22] encodes real values inside inte-

gers thanks to an implicit scaling factor.

Definition 3.1 (Fixed-point Numbers). Let 𝑉 be a 𝑘-bit

signed integer, combined with a factor f ∈ Z. Then 𝑉 repre-

sents the real value 𝑣 defined by

𝑣 = 𝑉 · 2−f . (3)

In this article, 𝑄i,f denotes the format of a given fixed-

point number represented using a 𝑘-bit integer associated

to a scaling factor f , where 𝑘 = i + f , as illustrated in Figure

1. Note that unlike the exponent of a floating-point number,

the scaling factor of a fixed-point number is static and is not

encoded in the program. It is known only by the programmer

who is in charge of all the scaling details. For example, when

2https://savannah.nongnu.org/projects/fixmath/

adding two fixed-point numbers, both operand points need to

be aligned first, i.e. operands have to be set in the same fixed-

point format and this alignment may introduce a round-off

error.

In order to bound the round-off errors introduced by the

fixed-point arithmetic, let 𝑣 , 𝑣𝑙 , and 𝑣𝑟 be three fixed-point

variables in the formats 𝑄i,f , 𝑄i𝑙 ,f𝑙 and 𝑄i𝑟 ,f𝑟 , respectively,

and let ◦ ∈ {+,−,×} be some arithmetic operation. We as-

sume that

𝑣 = 𝑣𝑙 ◦ 𝑣𝑟 (4)

For the sake of conciseness, in this article, we do not deal

with the determination of the fixed-point formats of the

results of elementary operations which can be found in [16].

Instead, let us focus on the error 𝜀 (𝑣) on the result of some

operation.

Proposition 3.2 (Errors of Fixed-point Operations). Let 𝑣 =
𝑣𝑙 ◦ 𝑣𝑟 , ◦ ∈ {+,−,×} be some fixed-point operation.

𝑖) In absence of overflow, addition and subtraction are error-
free. Hence, for ± ∈ {+,−} we have:

𝜀 (𝑣) = 𝜀 (𝑣𝑙 ) ± 𝜀 (𝑣𝑟 ) . (5)

𝑖𝑖) For a multiplication, we have:

𝜀 (𝑣) = 𝜀 (𝑣𝑙 ) · 𝑣𝑟 + 𝜀 (𝑣𝑟 ) · 𝑣𝑙 + 𝜀 (𝑣𝑙 ) · 𝜀 (𝑣𝑟 ) + 𝜀× (6)

where 𝜀× is the error due to the multiplication itself.

Usually, in fixed-point arithmetic this error is due to the

truncation of the exact result of the multiplication to fit in

the format 𝑄i,f . Hence we have:

𝜀× ≤ 2
−(f𝑙+f𝑟 ) − 2

−f . (7)

A left shift introduces no error but only a possible overflow.

Conversely, a right shift of 𝑟 bits may also be followed by

the truncation of the exact result to fit into a smaller format

𝑄i,f .

Proposition 3.3 (Error of Shift Operations). The evaluation
of 𝑣 = 𝑣𝑙 ≫ 𝑟 generates an error defined by

𝜀 (𝑣) = 𝜀 (𝑣𝑙 )·2−𝑟+𝜀≫ , with 𝜀≫ ≤ 2
−f𝑙−2−f and f = f𝑙−𝑟 .

(8)

Note that, in our method to synthesize fixed-point codes

for DNNs, no round-off error can be accumulated through

the computations since the formats 𝑄i,f will be chosen in

order to maintain the accuracy of the computation greater

or equal to the precision of the variables (this is indeed the

goal of the system of constraints presented in Section 5.)

3.2 Neural Networks
DNN are made of various kinds of layers which process the

input data inmany different ways [21]. The layers considered

in this article are reviewed hereafter. First, we consider fully

connected layers.

https://savannah.nongnu.org/projects/fixmath/


LCTES ’24, June 24, 2024, Copenhagen, Denmark Dorra Ben Khalifa and Matthieu Martel

Definition 3.4 (Fully Connected Layer). A fully connected

layer (also called dense or FC layer) is made of 𝐿 neurons,

each taking 𝑛 entries 𝑥0, . . . , 𝑥𝑛−1 and computing the output

𝑦𝑖 =

𝑛−1∑︁
𝑗=0

𝑤𝑖 𝑗 · 𝑥 𝑗 , 0 ≤ 𝑖 < 𝐿 . (9)

In Equation (9) the 𝑤𝑖 𝑗 , 0 ≤ 𝑖 < 𝐿, 0 ≤ 𝑗 < 𝑛, belong

to the matrix𝑊 representing the synaptic weights of the

neurons. A fully connected layer is generally followed by an

activation function layer.

Definition 3.5 (Activation Function Layer). An activation

function is usually a non-linear function 𝑓 applied to an

input vector 𝑥 = 𝑥0 . . . 𝑥𝑛−1 component-wise, i.e.

𝑓 (𝑥) =
(
𝑓 (𝑥0), . . . , 𝑓 (𝑥𝑛−1)

)𝑇
(10)

Typically 𝑓 ∈ {ReLU, softmax, sigmoid, . . .} where

ReLU(𝑥𝑖 ) =
{
0 if 𝑥𝑖 ≤ 0

𝑥𝑖 otherwise
, 𝑥𝑖 ∈ R, 0 ≤ 𝑖 ≤ 𝑛−1, (11)

softmax(𝑥) = 𝑦 such that 𝑦𝑖 =
𝑒𝑥𝑖∑𝐿
𝑘=1

𝑒𝑥𝑘
, 𝑥,𝑦 ∈ R𝐿, (12)

sigmoid(𝑥𝑖 ) =
𝑒𝑥𝑖

𝑒𝑥𝑖 + 1

𝑥𝑖 ∈ R, 0 ≤ 𝑖 < 𝑛 . (13)

Next, a convolutional layer operates on two-dimensional

inputs typically representing an original image or an image

processed by former layers [11].

