
HAL Id: hal-04567240
https://enac.hal.science/hal-04567240v1

Submitted on 3 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Reactive System-specific Compilation Chain from
Synchronous Dataflow Models to FPGA Netlist
Inès Winandy, Arnaud Dion, Pierre-Loïc Garoche, Florent Manni

To cite this version:
Inès Winandy, Arnaud Dion, Pierre-Loïc Garoche, Florent Manni. A Reactive System-specific Com-
pilation Chain from Synchronous Dataflow Models to FPGA Netlist. SMC-IT/SCC 2024, 2024. �hal-
04567240�

https://enac.hal.science/hal-04567240v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A Reactive System-specific Compilation Chain from
Synchronous Dataflow Models to FPGA Netlist

Inès Winandy∗, Arnaud Dion†, Pierre-Loı̈c Garoche∗
Fédération ENAC ISAE-SUPAERO ONERA

Université de Toulouse, Toulouse, France
∗ first.last@enac.fr, †first.last@isae-supaero.fr

Florent Manni
CNES - Centre national d’études spatiales

Toulouse, France
florent.manni@cnes.fr

Abstract—Modern Field Programmable Gate Arrays (FPGAs)
offer a solution to several issues related to real-time on-board
systems, such as guaranteed execution time. They are currently
considered as target platforms for space applications. How-
ever, the complexity of producing circuits on these components
poses a challenge to their widespread adoption. To address
this issue, high-level synthesis tools provide another layer of
abstraction above the logic circuit design process, for example
compiling C code into Hardware Description Languages such
as VHDL or Verilog. However, high-level synthesis results are
poorly predictable and do not guarantee the efficient use of
recent FPGA capabilities provided by new primitives like digital
signal processor or random-access memory. In this paper we
propose a compilation chain dedicated to reactive systems, ie.
controllers, providing a more predictable synthesis process for
critical embedded control applications. The implemented solution
demonstrates timing performance equivalent to the traditional
synthesis process with a more predictable result.

Index Terms—High Level Synthesis (HLS), Embedded systems,
Guidance, Navigation and Control (GNC), Dataflow Program-
ming, Computer-aided Design (CAD)

I. INTRODUCTION

One can compare the different hardware families with
respect to flexibility, predictability and computation speed.
Flexibility denotes the ability to change the function performed
by the hardware. Predictability is associated to execution time
and the need in numerous embedded system to guarantee strict
real-time deadlines. Both predictability and computation speed
are mandatory requirements for embedded aerospace appli-
cations such as Guidance Navigation and Control systems.
We can associate these properties to the main families of
hardware. Application Specific Integrated Circuits (ASIC) has
predictability and computation speed but their functionality
cannot be changed. Non-recurrent engineering (NRE) costs
are typically very high. Central Processing Units (CPU) are
very flexible but are less predictable and typically slower
at application level because of the layers of software piled
to support application execution (kernel, OSX, etc). Last,
Field Programmable Gate Array (FPGA) is a third family of
hardware that combines all these property. Recently FPGA
have become very large components and are now considered
as an interesting alternative to regular CPUs. In the context
of space applications, radiation tolerance has been an obstacle
to FPGA adoption for a long time, but nowadays space grade

FPGA exist [13], providing a great opportunity for the space
sector.

Embedded guidance navigation and control (GNC) systems
are safety critical systems that would benefit from FPGA
usage. For example, researchers showed that model predictive
control (MPC) computation can be executed at Megahertz
rate on an FPGA [9]. However, the design of such a high-
performance circuit is the result of a hand made optimized
design, by both control engineers and FPGA experts. FPGA
programming and configuration are a tedious process which
requires knowledge in digital circuit design. Some tools aim
to facilitate FPGA circuit generation for non-specialized de-
velopers. However the resulting performance of automatically
generated circuits is often below hand made design. Another
issue related with these toolchains is the lack of traceability in
the produced circuits. Indeed, FPGA design involves complex
algorithms translating input description into circuits. To obtain
an efficient circuit, the process is typically very costly, both in
time and resources, and it doesn’t provide traceability informa-
tion as required by certification authorities in the aeronautics
industry. These issues are mainly due to the uncertainty in
primitive inference process. In addition, recent FPGAs contain
high-performance primitives that cannot be inferred without
using specific annotation.

In this paper, we aim at providing another FPGA synthesis
toolchain, focused on control systems for space applications.
Similarly to the generation of code for aircraft, following the
DO178-C regulation [10], our toolchain emphasizes on the
traceability between the input description and the produced
circuit.

We made the following contributions:
• a toolchain translating input models in Lustre [5] into

Reticle [12], a hardware description language instantiated
on a specific FPGA architecture (cf. Section III);

• the approach guarantees the use of specific primitives
and provides more fine grain control on the produced
circuit (cf. Sections III-B and III-C), ensuring high per-
formances, while preserving traceability information for
certification purpose (cf. Section III-D);

• we extended the tool Reticle to target Xilinx Artix 7
FPGA (cf. Section III-E)

• the compilation toolchain performs a quicker synthesis
than proprietary tools (cf. Section IV-B).



