
HAL Id: hal-04564025
https://enac.hal.science/hal-04564025

Preprint submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ArGaze: An Open and Flexible Software Library for
Gaze Analysis and Interaction

Théo De La Hogue, Damien Mouratille, Mickaël Causse, Jean-Paul Imbert

To cite this version:
Théo De La Hogue, Damien Mouratille, Mickaël Causse, Jean-Paul Imbert. ArGaze: An Open and
Flexible Software Library for Gaze Analysis and Interaction. 2024. �hal-04564025�

https://enac.hal.science/hal-04564025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ARGAZE 1

ArGaze: An Open and Flexible Software Library for Gaze Analysis and

Interaction

Théo de la Hogue1, Damien Mouratille1, Mickaël Causse2, and Jean-Paul Imbert 1

1École Nationale d’Aviation Civile, Toulouse, France
2ISAE-SUPAERO, Toulouse, France

Author Note

Correspondence concerning this article should be addressed to Jean-Paul Imbert,

ENAC 7 avenue Edouard Belin CS 54005 31055 Toulouse Cedex 4,

jean-paul.imbert@enac.fr.

ARGAZE 2

Abstract

Gaze analysis has evolved into a mature technique with diverse applications enabling the

investigation of various human activities and cognitive processes such as reading, visual

attention, memory as well as real time gaze interaction. However, existing proprietary

software or librairies often lacks the flexibility needed to incorporate emerging gaze metrics

or real time processing, limiting researchers to predefined methodologies.

To address these limitations, we introduce ArGaze, an open and flexible software

library designed to provide a unified and modular approach to gaze analysis or gaze

interaction. ArGaze facilitates real-time and/or post-processing analysis for both

screen-based and head-mounted eye tracking systems. By offering a wide array of gaze

metrics and supporting easy extension to incorporate additional metrics, ArGaze

empowers researchers and practitioners to explore novel analytical approaches efficiently.

This paper first reviews existing software solutions and their functionalities before

delving into the design principles and features of the ArGaze library. Subsequently, three

use cases demonstrate ArGaze’s efficacy in processing eye data from screen-based and

head-mounted eye trackers, showcasing its versatility and applicability across different

research and practical contexts.

Keywords: eye tracking, gaze analysis, software, library, Python, real-time, modular

ARGAZE 3

ArGaze: An Open and Flexible Software Library for Gaze Analysis and

Interaction

ARGAZE 4

Introduction

Gaze analysis is now a mature technique used in a wide range of applications and

research. It enables us to study an impressive range of human activities and cognitive

processes including reading (Reichle et al., 1998), visual attention (Hoffman, 2016),

memory (Theeuwes et al., 2009), as well as complex cognitive constructs and state of minds

such as situational awareness (Moore & Gugerty, 2010), mental workload (May et al.,

1990) or mental fatigue (Bafna & Hansen, 2021). Eye tracking is not only limited to highly

controlled studies in the laboratory; it is also used for practical applications involving

diverse user profiles, including psychologists, designers, marketing professionals, medical

doctors, computer scientists and data scientists who use eye tracker as a data source (e.g.

Pupil labs, Tobii, EyeLink, ETVision). Eye tracking is also becoming an object of real-time

interaction, for example with video games such as Ubisoft’s Assassin’s Creed Valhalla and

The Division that use head and eye movements for in-game controls (e.g., changing the

field of view).

Despite the wide range of eye tracking applications, there are common

methodological steps and data analysis pipelines related to gaze analysis (Duchowski,

2017). These include parameters for fixation determination (fixation time, angular

velocity), calibration, head movement realignment (for head-mounted eye trackers), and

the analysis of certain classical eye metrics (fixation times on areas of interest, visual

pattern analysis, etc.). The definition of new types of analysis and new gaze metrics (e.g.,

visual entropy) is an extremely active area, however, based on our knowledge, no software

has an extensible and customizable real time data analysis pipeline neither easy solution to

add new gaze metrics proposed in the literature. Indeed, proprietary eye tracking software

are generally closed and does not allow for the addition of gaze metrics such as entropy

(Krejtz et al., 2014), K-coefficient analysis (Krejtz et al., 2016), explore/exploit ratio

(Dehais et al., 2015), N-gram (C. Lounis et al., 2021) or LZC (C. Lounis et al., 2020).