Definition 3.6 (Convolutional Layer). Let 𝑀 be a matrix

of size (𝑠𝑦, 𝑠𝑥 ) representing the input and 𝐾 another ma-

trix of size (𝑠𝐾 , 𝑠𝐾 ) representing the convolutional kernel.

The convolutional layer computes a new matrix𝑀 ′
of size

(𝑠′𝑦, 𝑠′𝑥 ) = (𝑠𝑦−2 · ⌊ 𝑠𝐾
2
⌋, 𝑠𝑥 −2 · ⌊ 𝑠𝐾

2
⌋) such that, for 0 ≤ 𝑖 < 𝑠′𝑦 ,

0 ≤ 𝑗 < 𝑠′𝑥 we have

𝑀 ′
𝑖 𝑗 =

𝑠𝐾 −1∑︁
𝑢=0

𝑠𝐾 −1∑︁
𝑣=0

𝑘𝑢𝑣 ·𝑀𝑖+𝑢,𝑗+𝑣 . (14)

We focus now on the max pool layer which replaces each

block 𝐵 of size (𝑝𝑦, 𝑝𝑥 ) of an original matrix𝑀 by the maxi-

mal value of 𝐵.

Definition 3.7 (Max Pooling Layer). A two-dimensional

max pool layer of factor (𝑝𝑦, 𝑝𝑥 ) transforms a (𝑠𝑦, 𝑠𝑥 ) matrix

𝑀 into a (𝑠′𝑦, 𝑠′𝑥 ) = (⌈ 𝑠𝑦
𝑝𝑦
⌉, ⌈ 𝑠𝑥

𝑝𝑥
⌉) matrix𝑀 ′

such that

𝑀 ′
𝑖 𝑗 = max

0 ≤ 𝑢 < 𝑝𝑦
0 ≤ 𝑣 < 𝑝𝑥

𝑀𝑖 ·𝑝𝑦+𝑢,𝑗 ·𝑝𝑥+𝑣, 0 ≤ 𝑖 < 𝑠′𝑦, 0 ≤ 𝑗 < 𝑠′𝑥 . (15)

We end this description with upsampling layers which

multiply the size of their input matrices by some factor 𝑠 .

Definition 3.8 (Upsampling Layer). Let 𝑀 be an Upsam-

pling a (𝑠𝑦, 𝑠𝑥 ) matrix and 𝑠 a non-negative integer corre-

sponding to an expansion factor. The upsampling layer ex-

pands𝑀 into a larger matrix𝑀 ′
of size (𝑠′𝑦, 𝑠′𝑥) = (𝑠 ·𝑠𝑦, 𝑠 ·𝑠𝑥 ).

The new elements are inserting around the elements of 𝑀

and may be determined by copy (nearest mode) or inter-

polation (bilinear mode). For example, in nearest mode we

have

𝑀 ′
𝑖 𝑗 = 𝑀⌊ 𝑖

𝑠
⌋,⌊ 𝑗

𝑠
⌋, 0 ≤ 𝑖 < 𝑠′𝑦, 0 ≤ 𝑗 < 𝑠′𝑥 . (16)

The layers described above in this section are these needed

to implement, e.g., a U-Net neural network for image seg-

mentation [19].

4 Error Propagation through Layers
In this section, we introduce the equations modelling the

propagation of errors through the layers of neural networks

introduced in Section 3.2. We start with the fully connected

layers.

Proposition 4.1 (Errors in FC Layers). Let 𝑦𝑖 , 0 ≤ 𝑖 < 𝐿,
be one of the outputs of a fully connected layer, computed as
defined in Equation (9). Let Ω𝑖 = max{|𝑤𝑖 𝑗 |, 0 ≤ 𝑗 < 𝑛},
Ψ = max{|𝑥 𝑗 |, 0 ≤ 𝑗 < 𝑛}, 𝜀𝑤𝑖 = max {𝜀 (𝑤𝑖 𝑗 ), 0 ≤ 𝑗 < 𝑛}
and 𝜀𝑥 = max {𝜀 (𝑥 𝑗 ), 0 ≤ 𝑗 < 𝑛}. Then the error 𝜀 (𝑦𝑖 ) is
bound by

𝜀 (𝑦𝑖 ) ≤ 𝑛·
[
𝜀𝑤𝑖 · Ψ + 𝜀𝑥 · Ω𝑖 + 𝜀𝑤𝑖 · 𝜀𝑥 + 𝜀×

]
. (17)

Proof Using equations (5) and (6) of Section 3.1, for a layer

of 𝐿 neurons taking 𝑛 entries each, and for all 0 ≤ 𝑖 < 𝐿, we
have

𝜀 (𝑦𝑖 ) =
𝑛−1∑︁
𝑗=0

(
𝜀 (𝑤𝑖 𝑗 ) · 𝑥 𝑗 + 𝜀 (𝑥 𝑗 ) ·𝑤𝑖 𝑗 + 𝜀 (𝑤𝑖 𝑗 ) · 𝜀 (𝑥 𝑗 ) + 𝜀×

)
.

Then, using Ω𝑖 , Ψ and 𝜀𝑤𝑖 , we can bound 𝜀 (𝑦𝑖 ) by

𝜀 (𝑦𝑖 ) ≤
𝑛−1∑︁
𝑗=0

(
𝜀𝑤𝑖 · Ψ + 𝜀𝑥 · Ω𝑖 + 𝜀𝑤𝑖 · 𝜀𝑥 + 𝜀×

)
,

≤ 𝑛·
[
𝜀𝑤𝑖 · Ψ + 𝜀𝑥 · Ω𝑖 + 𝜀𝑤𝑖 · 𝜀𝑥 + 𝜀×

]
.