Fig. 1: FPGA Architecture

The paper is structured as follows. In the next section we
recall basic design process of FPGA and introduce the reader
to both the Reticle hardware description language and Lustre,
a synchronous dataflow language. Section III presents our
compilation scheme from Lustre to Reticle. Experiments are
presented in Section IV. Section V presents the positioning
of our contribution with respect to related works, while Sec-
tion VI concludes.

II. BACKGROUND

The design of an FPGA circuit is a specific process. We
first introduce the reader to the architecture of the FPGA
before describing the classical design process, typically from
Hardware Description Languages (HDL) such as VHDL or
Verilog. We then present the recent new synthesis approach of
Reticle and give a short introduction to the Lustre language.

A. FPGA architecture

A Field Programmable Gate Array (FPGA) is a type of
reconfigurable hardware component. The architecture of an
FPGA consists of a collection of primitives placed onto an
interconnection matrix. These primitives are grouped in rows
and columns, as shown in Figure 1. In addition to coordinate,
Basic Element Location (BEL) annotations are used to identify
individual primitive. Configuration of an FPGA consists in
activating connections between targeted primitives to create a
circuit achieving an expected behaviour. The basic components
of an FPGA are its Configurable Logic Blocks (CLBs), These
blocks contain configurable Lookup Tables (LUTs), multiplex-
ers (MUX), carry primitives (CARRY4/CARRY8), and flip-
flops (FDRE). Some FPGAs also includes specific primitives
such as Digital Signal Processors (DSPs) and random-access
memory (RAM). While these primitives can theoretically be
implemented using regular CLBs, their implementation is
time-consuming, resource-intensive, less efficient, and less
predictable than using the predefined one. This is why it is
recommended to use dedicated primitives for specific applica-
tions, such as arithmetic computation and data storage.

Fig. 2: FPGA circuit design workflow

B. Classical development flow

The design flow for FPGA circuits is an iterative pro-
cess that involves several steps, as shown in Figure 2. The
main difference between FPGA programming and software
programming lies in the final usage of the source code. In
software programming, the source code is compiled to produce
executable code that can be read by the host machine, whereas
in FPGA programming, the source code is synthesised to
create the machine on a targeted device.

The initial stage of FPGA circuit design involves producing
a code using a Hardware Description Language (HDL). This
process typically begins by creating a behavioural description
of the circuit to define and simulate its expected behaviour.
After validation, the description needs to be refined to produce
a register transfer level (RTL) representation that details the
data exchanges between registers in the future design. The
synthesis process begins at this point, where the RTL code is
transformed into a list of components and their interconnec-
tions, known as a netlist. This netlist is then placed on the
targeted FPGA design during implementation, and a bit file
can be generated to configure it. Simulations are performed
at each stage for validation or code refinement in case of test
failure.

The production of RTL code is a crucial step in gen-
erating an efficient design and is particularly challenging
for non-specialist developers: it requires adapting the system
description while considering hardware design constraints. A
synthesizable code must contain sufficient information to infer
expected components; otherwise, the synthesis result may be
an inefficient or non-functional circuit. Listing 1 provides
an example of well-formed RTL code. The module’s header



Fig. 3: Example of a Netlist

1

2 module main ( input wire clock,
3 input wire reset,
4 input wire [7:0] a,
5 input wire [7:0] b,
6 input wire en,
7 output reg [7:0] y);
8 wire [7:0] t0;
9 assign t0 = a & b;

10 always @(posedge clock) begin
11 if(reset) begin
12 y <= 0;
13 end else if(en) begin
14 y <= t0;
15 end
16 end
17 endmodule

Listing 1: RTL code example (in Verilog)

describes its inputs and outputs, which include a clock (to
ensure timings and validity of other signals in a sampled
time), the inputs (a and b), the output (y), a reset signal
(for register reset), and a clock enabler (en). The program
declares and computes the intermediate signal t0 in its body.
At each clock cycle, t0 is stored in the y register if the
clock is enabled. This example illustrates how a simple AND
operation can become complex to describe accurately in HDL.
To address this challenge, high-level synthesis (HLS) can
be performed to produce RTL representation from higher-
level language code, typically C code. Regardless of the code
production method, the performance of the resulting circuit
may vary depending on the synthesis tool chain.

The aim of the synthesis process is to create a circuit
that corresponds to the RTL representation by generating a
netlist and placing its components on the targeted device.
This process involves several steps, which often include opti-
mization strategies to increase the performance of the circuit.
These optimizations involve both the choice of primitives to
foster parallelism and their placement to reduce propagation
times. Because of the wide variety of FPGA boards and
their contained primitives, HDL synthesizers require specific
writing of an operation to enable the inference of a specific
primitive such as DSPs. As a result, these synthesizers are

Fig. 4: Reticle compilation pipeline

typically not able to infer these DSPs without proper writing
by the developer. Figure 3 displays the netlist generated after
synthesizing the previous example, which exclusively contains
look up tables and flip-flops. When performing a single bit
operation, this implementation may be efficient. However, as
the number of bits and operations increases, this efficiency
may not be maintained. Therefore, circuits that process a large
number of operations between larger data types may benefit
from using DSP.