These gaze metrics are rarely or not at all available in the manufacturers’ eye tracker

ARGAZE 5

software and are still reserved for researchers who manipulate mathematical tools. Even for

basic metrics such as the calculation of fixations, multiple algorithms exist in the literature

(Salvucci & Goldberg, 2000), and a Tobii Pro Lab user might want to work with another

method than those proposed (I-DT or I-VT).

Overall, there are two types of eye-tracking devices, screen-based and head-mounted

eye trackers. Each type has its own pros and cons, and the choice depends on the research

applications. Screen-based eye trackers (e.g., Tobii Pro Spectrum) are particularly

well-suited for studying computer browsing, reading text, or playing video games.

Head-mounted eye trackers offer greater mobility, providing users with the freedom to

move around their environment naturally, especially with models that use wireless

connections (e.g., Pupil Invisible from Pupil Labs, Tobii Pro Glasses 3). They are versatile

and can be employed in various contexts, including laboratory studies, field tests, or

everyday activities. For instance, recording an individual reading a physical newspaper or a

pilot consulting a paper checklist in the cockpit would not be possible with a screen-based

eye tracker, as the paper documents would obstruct the eye tracking camera placed in front

of the participant. However, head-mounted eye trackers are less accurate than their

screen-based counterparts and might be more affected by lighting conditions. Moreover,

the gaze position is superimposed on the image taken by a front scene camera seeing the

scene, which may become blurred due to head movements. It is also worth noting that the

front scene camera resolution (e.g., 1920x1080 for Tobii Pro Glasses 3, 1088x1080 for Pupil

Invisible) can make details of the scene being analyzed unreadable. Due to head

movement, the analysis of areas of interest requires a supplementary step of head

movement realignment to perform the mapping between the view camera and a fixed

reference. Such augmented reality feature is achieved by image processing on the view

camera image, in which feature points or fiducial markers ((Garrido-Jurado et al., 2016))

are detected. A special case is eye-tracking in multi-screen environments or complex

three-dimensional scenes. Head-mounted eye trackers can struggle to understand the depth

ARGAZE 6

of the fixation point. Specific eye trackers based on multiple cameras exist, but their

implementation can be complex and these systems are typically expensive (see for example

the SmartEye Pro integrated in a flight simulator cockpit, SmartEye, 2024).

In this paper, we describe ArGaze, an open and flexible software library that

provides a unified and modular approach for real-time and/or post-processing gaze analysis

applications for either screen-based or head-mounted eye tracking systems. It provides a

wide variety of gaze metrics and allows free extension to other ones. Below, we list existing

software and their capabilities, then we will detail the ArGaze software library and its

design rationale. Finally, we present three use cases in which ArGaze is used to process

eye data from screen-based or head-mounted eye trackers in real time and in

post-processing.

State of the art

Following on from the state of the art carried out by PyTrack (Ghose et al., 2020)

and EyeMMV (Krassanakis et al., 2014), we have listed the available gaze analysis software

according to two main criteria groups. Our goal is to know if each software is able to

handle the various situations we encountered in HMI (Human-Machine Interface)

interaction and Human Factor fields.

We have evaluated 11 software products based on available manufacturer/developer

documentation (they may not be exhaustive):

• Tobii: TobiiProLab, 2024b, TobiiProLab, 2024c,

• PupilLabs: PupilLabs, 2024a, PupilLabs, 2024f,

• Gazealytics: Chen et al., 2023, Gazealytics, 2024b, Gazealytics, 2024a,

• PyGaze: Dalmaijer et al., 2014, PyGaze, 2024,

• PyTrack: Ghose et al., 2020, PyTrack, 2024a, PyTrack, 2024b,

• OGAMA: Voßkühler et al., 2008, OGAMA, 2024a, OGAMA, 2024b,

• BeGaze: Begaze, 2014,

• EyetrackingR: Forbes et al., 2023,

ARGAZE 7

• iMotions: iMotions, 2024c, iMotions, 2024a, iMotions, 2024b,

• EyeMMV: Krassanakis et al., 2014, EyeMMV, 2024,

• Gazepoint: Gazepoint, 2024b, Gazepoint, 2024a.