(18)

■
Note that the bound given in Equation (17) is conservative.

We believe that it could be tighten at the price of a more

complex proof.

Let 𝑄i𝑥 ,f𝑥 and 𝑄i𝑖 ,f𝑖 be the formats of the input vector 𝑥

and the working format of the current neuron 𝑖 , respectively.

In Equation (18), Ω𝑖 is known statically and Ψ is computed

by range analysis and assumed to be known at constraint

generation time. Additionally, 𝜀𝑤𝑖 ≤ 2
−f𝑖

and, according to

Equation (7),

𝜀× ≤ 2
−(f𝑖+f𝑥 ) − 2

−f𝑖 . (19)

Thus, the only terms that are unknown at this stage in Equa-

tion (18) are the integer quantifies f𝑥 and f𝑖 . We will see in

Section 5 that the f𝑥 and f𝑖 are computed by propagation

from one layer to the other assuming that f𝑥 is given by the

user for the first layer, just like f𝑖 for the last one.
Second, we approximate the activation functions by piece-

wise linear functions which need to be themselves translated
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into fixed-point. Property 4.2 details how we proceed for

ReLU.

Proposition 4.2 (Errors in ReLU Layers). For a ReLU func-
tion as defined in Equation (11) and for a fixed-point number
𝑥 in format 𝑄i,f , we have

𝜀
(
ReLU(𝑥)

)
≤
{
2
−f if 𝑥 ≥ 0 ,

0 otherwise . (20)

Proof Since 𝑥 is in format 𝑄i,f , we have −2−f < 𝜀 (𝑥) < 2
−f
.

Let us consider the three following cases.

𝑖) If 𝑥 ≥ 2
−f

then 𝑥 ≥ 𝜀 (𝑥) and 𝑥 − 𝜀 (𝑥) > 0. Then no

unstable test [20] may occur and 𝜀
(
ReLU(𝑥)

)
= 𝜀 (𝑥) <

2
−f
.

𝑖𝑖) If 𝑥 = 0 then ReLU(𝑥) = 0 and

ReLU(𝑥 + 𝜀 (𝑥)) =
{
𝜀 (𝑥) 𝑖 𝑓 𝜀 (𝑥) > 0

0 otherwise

.

In any case, 𝜀 (𝑥) < 2
−f
.

𝑖𝑖𝑖) Finally, if 𝑥 ≤ 2
−f
, then no unstable test may occur,

Relu(𝑥) = Relu(𝑥 + 𝜀 (𝑥)) = 0 and 𝜀
(
ReLU(𝑥)

)
= 0. ■

We omit the piece-wise linearization and the computation

of the errors for the other activation functions such as soft-
max or sigmoid. They are detailed in [5]. Let us now focus

on convolutions.

Proposition 4.3 (Errors in Convolutional Layers). Let𝑀 ′
𝑖 𝑗

be one of the values computed during a convolution follow-
ing Equation (14). Let Γ = max {|𝑘𝑖 𝑗 |, 0 ≤ 𝑖, 𝑗 < 𝑠𝐾 }, let
Ψ𝑖 = max {|𝑀𝑖 𝑗 |, 0 ≤ 𝑗 < 𝑠𝑥 }, 0 ≤ 𝑖 < 𝑠𝑦 and let
𝜀𝑘 = max {𝜀 (𝐾𝑖 𝑗 ), 0 ≤ 𝑖, 𝑗 < 𝑠𝐾 } and 𝜀𝑥𝑖 = max {𝜀 (𝑀𝑖 𝑗 ), 0 ≤
𝑗 < 𝑠𝑥 } for 0 ≤ 𝑖 < 𝑠𝑦 . The error on𝑀 ′

𝑖 𝑗 is bounded by

𝜀 (𝑀 ′
𝑖 𝑗 ) ≤

𝑠𝐾 −1∑︁
𝑢=0

𝑠𝐾 ·
[
𝜀𝑘 ·Ψ𝑖+𝑢 + 𝜀𝑥𝑖+𝑢 · Γ + 𝜀𝑘 · 𝜀𝑥𝑖+𝑢 + 𝜀×

]
. (21)

Proof Following the reasoning used for the fully connected

layer, we compute only one error per row of𝑀 ′
, that is, for

all 0 ≤ 𝑗 < 𝑠′𝑥 , 𝜀 (𝑀 ′
𝑖 𝑗 ) ≤ 𝜀 (𝑦𝑖 ) where

𝜀 (𝑦𝑖 ) ≤
𝑠𝐾 −1∑︁
𝑢=0

𝑠𝐾 −1∑︁
𝑗=0

(
𝜀𝑘 · Ψ𝑖+𝑢 + 𝜀𝑥𝑖+𝑢 · Γ + 𝜀𝑘 · 𝜀𝑥𝑖+𝑢 + 𝜀×

)
≤

𝑠𝐾 −1∑︁
𝑢=0

𝑠𝐾 ·
[
𝜀𝑘 · Ψ𝑖+𝑢 + 𝜀𝑥𝑖+𝑢 · Γ + 𝜀𝑘 · 𝜀𝑥𝑖+𝑢 + 𝜀×

]
.

■
Again, the unknowns in Equation (4) are 𝜀𝑥𝑖 , 𝜀𝑘 and 𝜀×

which only depend on f𝑥𝑖 and on the precision f𝑘 in which

is performed the convolution. Both f𝑥𝑖 and f𝑘 will be the

variables of our system of constraints in Section 5.