C. The Reticle approach

Reticle [12] provides a solution for generating a placed
netlist from an intermediate representation (IR). Therefore,
Reticle serves as a synthesis tool chain that uses an alternative
to classical RTL representation. Figure 4 details its translation
flow: Reticle IR is combined with a target specific file describ-
ing patterns of implementation choices. The Reticle IR is first
transformed into an parametrized assembly code (ASM). The
choice of the parameters amounts to place the components on
the FPGA board. The resulting circuit is generated as a Verilog
netlist that can then be sent to the FPGA.

Reticle IR is a three address code using grammar pre-
sented in Figure 5. We recall that three address expression
do not allow nesting of operators but instead require each
subterm to be associated with a dedicated variable. A Reticle
program consists in a main function composed of a list of
instructions. Instruction can either be a ”wire” or a ”primitive”
instruction. Wire instructions denote simple wiring signals (eg:
assignment, extraction, concatenation) it uses wire operators ⊕
(eg: id, cat, ext ...) while primitive instructions denote signal
processing with primitive operators such as arithmetic, bitwise
or memory operations. In both cases, a sequence of integer
parameters i∗ allows to specify bit indices for these operations.



fun ∈ Function ::= n(υ : τ)∗ → (υ : τ)+{ins+}
ins ∈ Instruction ::=wire | prim
wire ∈ Wire ::= υ : τ = ⊕[i∗](υ∗)
prim ∈ Primitive ::= υ : τ = ⊞[i∗](υ+)@res
res ∈ Resource ::=?? | ρ
ρ ∈ ResourceType ::= lut | dsp | lram | bram | uram
⊕ ∈ WireOp
⊞ ∈ PrimOp
i ∈ Z
υ ∈ V ariable
τ ∈ bool, int,

−→
int

?? ∈ Wildcard

Fig. 5: IR Grammar

1 def main(a: bool, b: bool, en:bool) -> (y: bool)
{

2 t0:bool = and(a, b);
3 y:bool = reg[0](t0, en);
4 }

Listing 2: IR code example

Primitive instructions ⊞ can be explicitly associated with a set
of hardware resources using the suffix notation @: ?? denotes
a wildcard while a LUT, a DSP or different kinds of RAM
can be requested. Last, Reticle variables are of type boolean,
integer or vector of integers. The instruction selection phase
amounts to replace these primitives instructions in Reticle by
their FPGA-specific components.

A target description language (TDL) file describes pairs of
patterns (pat) and implementation (imp). These pairs of pat-
terns and implementations are used to match IR instructions,
or sequences of such, and match them with corresponding
FPGA primitives and configuration parameters using Reticle
assembly syntax. As an example, one can provide different
TDLs with different modeling choices: a first one relying
mainly on LUTs to perform the computation versus a second
one relying more on DSP. This approach gives Reticle the
ability to control the inference process and to guarantee the
usage of specific primitives. The matched primitives constitute
the assembly code that will be placed. To place the primitives,
Reticle uses the Z3 [7] SMT solver. Each free integer parame-
ter corresponds to the position of the component on the FPGA
(in the slices presenting on Figure 1). Last, translation between
the placed assembly code and Verilog input format is direct.

Listings 2, 3, 4 and 5 illustrate IR processing to ASM using
TDL. This program performs the same AND operation than
the previous Verilog code (cf. Listing 1).

1 def main(a:bool, b:bool, en:bool) -> (y:bool) {
2 y:bool = lut_and_b(a, b, en) @lut(0, 0);
3 }

Listing 3: ASM code example

1 pat lut_and_b[lut, 1, 2](a: bool, b: bool, en:
bool) -> (y: bool) {

2 t0:bool = and(a, b);
3 y:bool = reg[0](t0, en);
4 }
5

6 imp lut_and_b[x, y](a: bool, b: bool, en:bool) ->
(y: bool) {

7 t0:bool = lut2[tbl=8](a, b) @a6lut(x, y);
8 y:bool = fdre(t0, en) @aff(x, y);
9 }

10

11 pat dsp_and[dsp, 1, 1](a: bool, b: bool) -> (y:
bool){

12 y:bool = and(a, b);
13 }
14

15 imp dsp_and[x,y](a: bool, b: bool) -> (y: bool){
16 y: bool = dsp[op=and](a,b,en,en,en) @alu(x,y);
17 }

Listing 4: TDL example

1 module main (
2 input wire clock,
3 input wire reset,
4 input wire a,
5 input wire b,
6 input wire en,
7 output wire y
8 );
9 wire gnd;

10 wire vcc;
11 wire n0;
12 GND GND (
13 .G(gnd)
14 );
15 VCC VCC (
16 .P(vcc)
17 );
18 (*LOC = "SLICE_X0Y0", BEL = "A6LUT"*)
19 LUT2 # (
20 .INIT(4’h8)
21 ) __n0 (
22 .I0(a),
23 .I1(b),
24 .O(n0)
25 );
26 (*LOC = "SLICE_X0Y0", BEL = "AFF"*)
27 FDRE __y (
28 .C(clock),
29 .CE(en),
30 .D(n0),
31 .Q(y),
32 .R(reset)
33 );
34 endmodule