A position paper (Jayawardena, 2022) focuses on the development of a real-time

eye-tracking data analysis pipeline. This work is currently in progress, and few details are

provided, so we have not included it in the comparison.

Environmental assessment

Table 1 compares the possibilities offered by several gaze analysis software for

screen-based and head-mounted devices. Each line in the table is a software available on

the market, the color code detailed in the legend shows if it’s usable for real-time or/and

post-processing. The columns illustrate the variety of uses for each software.

The Device columns shows if the software is compatible with screen-based or

head-mounted devices.

The Interface columns show how the user interacts with the software to build a

custom gaze analysis pipeline:

• Library: the software is a suite of programming code that is used to develop

software programs.

• API: the software provides an Application Programming Interface.

• GUI offline: the software provides an offline Graphic User Interface.

• GUI online: the software provides an online Graphic User Interface.

The Integration columns show how it is possible to integrate the software:

• Data agnostic: the software works with any gaze data format and works with

any eye tracker devices.

• Free: the software is free to use, change and distribute with some conditions

(e.g., BSD, MIT, etc. licenses)

• Multi-platform: the software works on Windows, MacOS and Linux platforms.

• Extensible: the software gaze metrics are extensible thanks to a plugin

ARGAZE 8

architecture.

The Mapping columns show if the software can process eye tracking data from a

screen or the environment:

• Screen: the software maps gaze positions from a screen-based eye tracker onto

screen objects like images, text, etc.

• Environment: the software maps gaze positions from a head-mounted eye

tracker device onto environment objects thanks to technologies like 3D scanning, fiducial

markers for augmented reality, snapshot mapping, face recognition, etc.

Output assessment

Table 2 lists what kind of gaze analysis each software provides, either for real-time

or post-processing. The color code for each line is the same as Table 1.

The Features and metrics columns show what kind of analysis the software proposes:

• Primary: the software extracts at least fixations and saccades, and possibly

blinks, drift, micro-saccades, pupil size, etc.

• Basic: the software extracts metrics about numbering, summing, averaging

values related to fixations, saccades and Areas of Interest (AOI) (e.g., dwell time, AOI

distribution, time to first contact, etc.).

• Spatial: the software extracts metrics about the scan path inside a frame

reference system (e.g., explore/exploit ratio, nearest neighbor index, K-coefficient, etc.).

• Sequential: the software extracts metrics about AOI sequences (e.g., transition

matrix, entropy, Lempel-Ziv complexity, N-grams, etc.).

• Behavioral: the software extracts metrics about participant behavior (e.g.,

reading, workload index, fatigue, etc.).

The experiment columns show the type of analysis it is possible to do with the

software:

• Statistical: the software conducts statistical analysis between experimental

conditions and different groups of participants.

ARGAZE 9

• Temporal: the software extracts metrics according to temporal considerations

(e.g., Time Of Interest (TOI), event management, interval-based or binned metrics, etc.).

The output format columns show how it is possible to export data from the software:

• Data: the software can export analysis data to any file format or publish them

thanks to any middleware.

• Visualization: the software provides analysis data in a graphical way (e.g., scan

path, heatmap, bee swarm, clusters, etc.).

Current shortcomings

Our examination of the various software reveals that none of them fulfills all

requirements at once. While some of them are dedicated to screen-based devices only

(Gazealytics, Chen et al., 2023, Pytrack, Ghose et al., 2020, OGAMA, Voßkühler et al.,

2008, EyeMMV, Krassanakis et al., 2014 and Gazepoint), others aren’t addressing

real-time (Begaze, 2014, EyetrackingR, Forbes et al., 2023). Besides, the gaze metrics

extensibility criterion is almost never envisioned. Namely, iMotions (iMotions, 2024c)

seems to be the one that offers the most features and allows users to extend analytics with

R-Notebooks (iMotions, 2024d) for post-processing, but it is not working on all major OS

and is not adapted to all finances. PupilLabs is the most flexible software but doesn’t

provide as many gaze metrics as iMotions.