We consider now max pool layers for which we are go-

ing to compute only one error per row of 𝑀 ′
, as stated in

Property 4.4.
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Figure 2. Notations used to represent a DNN at constraint

generation time.

Proposition 4.4 (Errors in Max Pooling Layers). Let us
consider a max pool layer of factor (𝑝𝑦, 𝑝𝑥 ) and let 𝜀𝑥𝑖 =

max {𝜀 (𝑀𝑖 𝑗 ), 0 ≤ 𝑗 < 𝑠𝑥 } for 0 ≤ 𝑖 < 𝑠𝑦 . Then, for 0 ≤ 𝑖 < 𝑠′𝑦
and 0 ≤ 𝑗 < 𝑠′𝑥 ,

𝜀 (𝑀 ′
𝑖 𝑗 ) ≤ 2 · max

0≤𝑢<𝑝𝑦
𝜀𝑥𝑖 ·𝑝𝑦+𝑢 . (22)

Intuitively, in Equation (22), the factor 2 is added to cover

the situations where some unstable test could occur. In this

case, the error may be twice greater than 𝜀𝑥𝑖 ·𝑝𝑦+𝑢 .

Finally, an upsampling layer (in nearest mode) only dupli-

cates the elements of the matrix𝑀 and the errors follow as

stated in Property 4.5.

Proposition 4.5 (Errors in Upsampling Layers). For an up-
sampling layer of factor 𝑠 as defined in Equation (16) and for
0 ≤ 𝑖 < 𝑠′𝑦 , 0 ≤ 𝑗 < 𝑠′𝑥 , we have

𝜀 (𝑀 ′
𝑖 𝑗 ) = 𝜀 (𝑀⌊ 𝑖

𝑠
⌋,⌊ 𝑗

𝑠
⌋) . (23)

5 Constraint Generation
In this section, we introduce the constraints which model

the accuracy of the fixed-point computations inside a neural

network composed of the layers introduced in Section 3.2.

These constraints, summarized in Figure 3, are derived from

the error propagation equations introduced in Section 4. We

introduce some useful properties in Section 5.1. Next, the

constraint generation is described in Section 5.2 and the cost

function is discussed in Section 5.3.

5.1 Preliminary Properties
First of all, the following lemma and corollary are used in

the proofs of properties 5.3 and 5.4.

Lemma 5.1. Let 𝑎 > 0 and 𝑏 > 0 be two real numbers, then

log
2
(𝑎 + 𝑏) ≤ max

(
log

2
(𝑎), log

2
(𝑏)

)
+ 1 . (24)

Proof Since 𝑎 > 0 and 𝑏 > 0, 𝑎 + 𝑏 ≤ 2 · max(𝑎, 𝑏) and by

monotony of the log
2
function,

log
2
(𝑎 + 𝑏) ≤ log

2

(
2 ·max(𝑎, 𝑏)

)
≤ log

2

(
max(𝑎, 𝑏)

)
+ 1 .

Using again the monotony of the log
2
function, we know that

log
2

(
max(𝑎, 𝑏)

)
= max

(
log

2
(𝑎), log

2
(𝑏)

)
. Consequently,

log
2
(𝑎 + 𝑏) ≤ max

(
log

2
(𝑎), log

2
(𝑏)) + 1 .

■
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𝐶𝑖𝑛𝑖𝑡 =

{
f0𝑥 𝑗 ≤ Θ𝑖𝑛 : 0 ≤ 𝑗 < I0

}
∪
{
Θ𝑜𝑢𝑡 ≤ f ℓ−1𝑦𝑖

: 0 ≤ 𝑖 < Oℓ−1
}

(Init)

𝐶𝑙𝑖𝑛𝑘 =

{
f𝑘+1𝑥𝑖

≤ f𝑘𝑦𝑖 : 0 ≤ 𝑘 < ℓ − 1, 0 ≤ 𝑖 < O𝑘
}

(Link)

𝐶𝑘𝐹𝐶 =

{
f𝑘𝑖 ≥ f𝑘𝑦𝑖 + iΨ + ⌞log

2
(𝑛)⌟ + 1

f𝑘𝑥𝑖 ≥ f𝑘𝑦𝑖 + iΩ𝑖 + ⌞log2 (𝑛)⌟ + 1

: 0 ≤ 𝑖 < O𝑘
}

(FC)

𝐶𝑘𝑅𝑒𝐿𝑈 =
{
f𝑘𝑥𝑖 ≥ f𝑘𝑦𝑖 + 1 : 0 ≤ 𝑖 < O𝑘

}
(ReLU)

𝐶𝑘𝑐𝑜𝑛𝑣𝑜 =


f𝑘 ≥ f𝑘𝑦𝑖 + iΨ + ⌞log

2
(𝑛)⌟ + 2

f𝑘𝑥𝑖+𝑢 ≥ f𝑘𝑦𝑖 + iΓ + ⌞log2 (𝑛)⌟ + 2

f𝑘𝑥𝑖+𝑢 ≥ f𝑘𝑦𝑖 − f𝑘 + ⌞log
2
(𝑛)⌟ + 3

:

0 ≤ 𝑢 < 𝑠𝐾
0 ≤ 𝑖 < O𝑘

 (Convo)

𝐶𝑘
𝑚𝑎𝑥𝑝𝑜𝑜𝑙

=

{
f𝑘𝑦𝑖 ≤ f𝑘𝑥𝑖×𝑝𝑦+𝑝 + 1 : 0 ≤ 𝑝 ≤ 𝑝𝑦, 0 ≤ 𝑖 < O𝑘

}
(MaxPool)

𝐶𝑘𝑢𝑝𝑠𝑎𝑚𝑝 =

{
f𝑘𝑦𝑖 ≤ f𝑘𝑥⌞ 𝑖

𝑝𝑦
⌟

: 0 ≤ 𝑖 < O𝑘
}

(UpSamp)

Figure 3. Constraints generated to determine the fixed point formats of a DNN.