Listing 5: Netlist example



bt ::= real | bool | int
d ::= node f (p) returns (p); vars p let D tel
p ::= x : bt; ...; x:bt
D ::= pat = e;D | pat = e;

pat ::= x | (pat, . . . ,pat)
e ::= v | x | (e,...,)e | e → e | op(e,...,e)

| pre e | if e then e else e
v ::= i::int | r::real | true::bool | false::bool

Fig. 6: Subset of Lustre

1 node main(a,b:bool) returns(y: bool);
2 var t0: bool;
3 let
4 t0 = a and b;
5 y = 0 -> pre t0;
6 tel

Listing 6: Lustre code example

D. Lustre: a synchronous dataflow language

Lustre [5] is a synchronous data flow programming language
used in aerospace industry for the development of safety
critical application software. In this programming paradigm
for real-time systems, the function part is separated from
the timing aspect. In Lustre, a node denotes the processing
of discrete time input signal into discrete time output ones.
Computation is assumed to be instantaneous. When used on
the real-time platform, it is the duty of the engineer to ensure
that the worst-case execution time of the node is compatible
with the execution rate of the function.

A Lustre program is composed of nodes and follows the
grammar given in Figure 6. The body of a node contains
(unsorted) equations dedicated to data processing. They rely
on expressions that use arithmetic and comparison operators,
functional construct (if-then-else), temporal operators (pre,
follow by (→)). Temporal operators allow to access value of
an expression at the previous time instant and to initialize these
signals. Lustre also includes a notion of clocked expressions,
node restarts or construction to describe automata, but it is
omitted here to keep the presentation simple. A valid Lustre
node shall not define a cyclic dependency between its signals
without an explicit call to the temporal operator pre.

Listing 6 shows an example of a simple Lustre program.
The internal signal t0 is the conjunction of input flows a and
b. The output flow returns this value t0 at the previous time
instant.

The similarities between the synchronous dataflow program-
ming paradigm and the register transfer level representation
of a system is attractive. Instead of relying on the existing
HLS approach that compile these dataflow models into C and
rely on the classical toolchain to produce the final circuit, we
aim at building a more predictable toolchain, maintaining the
structure of the Lustre model, supporting traceability of the
compilation process.

Fig. 7: Lustre to FPGA compilation toolchain

d ::= node f (p) returns (p); vars p let D tel
D̃ ::= pat = ẽ;D | pat = ẽ ;
l ::= v | x
ẽ ::= l | true → false | op(l,...,l) | pre l

| if l then l else l

Fig. 8: Normalized Lustre

III. COMPILING LUSTRE INTO RETICLE

Here, we describe the compilation scheme from Lustre to
Reticle. Figure 7 shows the different steps we propose to
produce netlist from Lustre program. When considering the
examples of Listings 2 and 6, we can observe similarities
between Lustre and Reticle IR. A first step of the flow is the
production of preprocessed Lustre model, called normalized
Lustre, to support a more direct translation to Reticle IR. The
second step is the translation of this normalized Lustre into
Reticle IR, while producing the associated TDL. We can then
rely on Reticle to generate the netlist, placing the components
on the board, before configuring the FPGA with its vendor
tool Vivado.

A. Lustre preprocessing

Lustre compilation into C code can be performed efficiently
while preserving the structure of the initial model. This is the
modular compilation of synchronous dataflow language [2],
used in most state of the art compilers.

This compilation is performed in three steps. The first one
translates the input language into a smaller subset, called
normalized Lustre. New variables are introduced to decompose
automaton in pure dataflow code, sub-expressions involving
node calls are bound to fresh variables, etc. The next two
steps process the produced Lustre subset into an imperative
data-structure (step 2) and produce the final imperative code,
typically C (step 3).

In [4] a more specific preprocessing was proposed to support
the translation of Lustre into Simulink model. Here, we further
extend this preprocessing to inline all nodes into a single one
and only allow three address expression. However, we bypass
the next phases of the compilation, avoiding the translation as
an imperative program. The restricted syntax for normalized
Lustre is described in Figure 8



1 node AssignExample (x: bool) returns (y: bool);
2 let
3 y = x ;
4 tel

(a) Lustre assignment

1 def main(x: bool) -> (y: bool) {
2 y = id(x);
3 }

(b) IR assignment

Fig. 9: Assignment

B. Optimization choices

Previously, we advocate for the use of advanced primitives
such as DSPs. Indeed the use of DSPs is relevant for circuits
that require a significant number of arithmetic operations,
because this kind of resources was created and optimized
specifically for this kind of operation.

Therefore, to ensure high-speed performance of the circuit,
we have prioritised the implementation of DSP for arithmetic
logic units. This choice is modelled in the generated Reticle
TDL file, associating DSP uses in the TDL patterns. Since
DSPs are generally less common on FPGAs, it should still be
possible to implement small operations using LUTs.

C. Direct translation

Each signal definition in the normalized Lustre shall now
be translated to a set of Reticle IR instructions. In addition, a
set of TDL patterns will be produced to drive the generation
of the final circuit for a specific FPGA architecture.