Considering software which are supporting head-mounted devices, it appears that

gaze mapping onto a reference image is one of the most common solution (TobiiProLab,

2024a, PupilLabs, 2024e, iMotions, 2024b, Begaze, 2014). PupilLabs also provides real-time

surface tracking thanks to augmented reality techniques via the use of ArUco marker

detection (PupilLabs, 2024d, 2024g) without connecting those data to a real-time advanced

gaze analysis pipeline (PupilLabs, 2024c). Further, PupilLabs explores post-processing gaze

data mapping onto a 3D model of the environment thanks to advances in camera based 3D

scene synthesis techniques (PupilLabs, 2024b). Finally, no software integrated an advanced

gaze analysis pipeline with real-time gaze mapping onto head-mounted camera images.

ARGAZE 10

Having an open-source, multi-platform and extensible software to face various

experimental uses cases, either for real-time or post-processing screen-based or

head-mounted gaze data analysis with environment mapping would provide great benefits

to many research fields. This is the overall objective of ArGaze.

ArGaze software library

Design foreword

Considering ArGaze main objective, the design of a reusable software library that

covers a wide range of uses needs an abstraction process that cannot be achieved from one

single application development (Roberts, Johnson, et al., 1996). ArGaze has been refined

through numerous HMI experiments, including real-time eye tracking interaction, and

extensive human factor studies. These experiences have elucidated the various

requirements associated with analysis, particularly in terms of eye-tracking data processing

and the utilization of advanced gaze metrics. Additionally, the design of the augmented

reality gaze mapping pipeline was driven to generalization by the different workspaces

where experiments were conducted, such as the multi-screen setups used by air traffic

controllers or aircraft cockpits.

According to the identified shortcomings in the currently available software,

ArGaze provides gaze analysis support with the following design rationale:

• to support any screen-based or head-mounted eye trackers: a specific connector

adhering to a generic gaze data interface can be developed for each eye tracker model;

• to provide an adaptable gaze analysis pipeline that can be tailored for post- or

real-time gaze data processing, recording, and visualization ;

• at each step of the gaze analysis pipeline, to provide ways for third-party

developers to add new metrics or algorithms according to a generic classes interface;

• to encourage external contributions with open-sourced code and documented

features.

ARGAZE 11

ArGaze also provides gaze mapping support, extending the previous design

rationale as follows:

• to map head-mounted eye tracker gaze data onto a complex and dynamic

environment geometry in real-time;

• to project gaze data into screen coordinates system to match with screen objects.

Figure 1 illustrates where to insert the ArGaze pipeline inside a gaze analysis

workflow and how it can be combined with augmented reality gaze mapping in a

head-mounted device case.

Figure 1

ArGaze pipeline overview

Computing environment

ArGaze is implemented with Python (Oliphant, 2007), a computing language

popular among scientists and engineers. As a prototyping environment, Python is

convenient as it is portable, mixable and free. As a programming language, Python is also

powerful as it is Object-Oriented, functional, and relatively easy to use and learn (Lutz,

2013).

ARGAZE 12

Distribution

ArGaze is released under the GNU General Public License (version 3 Foundation,

2007) and is available on a public read-only git repository at

https://gitpub.recherche.enac.fr/argaze. Requests or patchs can be sent to

argaze-contact@recherche.enac.fr. The documentation is available at

http://achil.recherche.enac.fr/features/eye/argaze/index.html.

Dependencies

ArGaze is based on Python version 3 and requires the installation of external

packages such as NumPy, SciPy and Pandas dedicated to high-performance scientific

and data computing (Fuhrer et al., 2021). Besides, ArGaze requires OpenCV for image

processing and object identification to map wearable eye tracker gaze positions onto

head-mounted camera (Howse, 2013). OpenCV is also used as default graphical library to

draw ArGaze internal states.