Corollary 5.2. Let 𝑎1, . . . , 𝑎𝑛 be 𝑛 positive real numbers, then

log
2
(𝑎1 + . . . + 𝑎𝑛) ≤ max

(
log

2
(𝑎1), . . . , log2 (𝑎𝑛)

)
+ 𝑛 − 1 .

(25)

Proof By induction on 𝑛, using Lemma 5.1. ■
We present hereafter two properties that will allow us to

replace the inequalities of properties 4.1 and 4.3 by integer

constraints. First, let us consider a dot product performed by

a fully connected layer L𝑘 . We have the following property.

Proposition 5.3 (Constraints for FC Layers). Let Ψ, Ω𝑖 and
𝜀𝑤𝑖 be defined as in Property 4.1 and let 𝑛 = I𝑘 . Let f𝑘𝑖 =

⌜log
2
(𝜀𝑤𝑖 )⌝ and f𝑘𝑥𝑖 = ⌜log2 (𝜀𝑥𝑖 )⌝ be the precision of the 𝑖𝑡ℎ

neuron of L𝑘 and of the 𝑖𝑡ℎ input, respectively. Finally, let
iΩ𝑖 = ⌜log2 (Ω𝑖 )⌝ and iΨ = ⌜log

2
(Ψ)⌝. Then we have���� f𝑘𝑖 ≥ f𝑘𝑦𝑖 + iΨ + ⌞log

2
(𝑛)⌟ + 1

f𝑘𝑥𝑖 ≥ f𝑘𝑦𝑖 + iΩ𝑖 + ⌞log2 (𝑛)⌟ + 1

(26)

Proof Let 2
−f𝑘𝑦𝑖 be an upper bound on the error introduced

by the 𝑖𝑡ℎ neuron of the layer, following equations (18) and

(19), since 𝜀𝑤𝑖 ≤ 2
−f𝑘
𝑖 and 𝜀𝑥𝑖 ≤ 2

−f𝑘𝑥𝑖 , we have

𝑛·[2−f𝑘𝑖 ·Ψ+2−f𝑘𝑥𝑖 ·Ω𝑖+2−f
𝑘
𝑖 ·2−f𝑘𝑥𝑖 + 2−f𝑘𝑖 ·2−f𝑘𝑥𝑖 −2−f𝑘𝑖 ] ≤ 2

−f𝑘𝑦𝑖

and

−f𝑘𝑦𝑖 ≤ log
2

(
𝑛 ·

[
2
−f𝑘
𝑖 ·Ψ+2−f𝑘𝑥𝑖 ·Ω𝑖 +2 ·2−f

𝑘
𝑖 ·2−f𝑘𝑥𝑖 −2

−f𝑘
𝑖

] )
.

(27)

We have the following equations:

𝑖) log
2
(2−f𝑘𝑖 · Ψ) = iΨ − f𝑘𝑖 ,

𝑖𝑖) log
2
(2−f𝑘𝑥𝑖 · Ω𝑖 ) = iΩ𝑖 − f𝑘𝑥𝑖 ,

𝑖𝑖𝑖) log
2
(2 · 2−f𝑘𝑖 · 2−f𝑘𝑥𝑖 ) = 1 − f𝑘𝑖 − f𝑘𝑥𝑖 ,

𝑖𝑣) log
2
(−2−f𝑘𝑖 ) = f𝑘𝑖 .

Using Corollary 5.2, we have to take the maximum of these

four quantifies but the last two ones corresponding to points

𝑖𝑖𝑖) and (𝑖𝑣) are implied by the ones of points 𝑖) and 𝑖𝑖) and
may be omitted. Then using simply Lemma 5.1 instead of

Corollary 5.2, Equation (27) becomes

−f𝑘𝑦𝑖 ≥ max

(
iΨ − f𝑘𝑖 , iΩ𝑖 − f𝑘𝑥𝑖

)
+ ⌞log

2
(𝑛)⌟ + 1 .

It follows that

f𝑘𝑦𝑖 ≤ min

(
f𝑘𝑖 − iΨ, f𝑘𝑥𝑖 − iΩ𝑖

)
− ⌞log

2
(𝑛)⌟ − 1 . (28)

Finally, by decomposing the min of Equation (28), we obtain

Equation (26). ■
Similarly, the following property is used to replace the

inequalities of properties 4.3 by integer constraints in con-

volutions.

Proposition 5.4 (Constraints for Convolutional Layers).
Let Γ and Ψ𝑖 , 𝜀𝑘 and 𝜀𝑥𝑖 be defined as in Property 4.3 and
let 𝑛 = I𝑘 . Let f𝑘 = ⌜log

2
(𝜀𝑘 )⌝ be the precision of the con-

volution performed at Layer L𝑘 , let f𝑥𝑖 = ⌜log2 (𝜀𝑥𝑖 )⌝ be the
precision of the 𝑖𝑡ℎ line of inputs and let iΨ𝑖 = ⌜log

2
(Ψ𝑖 )⌝.

Then������
f𝑘 ≥ f𝑘𝑦𝑖 + iΨ + ⌞log

2
(𝑛)⌟ + 2 ,

f𝑘𝑥𝑖+𝑢 ≥ f𝑘𝑦𝑖 + iΓ + ⌞log2 (𝑛)⌟ + 2, 0 ≤ 𝑢 < 𝑠𝐾 ,

f𝑘𝑥𝑖+𝑢 ≥ f𝑘𝑦𝑖 − f𝑘 + ⌞log
2
(𝑛)⌟ + 3, 0 ≤ 𝑢 < 𝑠𝐾 .