1) Assignment: Assignment corresponds to a wire instruc-
tion in Reticle. It does not require a specific inference pattern.
See Listings 9a and 9b

2) Memory with pre: Let us consider a variable D at time
t, the output of the Lustre pre D statement is the value of
D at time t-1 as illustrated as follows:

- t0 t1 t2 t3 t4
D 1 2 3 4 5

pre D x 1 2 3 4
Q 0 1 2 3 4

Here, the element x at time t0 for the signal pre D denotes
an undefined value. In terms of hardware representation, this
behaviour corresponds to a Parallel-In Parallel-Out (PIPO)
shift register. PIPO registers consist of a cascade of flip-flops,
meaning that, in Reticle, the detected pattern must be a register
and its implementation the flip-flop cascade. To avoid data
uncertainty at t0, all the flip-flops of the PIPO must be set to 0,
as illustrated on the line Q is the above table. Listing 10a, 10b
and 10c denote respectively the Lustre expression, the IR
associated construct and the TDL pattern/implementation pair.
Figure 11 illustrates the PIPO register, each flip flop store a
bit of the four bit integer describe in the TDL file.

3) true → false: After normalization (preprocessing), the
resulting Lustre node contains at most one of such expression.
This signal allows to distinguish initial state from later ones.
A variable is first set to true and then switch to false, as
illustrated in the following table:

1 let
2 Q = pre D ;
3 tel

(a) Lustre pre

1 Q:i4 = reg[0](D,en);
2 }

(b) IR reg

1 y:i4 = reg[0](a, en);
2 }
3

4 imp regi4[x, y](a: i4, en: bool) -> (y: i4) {
5 D0:bool = ext[0](a);
6 D1:bool = ext[1](a);
7 D2:bool = ext[2](a);
8 D3:bool = ext[3](a);
9 Q0:bool = fdre(t0, en) @aff(x, y);

10 Q1:bool = fdre(t1, en) @bff(x, y);
11 Q2:bool = fdre(t2, en) @cff(x, y);
12 Q3:bool = fdre(t3, en) @dff(x, y);
13 y:i4 = cat(t4, t5, t6, t7);
14 }

(c) TDL reg

Fig. 10: Pre

Fig. 11: 4-bit PIPO shift register

- t0 t1 t2 ... tn
x true false false false false

At circuit level, this behaviour can be obtained with a single
D flip-flop initialized to true while its input is connected
to the false constant. Listings 12a, 12b and 13b represent
respectively the Lustre model, the IR definition and the asso-
ciated TDL pattern, producing a flip-flop gate in the resulting
circuit.

4) op(l,...,l) : This statement in Lustre enables standards
arithmetic (addition, subtraction, multiplication) and boolean
operations (and, or, xor, not, is equal to, is greater than ...),
an example is given in listing 13a. Hardware components that
perform this kind of operations are arithmetic and logic unit
(ALU). As explained previously, for performances and pre-
dictability reason we decided to prioritize DSP implementation
(see Figure 1)for this kind of circuit. With Reticle IR operators
are expressed with their corresponding primitive operator. See
Listings ?? and 13c for both the IR and TDL, supporting DSP
inference.

5) if l then l else l: Conditional expression in Lustre is
a functional operator. Both branches are eventually computed
while the proper value is propagated. This acts as a multi-
plexer. The statement presented in Listing 14a is therefore
mapped in IR to an expression involving mux (Listing 14b).



4 let
5 Q = true -> false ;
6 tel

(a) Lustre tfby

3 t0:bool const[0]
4 Q:bool = reg[1](t0,en);
5 }

(b) IR tfby

15 t0:bool = const[0];
16 y:bool = reg[1](t0, en);
17 }
18

19 imp regi8[x, y](en: bool) -> (y: i8) {
20 t0:bool = const[0];
21 y:bool = fdre(t0, en) @aff(x, y);
22 }

(c) TDL tfby

Fig. 12: true → false

7 let
8 y = a + b ;
9 tel

(a) Lustre tfby

23 t0:bool = const[0];
24 y:bool = reg[1](t0, en);
25 }
26

27 imp regi8[x, y](en: bool) -> (y: i8) {
28 t0:bool = const[0];
29 y:bool = fdre(t0, en) @aff(x, y);
30 }

(b) IR op

1 y:i16 = add(a, b);
2 }
3

4 addi16[x,y](a: i16, b: i16) -> (y: i16){
5 y: i16 = dsp[op=add](a,b,en,en,en) @alu(x,y);
6 }

(c) TDL op

Fig. 13: true → false

This can be obtained in Reticle with a two-to-one multiplexer
(MUX) (see Listing 14b), or a cascade of MUX for integer
datatypes as we can see on Figure 15. This kind of function
can be created with LUTs primitives (see Listing 14c for an
if-then-else of int4), the first eight lines (lines 7-14) extract
the four bits of a and b, these extracted bits are then given
to LUT3 components (lines 15-18). LUT3 are lookup tables
configured to takes three input bits and returning one output
bit. These LUT3 select a bit from a and b according to sel.
Finally selected bits are stored in registers and concatenated.