Hardware requirements

ArGaze has been developed and tested on the following operating systems:

Windows 10, Ubuntu 20.04 LTS and MacOS 14. As ArGaze is written solely in Python

and does not use its own compiled code, its portability depends on the availability of all

dependencies on a specific system.

The OpenCV package comes with hardware requirements, as it uses the GPU to

enable high-rate image processing thanks to CUDA API on NVDIA devices (Cervera,

2020). ArGaze has been tuned to work on a NVIDIA Jetson Xavier (30W) with

TobiiGlasses front scene camera in realtime (25 FPS 1920x1080).

Gaze analysis pipeline architecture

A gaze analysis pipeline can be designed as a white box library (Johnson & Foote,

1988) where each pipeline step is generalized by an abstract class. White box design

pattern allows any library user to create new classes by inheritance and overriding methods

https://gitpub.recherche.enac.fr/argaze
mailto:argaze-contact@recherche.enac.fr
http://achil.recherche.enac.fr/features/eye/argaze/index.html

ARGAZE 13

that are different in each subclass.

ArGaze provides an extensible modules library allowing to select

application-specific algorithms at each pipeline step (Figure 2) like for fixations and

saccades identification, AOI matching or scan path analysis. Once incoming data is

formatted as required, all those gaze analysis features can be used with any screen-based

eye tracker device.

Figure 2

Gaze analysis pipeline overview

Timestamped gaze positions as context

Whatever eye data comes from a file on disk or from a live stream, timestamped

gaze positions are required to feed the gaze analysis pipeline. For the post-processing use

case, timestamped gaze positions can be loaded from a CSV file thanks to a Pandas

DataFrame object before being stored into a TimestampedGazePositions class. When gaze

positions come from a real-time input, each single gaze position can be edited thanks to the

ARGAZE 14

GazePosition class. Timestamps can either be integers or floats, seconds, milliseconds or

whatever is needed. The only concern is that all time values used in further pipeline steps

have to be in the same unit.

Specific eye-tracker device connectors can be designed thanks to ArContext class.

This interface makes sure that eye-tracking data is sent to a gaze analysis pipeline using

Python context management, which helps finish the process properly. ArContext class also

provides pipeline execution time assessment and exception management.

Rectangular frame as main interface

ArGaze defines ArFrame class as a rectangular area where timestamped gaze

positions are projected in and inside which they need to be analyzed. Gaze positions have

to be in the same range as rectangular area dimensions to be projected in and can either be

integers or floats, pixels, millimeters or whatever is needed. The only concern is that all

spatial values used in further pipeline steps have to be in the same unit.

Considering the gaze position calibration step is optional, the first mandatory

ArFrame pipeline step is to identify fixations or saccades1 from consecutive timestamped

gaze positions. The identification algorithm can be selected by instantiating a particular

GazeMovementIdentifier from the GazeAnalysis submodule listed in Appendix A or

from another Python package.

The second ArFrame pipeline step aims to build a ScanPath defined as a list of

ScanSteps made by a fixation and a consecutive saccade. Once fixations and saccades are

identified, they are automatically appended to the ScanPath. A ScanPath have a

duration_max attribute to set the duration from which older scan steps are removed each

time new scan steps are added, allowing to set up sliding window analysis.

The last ArFrame pipeline step consists of passing the built ScanPath to each loaded

ScanPathAnalyzer. Each analysis algorithm can be selected by instantiating a particular

ScanPathAnalyzer from the GazeAnalysis submodule listed in Appendix A or from

1 In ArGaze, Fixation and Saccade are considered as particular GazeMovement.

ARGAZE 15

another Python package.

AOI management as frame layers

Besides, ArGaze also defines ArLayer class as a space where to make matching of

fixations with a set of 2D AOI and inside which those matchings need to be analyzed.

The first ArLayer pipeline step aims to match identified gaze movement with layers

AOI. The matching algorithm can be selected by instantiating a particular AOIMatcher

from the GazeAnalysis submodule listed in Appendix A or from another Python

package.