(29)
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Proof From Equation (21), using the notations introduced

above, and since since 𝜀𝑘 ≤ 2
−f𝑘

and 𝜀𝑥𝑖 ≤ 2
−f𝑥𝑖 , we have

𝑠𝐾 ·∑𝑠𝐾 −1
𝑢=0

[
2
−f𝑘 · Ψ𝑖+𝑢 + Γ · 2−f𝑥𝑖+𝑢 + 2

−f𝑘 · 2−f𝑥𝑖+𝑢
+2−f𝑘 · 2−f𝑥𝑖 − 2

−f𝑘
𝑖

]
≤ 2

f𝑘𝑦𝑖
. (30)

As in Property 5.3, we use the following equations.

𝑖) log
2
(2−f𝑘 · Ψ𝑖+𝑢) = iΨ𝑖+𝑢 − f𝑘 ,

𝑖𝑖) log
2
(Γ · 2−f𝑥𝑖+𝑢 ) = iΓ − f𝑥𝑖+𝑢 ,

𝑖𝑖𝑖) log
2
(2 · 2−f𝑘 · 2−f𝑥𝑖+𝑢 ) = 1 − f𝑘 − f𝑥𝑖+𝑢 ,

𝑖𝑣) log
2
(−2−f𝑘 ) = f𝑘 .

Using Corollary 5.2, we have to take the maximum of three

of these quantities for all 0 ≤ 𝑢 < 𝑠𝐾 (the last one being

implied by the others.) By rewriting Equation (30), we obtain

Equation (29). ■

5.2 Constraint Generation
For constraint generation, we consider a DNN made of ℓ

layers L0,L1, . . . ,Lℓ−1 (see Figure 2). For the sake of sim-

plicity, we consider that the inputs and outputs of each layer

have a depth of one. Nevertheless, in our implementation,

we accept input shapes of greater depth (three-dimensional

shapes instead of the two-dimensional shapes considered

here to avoid cumbersome notations.)

Let I𝑘 and O𝑘 respectively be the number of inputs and

outputs of L𝑘 , 0 ≤ 𝑘 < ℓ . Let 𝑥𝑘𝑗 , 0 ≤ 𝑗 < I𝑘 , (resp. 𝑦𝑘𝑖 ,
0 ≤ 𝑖 < O𝑘 ) be the 𝑗𝑡ℎ input (resp. 𝑖𝑡ℎ output) of Layer L𝑘 ,
0 ≤ 𝑘 < ℓ and let 𝜀 (𝑥𝑘𝑗 ) and 𝜀 (𝑦𝑘𝑖 ) be the errors associated to
these inputs and outputs (note that O𝑘 = I𝑘+1 for 0 ≤ 𝑘 <

ℓ − 1).

The unknowns of our system of constraints are the preci-

sions (fractional sizes f of Figure 1) f𝑘𝑥 𝑗 ∈ Z and f𝑘𝑦𝑖 ∈ Z on
the inputs and outputs of each layer, i.e. 𝜀 (𝑥𝑘𝑗 ) ≤ 2

−f𝑘𝑥𝑗 , resp.

𝜀 (𝑦𝑘𝑖 ) ≤ 2
−f𝑘𝑦𝑖 , as well as the working precision f𝑘𝑖 ∈ Z of

the neurons, 0 ≤ 𝑖 < O𝑘 . In this way, we only have integer

constraints. Recall that this greatly simplifies the resolution

by Z3 compared to real or floating-point constraints.

In Figure 3, Rule (Init) sets the error thresholds Θ𝑖𝑛 ∈ Z
and Θ𝑜𝑢𝑡 ∈ Z on the inputs and outputs of the network.

These thresholds are given by the user. Rule (Link) simply

relates the outputs of one layer to the inputs of the next

layer. Rules (FC) and (Convo) are for fully connected and

convolutional layers. They directly come from properties

5.3 and 5.4 introduced in Section 5.1. Rule (MaxPool) maps

the maximal precision of some input block of size (𝑝𝑦, 𝑝𝑥 )
to the corresponding element of the output block. Finally,

Rule (UpSamp) duplicate the precision of the input matrix

into the elements of the larger matrix.

5.3 Cost Function
As mentioned earlier, to solve the system of constraints in-

troduced in Section 5.2, we call the Z3 optimizing SMT solver

NN CV MP US FL FC RL IN CL PA

1 1 1 - 2 2 2 64 4 126

2 - - - 1 1 1 64 12 780

3 1 - - 1 1 1 144 10 1 020

4 2 1 1 1 1 3 144 10 390

5 - - - 2 2 1 64 8 1 176

6 1 - - 3 3 2 64 6 2 838

7 - - - 4 4 3 100 5 10 405

8 1 - - 3 3 3 144 10 8 120
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Figure 4. Top: Description of the neural networks used in

our experiments. NN: identifier of the network. Next is indi-

cated the number of layer of each kind. CV: convolutional,

MP: Max Pool, US: Up Samp, FL: Flatten, FC: Fully connected,

RL: ReLu. IN: Size of the input. CL: Number of classes. PA:

number of parameters. Botttom: Percentage of time spent

in each phase of Popinns to synthesize the fixed-point code

of the network.