D. Toolchain properties

a) Efficiency: The toolchain translates a Lustre program
into an implementable FPGA circuit, in an automated fash-
ion. It simplifies the code production task without requiring
hardware design expertise.

10 let
11 y = if s then a else b ;
12 tel

(a) Lustre Lustre if-then-else

6 y:i4 = mux(s,a,b);
7 }

(b) IR mux

31 t0:i4 = mux(sel, a, b);
32 y:i4 = reg[0](t0, en);
33 }
34

35 imp muxi4[x, y](S: bool, a: i4, b: i4, en: bool)
-> (y: i4){

36 A0:bool = ext[0](a);
37 B0:bool = ext[0](b);
38 A1:bool = ext[1](a);
39 B1:bool = ext[1](b);
40 A2:bool = ext[2](a);
41 B2:bool = ext[2](b);
42 A3:bool = ext[3](a);
43 B3:bool = ext[3](b);
44 Y0:bool = lut3[tbl=0xac](t0, t1, S) @a6lut(x,

y);
45 Y1:bool = lut3[tbl=0xac](t2, t3, S) @b6lut(x,

y);
46 Y2:bool = lut3[tbl=0xac](t4, t5, S) @c6lut(x,

y);
47 Y3:bool = lut3[tbl=0xac](t6, t7, S) @d6lut(x,

y);
48 t12:bool = fdre(t8, en) @aff(x, y);
49 t13:bool = fdre(t9, en) @bff(x, y);
50 t14:bool = fdre(t10, en) @cff(x, y);
51 t15:bool = fdre(t11, en) @dff(x, y);
52 y:i4 = cat(t12, t13, t14, t15);
53 }

(c) TDL mux

Fig. 14: if-then-else

Fig. 15: cascade of Mux Primitive

b) Predictability: Pattern matching with TDL controls
the inference process. Resulting complexity in terms of DSP/-
LUT usage is known a priori.

c) Computation speed: Usage of dedicated components
ensures high-speed computation for arithmetic operations.

d) Traceability: Inference steps are known, supporting
the traceability from hardware instruction up to Lustre model
expressions.

e) Fast design process: With the explicit choice of FPGA
components to be used to implement Lustre and IR operators,
the synthesis step is faster than regular HLS, but can be
potentially less optimized.



1 node pi (fb , kp, ki, cmd: int; ) returns (u:int)
2 var eps: int;
3 let
4 eps = 0 -> cmd - fb;
5 u = 0 -> kp * eps + kp * pre eps + ki * eps +

pre u;
6 tel

Listing 7: Lustre Code

E. Reticle extension for Xilinx 7 series FPGA

The Reticle version used 1 enables the production of placed
structural Verilog for Xilinx Ultrascale+ [14] FPGA family.
Our target is a Xilinx Artix 7 FPGA [15] on an Arty A7 100T
development board. Differences between these two families lie
on their primitive types, quantity of slices and organization of
such. The main differences between these FPGA families are
their slices architecture, Figure 16a shows the architecture of
an Ultrascale+ slice while Figure 16b shows an Artix 7 slice.
Ultrascale+ slices contain more LUT and Flipflop Primitives
than Artix 7 slices. This difference leads to different imple-
mentation of Artix 7 TDL file. Artix 7 LUT BELannotations
are from a5lut to d5lut and a6lut to d6lut instead
of a5lut to h5lut and a6lut to h6lut. Same for Flip
Flop BEL, they go from aff to dff and a5ff to d5ff
instead of aff to hff and aff2 to hff2. Also the Carry
primitive are not the same in an Artix7 and an Ultrascale slice:
Artix 7 contains different carry primitive (carry4 instead of
carry8). In addition to slice architecture differences, Slice
and DSP matrix doesn’t have the same size. there is 3*80
Slices and DSP on an Artix 7 FPGA while there is 3*72 Slices
and 5*72 DSP on an Ultrascale+ FPGA. We implemented
these changes into the Reticle placer source code. Finally, the
DSP primitives existing in Artix 7 FPGA (DSP48E1) differ
from the ones of the Ultrascale (DSP48E2). The next board
configuration has been implemented in Recticle.

IV. EXPERIMENTATION

The proposed process has been applied on a simple rep-
resentative example: a proportional integral (PI) controller.
We report here the comparison of three different methods to
produce the final circuit: (1) traditional RTL implementation,
(2) our proposal (Lus2IR), and (3) high-level synthesis from
Vitis. The current implementation is straightforward without
any pipelining nor optimized placement.

A. Lustre to FPGA

Listing 7 represents the Lustre model performing the PI
function. The control signal u is computed according to
command signal cmd and the feedback loop with proportional
gain kp and integral gain ki. This program relies on a stateful
variable eps containing the error between the command and
the feedback loop. Output variable u is also stateful since it
depends on its previous state.

1Available at https://github.com/vegaluisjose/reticle-evaluation

(a) Ultrascale slice

(b) Artix 7 slice

Fig. 16: Comparison of Ultrascale (a) and Artix 7 (b) slices.

Processing this Lustre model with the steps presented in
the previous sections produces the IR code in Listing 8. We
can observe the decomposition of Lustre code in three address
code. To enable register control, clock enabling signal en has
been inferred during the code production step.