[7]. To optimize the solution the solver needs a cost func-

tion and several relevant functions may be defined for this

purpose as presented in the work of [3]. In this work, we

minimize the total number of bits needed to represent the

fractional parts of the fixed-point numbers. Then our cost

function for a DNN 𝑁 made of ℓ layers L0,L1, . . . ,Lℓ−1 is

cost(𝑁 ) =
∑︁

0≤𝑘<ℓ

©«
∑︁

0≤ 𝑗<I𝑘
f𝑘𝑥 𝑗 +

∑︁
0≤𝑖<O𝑘

f𝑘𝑥 𝑗 +
∑︁

0≤𝑖<O𝑘
f𝑘𝑖
ª®¬ (31)

However, other cost functions could make sense, for ex-

ample, to minimize the number of format conversions (e.g.

before additions), to reduce the size i + f of the largest for-
mat 𝑄i,f of the values arising in the computations (e.g. to let

them fit into a predefined format such as 32 bits), to mini-

mize the size of the operators (that is

∑
0≤𝑘<ℓ

(∑
0≤𝑖<O𝑘 f

𝑘
𝑖

)
),

etc. Weighed sums of combinations of these different cost

functions could also used.
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Figure 5. Top: Relative error of the fixed-point version of

some neural network (NN2 and NN5) with respect to the

original floating-point version. Errors are measured on eval-

uations of the networks in function of the accuracy threshold

set by the user. The 2
−𝑥

curve indicates the theoretical thresh-

old. Bottom:Measurement of the energy consumption (CPU

and DRAM) of the floating-point and fixed-point versions of

our neural networks.

6 Experimental Results
In this section, we introduce some experimental results as-

sessing the efficiency of our prototype Popinns which im-

plements the technique described in Section 5 of this article.

Popinns takes as input a Tensorflow 2.0 model and

generates the C code of this model in fixed-point arithmetic.

Popinns processes in 6 stages described hereafter. Load: The
Tensorflowmodel is read and translated into Popinns inter-
nal representation. Currently, the layers accepted are dense,
conv2d, max_pooling2d, up_sampling2d and flatten. The
ReLU activation function is also handled by our tool. Range
Analysis: Once the model is extracted, a range analysis is

performed. In the current version of Popinns, this analysis is
dynamic but we plan to make it static using affine forms [6].

The dynamic analysis consists of running the DNNwith a set

of input data and taking, for each output, the join of the val-

ues obtained at each run. This gives an under-approximation

of the possible values which is acceptable in practice. Con-
straint Generation: The third stage is the generation of the

constraints. Our constraints are inequalities between linear

expressions among integer variables and constants. They are

not linear because they also contain implications to encode

the min and max operations. The variables are the precision

(number of bits) of the inputs of each layer as well as the

precision in which each operation is carried out inside each

layer. Constraint solving: The solution of the generated

constraints is computed by the z3 optimizing SMT solver [7]

that gives the optimal formats of the fixed-point numbers at

each point of the DNN. Floating-point and fixed-point
Code Synthesis: The last steps consist of synthesizing the

floating-point and fixed-point code implementing the DNN.

Popinns has been evaluated on 8 neural networks, each

made of a mix of the layers introduced in Section 3.2 and

having up to 10 000 parameters. The characteristics of these

networks are given in the left hand side of Figure 4.

The histogram in the right hand side of Figure 4 shows

the percentage of time spent by Popinns in each stage of the

synthesis process. The range analysis and the fixed-point

code generation are the longest operations. The duration of

the range analysis obviously depends on how many inputs

are used in the computation of the under-approximation (100

in our experiments). Next, it is interesting to underline that

solving the system of constraint does not require much time.

Finally, the fixed-point code is larger (and its generation

longer) because some loops are unfolded in order to use

different formats at different iterations. Overall, the time

needed for the code synthesis remains short, ranging from

2.05𝑠 for the smallest network NN1 to 5.7𝑠 for the largest

network NN7.

Concerning the accuracy of the synthesized codes, left

hand side of Figure 5 shows the relative errors of the fixed-

point code with respect to the floating-point code for two

of our networts, NN2 and NN5. The errors have been com-

puted for several thresholds (𝑥-axis) and must remain un-

der the yellow line which corresponds to the maximal al-

lowed theoretical error (note that the 𝑦-axis is in logarithmic

scale). These errors have been measured on evaluations of

the floating-point and fixed-point networks and fulfill the

user’s requirements. The right hand side of Figure 5 depicts

the energy consumed
3
by the execution of the neural net-

works. We observe that the energy consumed by the DRAM

and the CPU for fixed-point and floating-point code versions

is similar for most of our neural networks. One observation

on these results is that we do not gain much in terms of

energy, given that the fixed-point library used only returns

uniform formats in 32 bits.

3https://github.com/powerapi-ng/jouleit

https://github.com/powerapi-ng/jouleit
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Concerning the evaluation on an embedded platform, we

tested all the synthesized neural networks on a STM32F207ZG

micro- controller with a 32-bit Arm® Cortex®-M3 CPU (120

MHz max) with 1 MByte of Flash program memory and 128

Kbyte of RAM.We used Miosix, an OS kernel designed to run

on 32bit micro-controllers
4
. As the Cortex®-M3 ARM core

lacks the support for hardware floating-point, to compile all

the benchmarks we have used the software floating-point

provided by the compiler when the -msoft-float command

line switch is passed. With the switch enabled, the compiler

will not generate any floating-point unit (FPU) instructions,

and appropriate function calls to emulate floating-point com-

putation are generated by passing floating-point arguments

in integer registers. The time measurements were taken by

querying the high-resolution timer provided by the Miosix

API, implemented by exploiting one of the micro-controller’s

internal timers. Concerning our tool setup, we will evaluate

NNs with a single user-given threshold requirement. This

precision was chosen as the best requirement that gives the

lowest relative error with respect to the original floating-

point result. For the energy measurement, we employed the

X-NUCLEO-LPM01A expansion board which is a 1.8 V to 3.3

V programmable power supply source with advanced power

consumption measurement capability.