This IR code is given to Reticle with a target description
given in Listing 9. Reticle is then able to produce the circuit
presented on Figure 17. This synthesized circuit is then
given to Vivado for placement and bitstream production and
importation. Since Reticle only places the DSPs, LUTs and
FDREs but not the IOs so we let Vivado do the placement,
bypassing the Reticle Z3-based placement algorithm.



1 def main(cmd:i16, fb:i16, ki:i16, kp:i16, en:
bool) -> (u:i16) {

2 pi_3:i16 = reg[0](u, en) ;
3 pi_5:i16 = reg[0](eps, en) ;
4 u:i16 = id (pi_11) ;
5 pi_11:i16 = mux(pi_1, pi_2, pi_10) ;
6 pi_10:i16 = add (pi_9, pi_3) ;
7 pi_9:i16 = add (pi_8, pi_4) ;
8 pi_4:i16 = mul (ki, eps) ;
9 pi_8:i16 = sub (pi_7, pi_6) ;

10 pi_6:i16 = mul (kp, pi_5) ;
11 pi_7:i16 = mul (kp, eps) ;
12 eps:i16 = id (pi_13) ;
13 pi_13:i16 = mux(pi_1, pi_2, pi_12) ;
14 cst0:bool = const[0] ;
15 pi_1:bool = reg[1](cst0, en) ;
16 pi_12:i16 = sub (cmd, fb) ;
17 pi_2:i16 = const[0] ;
18 }

Listing 8: IR Code

1

2 pat dsp_add_i16[dsp, 1, 1](a: i16, b: i16) -> (y:
i16){

3 y:i16 = add(a, b);
4 }
5

6 pat dsp_sub_i16[dsp, 1, 1](a: i16, b: i16) -> (y:
i16){

7 y:i16 = sub(a, b);
8 }
9

10 pat dsp_mul_i16[dsp, 1, 1](a: i16, b: i16) -> (y:
i16){

11 y:i16 = mul(a, b);
12 }
13

14 pat lut_mux_i16[lut, 1, 2](sel: bool, a: i16, b:
i16) -> (y: i16) {

15 y:i16 = mux(sel, a, b);
16 }
17

18 pat lut_reg_0_bool[lut, 1, 2](a: bool, en: bool)
-> (y: bool) {

19 y:bool = reg[1](a, en);
20 }
21

22 pat lut_reg_0_i16[lut, 1, 2](a: i16, en: bool) ->
(y: i16) {

23 y:i16 = reg[0](a, en);
24 }

Listing 9: Target description pattern

B. Results

Figures 18 and 19 show resource analysis and timing
analysis of the circuit obtained with RTL synthesis, proposed
compilation tool chain and Vitis High-level synthesis. Re-
source analysis highlights the resource economy realized by
Reticle, while timing analysis reveals comparable computation
speed between the RTL inferred circuit and Reticle circuit.
As expected the number of DSP, on Reticle inferred circuit,
correspond to the number of arithmetic operations in the PI
controller. The quantity of flipflop and lookup tables are also
proportional to the number of registers and multiplexer of the

Fig. 17: PI controller circuit

intermediate representation. This observation let us conclude
that Reticle synthesis is highly predictable. The results of the
timing analysis must be interpreted with caution. Indeed, the
maximum frequency of the circuit can be increased at the cost
of adding latency, which we have not measured.

One of the unanticipated results is the duration of the
synthesis process. While legacy tools could produce optimized
code by exploring a large variety of implementation choice,
our process is more direct and more traceable. It is also much
faster since Reticle only applies the pattern specified in the
TDL produced.

As an example on this very simple PI example, Vivado takes
44 seconds to compile an input RTL into the netlist, without
the placement, while our Lustre-Reticle based approach takes
0.31 second.

V. RELATED WORKS

While FPGAs were introducing in the 80s, their program-
ming is still an actual concern. Del Sozzo et al [11] recently
published a thorough report reviewing the different means to
facilitate FPGA design process. One of the main approaches
to raise the abstraction level and allow developers to write
FPGA program is high-level synthesis. Nowadays, several
HLS toolchains exist and are able to produce efficient RTL
code. Among these we can mention Vitis HLS [1], the Xilinx
high-level toolchain that translates C++ into RTL and HDL-
Coder [6] a Matlab library that translates Simulink models into
RTL. In both cases, the input model is first translated into RTL,
mainly through a first C code or imperative code translation.
These approaches do not specifically target netlists and lose
the initial structure of the input program. In addition, the



This figure presents the number of LUTs, Flip-flops (FF), DSP
and input/output ports (IO) used by each generated circuits.
As requested and expected, our toolchain inferred less LUTs
and FF than other circuits and uses more DSP instead.

Fig. 18: Resource analysis

On this PI example, VitisHLS circuit is seven times more
efficient than a direct synthesis from RTL or using our
Lustre/Reticle toolchain.

Fig. 19: Timing analysis

input program shall not be an arbitrary C code. To summarize
all these HLS frameworks still requires deep expertise in
hardware design to be usable.

The programming of FPGA from Lustre model has already
been addressed, about 15 years ago, by the Gencod project [8]
and, with a similar approach, with the Lava project [3]. In
these approaches, the resulting HDL program is using RTL
and, therefore, shares the same feature as the HLS framework:
the RTL encoding requires Vivado or similar tools to translate
the RTL into netlist and lose program structure.

Our work provides a more predictable compilation process
that takes in account recent evolution of FPGA architecture
for the translation of Lustre into FPGA circuit. We also use
an alternative to RTL representation targeting directly netlists.

VI. CONCLUSION

We focused on the current need to support the design
of FPGAs. of FPGAs. FPGAs are now seen as a serious
alternative to CPUs for space applications, but their design
process still requires deep hardware design expertise. With
our toolchain, we propose to support the design of such FPGA
for GNC applications written in dataflow languages such as
Simulink or Lustre. Our toolchain translates the input model in
Lustre directly into a netlist, a circuit description. Our method
preserves the structure of the input model in the final circuit,
and is therefore best suited for embedded critical applications
where traceability is paramount to ensure confidence in the
system. We have evaluated our toolchain on a simple propor-
tional integral controller. Our experiment showed comparable
circuit timing performance between classical RTL synthesis
and our Lustre/Reticle synthesis, at a reduced resource cost,
while providing both traceability information and predictabil-
ity in the resulting circuit components. Timing performance
remains lower than that of the resulting Vitis HLS circuit,
but on par with other methods based on RTL synthesis. This
first framework opens up numerous perspectives for modelling
and analysis into the hardware design world. We plan to
use static analysis methods at the model level to optimise
at bit level the fixed-point format to be used in the circuit.
We also plan to rely on methods typically used to improve
numerical accuracy, but applied here to optimise the FPGA
design process. Another perspective concerns the extension of
the input language to a larger subset of Lustre, e.g. including
logical clocks. Finally, we are currently working on a more
realistic use case, representative of space applications.

REFERENCES

[1] Soujanya Bhowmick. Optimizing Transformer Inference on FPGA: A
Study on Hardware Acceleration using Vitis HLS, 2023. Master thesis.
Aalto University. Master’s Programme in Electronics and Nanotechnol-
ogy (TS2013).

[2] Dariusz Biernacki, Jean-Louis Colaço, Grégoire Hamon, and Marc
Pouzet. Clock-directed modular code generation for synchronous data-
flow languages. In Krisztián Flautner and John Regehr, editors, Proceed-
ings of the 2008 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES’08), Tucson, AZ,
USA, June 12-13, 2008, pages 121–130. ACM, 2008.

[3] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
hardware design in haskell. In Proceedings of the Third ACM SIGPLAN
International Conference on Functional Programming, ICFP ’98, page
174–184, New York, NY, USA, 1998. ACM.

[4] Hamza Bourbouh, Pierre-Loı̈c Garoche, Christophe Garion, and Xavier
Thirioux. From Lustre to Simulink: Reverse Compilation for Embedded
Systems Applications. ACM Transactions on Cyber-Physical Systems,
5(3):1–20, July 2021.

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: a
declarative language for real-time programming. In Proceedings of the
14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, page 178–188, New York, NY, USA, 1987. ACM.

[6] Serena Curzel, Michele Fiorito, Patricia Lopez Cueva, Tiago Jorge,
Thanassis Tsiodras, and Fabrizio Ferrandi. Exploration of Synthesis
Methods from Simulink Models to FPGA for Aerospace Applications.
In Proceedings of the 20th ACM International Conference on Computing
Frontiers, pages 243–249, Bologna Italy, May 2023. ACM.

[7] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, page 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.



[8] Adrien Guatto and Marc Pouzet. Rapport d’étude sur la traduction
de SCADE/Lustre vers VHDL. Technical report, Ecole normale ´
supérieure, 2010. Projet GENCOD.

[9] Juan L. Jerez, Paul J. Goulart, Stefan Richter, George A. Constantinides,
Eric C. Kerrigan, and Manfred Morari. Embedded Online Optimization
for Model Predictive Control at Megahertz Rates. IEEE Transactions
on Automatic Control, 59(12):3238–3251, December 2014.

[10] Special C. RTCA. DO-178C, software considerations in airborne
systems and equipment certification, 2011.

[11] Emanuele Del Sozzo, Davide Conficconi, Alberto Zeni, Mirko Salaris,
Donatella Sciuto, and Marco D. Santambrogio. Pushing the Level of
Abstraction of Digital System Design: A Survey on How to Program
FPGAs. ACM Computing Surveys, 55(5):1–48, May 2023.

[12] Luis Vega, Joseph McMahan, Adrian Sampson, Dan Grossman, and Luis
Ceze. Reticle: a virtual machine for programming modern FPGAs. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 756–771,
Virtual Canada, June 2021. ACM.

[13] Michael Wirthlin. High-Reliability FPGA-Based Systems: Space, High-
Energy Physics, and Beyond. Proceedings of the IEEE, 103(3):379–389,
March 2015.

[14] Xilinx. UltraScale Architecture Libraries Guide, 2023.
[15] Xilinx. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC

Libraries Guide, 2023.