The results depicted in Figure 6 show that out of 8 neu-

ral networks, only NN1, NN2 , NN3 and NN4 can run on

the board. This is due to the small amount of flash memory

available in this micro-controller, which is not sufficient for

the sizes of the remaining neural networks. We observe, on

the top hand side of Figure 6, that the fixed-point neural net-

works generated are 2× to 4× faster than the floating-point

networks as for NN1 and NN4 respectively. In addition, the

fixed-point versions of NN2 and NN3 manage to run on the

board in nomore than 0.5 seconds, unlike their floating-point

versions, which consume a lot of memory on the board. In

terms of power consumption measured with the X-NUCLEO-

LPM01A STM32 power shield, the fixed-point neural net-

works generated by our method consume less energy than

their original floating-point versions. For instance, for NN4,

the fixed-point model consumes about 0.25 𝜇𝐽 less energy

than the floating-point model. Our smallest neural network

NN1 consumes only 0.076𝜇𝐽 in its fixed-point version com-

pared to 0.130𝜇𝐽 in its floating-point version.

7 Related Work
While much effort has been devoted to the safety and robust-

ness of deep learning code, here we focus only on studies

conducted on the effects of reduced precision for neural net-

works using fixed-point arithmetic. There are a number of

different reduced precision data representations, the more

standard floating-point based approaches [8, 10, 14] and cus-

tomized fixed-point synthesis schemes [5, 17, 23].

4https://miosix.org/
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Figure 6. Measurement of execution time in seconds (top)

and power consumption in 𝜇𝐽 (bottom) of the floating-point

and fixed-point synthesized neural networks tested on the

STM32 Nucleo-144 board.

Low-Precision Floating-Point Inference. The main ap-

proach proposed in [10] consists on tuning the precision

of an already trained neural network, assumed to behave

correctly at some precision, in such a way that, after tuning,

the network behaves almost like the original one while per-

forming its computations in lower precision. Based on the

formal modeling of the propagation of rounding errors, a set

of linear constraints among integers is generated which can

be solved by linear programming. However, the prototype

implemented is limited to floating-point arithmetic, and no

fixed-point solution has been proposed to run a DNN.

The work proposed in[14] presents a semi-automated

framework to bound and interpret the impact of rounding

errors due to the precision choice for inference in generic

DNNs. The framework can receive any TensorFlow/Keras

model in the front-end and computes and then propagates

rounding errors through the computations for the back-end

by affine and interval arithmetic. However, this work is lim-

ited to floating-point precision, whereas ours goes further

by converting floating-point formats to fixed-point ones

and targeting embedded architectures such as STM32 micro-

controllers. Ferro et al. [8] proposed a floating-point auto-

tuning tool on different kinds of neural networks. Their

https://miosix.org/
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tuning approach is based on a stochastic arithmetic in or-

der to obtain the lowest precision for each of its parame-

ters. However, this work do not propose a conversion from

floating-point to fixed-point neural networks.

Flexpoint [12] is a data format based on tensors with an

N-bit mantissa storing an integer value in two’s comple-

ment form, and an M-bit exponent e, shared across all ele-

ments of a tensor. The 16-bit Flexpoint closely matches 32-bit

floating-point format in training several deep learning mod-

els without modifying the models or their hyper-parameters.

However, Flexpoint presents potential limitation in perfor-

mance and efficiency when compared to more aggressive

quantization schemes.

Low-Precision Fixed-Point Inference. The quantization
method presented in the recent Aster [15] tool assigns mixed

fixed-point precision to the neural networks that solve re-

gression tasks, while guaranteeing a provided error bound.

Aster optimizes the number of bits needed to implement a

network and generates more efficient fixed-point code for

custom hardware such as FPGAs. However, the tool focuses

only on neural network controllers that are typically regres-

sion models. Another solution to synthesize fixed-point code

based on constraint generation is described in [5]. The pro-

posed tool generates a system of constraints with integer

variables that can be solved by an SMT solver. Consequently,

the solution to this system give the minimal number of bits

required for each neuron and each synaptic weight. Unlike

our tool which handle several type of neural network layers,

this approach is limited to fully connected layers.

The work presented in [9] studied the effect of limited

precision data representation and computation on neural net-

work training. their results show that substituting floating-

point units with fixed-point arithmetic circuits comes with

significant gains in the energy efficiency and computational

throughput, while potentially risking performance of the

neural network. Shiftry [13] is a compiler from high-level

floating-point ML models to fixed-point C programs with

8-bit and 16-bit integers, with lower memory requirements.

It uses a data-driven float-to-fixed procedure and a RAM

management mechanism.

8 Conclusion and Future Work
In this article, we have introduced a new method to generate

fixed-point code for a DNN written in Tensorflow 2.0with
formal guarantees on error bounds. This technique has been

implemented in a prototype tool, Popinns. The originality
of our method is to rely on a formal semantics describing the

propagation of the round-off errors throughout the network.

Consequently, we may minimize the size of the fixed-point

formats and ensure that an error threshold on the results is

satisfied by solving a system of constraints. We have shown

that the time needed for code synthesis (including constraint

solving) remains small: about 5 seconds for a network with

10 000 weights.

In future work, we aim at adding more kinds of layers to

our tool and optimize the execution-time of the code gen-

erated. Additionally, we aim to synthesize VHDL code to

implement directly the neural networks on FPGA or ASIC

circuits. As reducing the energy footprint of programs is a

subject of interest to us, our goal is to optimize our fixed-

point generated codes by using a fixed-point library that

provides mixed precision instead of the one used in this ar-

ticle. We also want to use other high-performance energy

measurement tools on embedded architectures. Another per-

spective is to compare Popinns to other tools enabling to

translate floating-point DNN into fixed-point [17], even if

these tools do not provide formal bounds on the errors in-

troduced by the translation.
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