The second ArLayer pipeline step aims to build an AOIScanPath defined as a list of

AOIScanSteps made by a set of successive fixations/saccades onto the same AOI. Once

gaze movements are matched to AOI, they are automatically appended to the

AOIScanPath. An AOIScanPath has a duration_max attribute to set the duration from

which older AOI scan steps are removed each time new AOI scan steps are added, allowing

to set up sliding window analysis.

The last ArLayer pipeline step consists in passing the built AOIScanPath to each

loaded AOIScanPathAnalyzer. Each analysis algorithm can be selected by instantiating a

particular AOIScanPathAnalyzer from the GazeAnalysis submodule listed in Appendix

A or from another Python package.

An ArFrame instance can contains multiples ArLayers instances in order to separate

AOI analysis according to any experiment criteria.

Configuration and execution

ArFrame instance creation is done by loading a JSON configuration file to customize

each pipeline step. Then, to execute the whole instantiated pipeline, timestamped gaze

positions have to be passed one by one to the ArFrame instance (Code Listing 1).

1 import argaze

2

3 # Load ArFrame from a JSON configuration file

ARGAZE 16

4 with argaze .load(’./ configuration .json ’) as ar_frame :

5

6 # Assuming that timestamped gaze positions are available

7 ...

8 # Execute ArFrame for a timestamped gaze position

9 ar_frame .look(timestamped_gaze_position)

Code Listing 1: Gaze analysis pipeline loading and execution

Recording

ArFrame and ArLayer analysis can be recorded by registering observers to their look

method. Both classes get an observers attribute, allowing them to load classes from any

Python package. The Code Listing 2 illustrates how to create an ArFrame look method

observer that will write desired ArFrame data into a CSV file.

1 from argaze .utils import UtilsFeatures

2

3 # Define a custom recorder class to observe look method call

4 class MyFrameRecorder (UtilsFeatures . FileWriter):

5

6 def __init__ (self , ** kwargs):

7

8 # Init FileWriter class

9 super (). __init__ (** kwargs)

10

11 # Edit header line

12 self. header = " Timestamp (ms)", ...

13

14 def on_look (self , timestamp , ar_frame , exception):

15

16 # Record any ArFrame data

17 data = (

18 timestamp ,

ARGAZE 17

19 ...

20)

21

22 # Write to file

23 self.write(data)

Code Listing 2: Gaze analysis recording

ArFrame and ArLayers observers are automatically notified after each ArFrame

pipeline execution.

Visualization

Many ArFrame and ArLayers internal states can be drawn in real time or afterward,

depending on the application purpose. Image parameters can be loaded from a JSON

configuration file or set up at runtime.

Optional pipeline steps

Gaze position calibration, heat map and background image are optional ArFrame

pipeline steps to set up at configuration time. There are usually processed each time the

ArFrame pipeline is executed and, if it is relevant, the resulting image is accessible provided

that it is requested in the image parameters.

Scripting pipeline access

All gaze analysis pipeline internal states are accessible from a Python script. This

could be particularly useful for real-time gaze interactions.

First of all, the ArFrame configuration can be loaded from a Python dictionary.

Then, once the configuration is loaded, it is possible to access its attributes as described in

the code reference documentation. Thus, each ArFrame layer is accessible by name and so,

access to their attributes too.

In addition, ArFrame execution returns many data, like calibrated gaze position,

identified gaze movement, scan path analysis, layers AOI scan path analysis, execution

times and exceptions that can be exploited for real-time interactions.

ARGAZE 18

External gaze analysis libraries

As detailed in Appendix A, the GazeAnalysis submodule contains many algorithms

available to start using the ArGaze software library. However, it is possible to load

GazeMovementIdentifier, ScanPathAnalyzer, AOIMatcher, AOIScanPathAnalyzer or

GazePositionCalibrator modules from other Python packages.

The writing of new modules consist to inherit from the abstract classes above,

writing each expected member methods according to the given interface, and then to

import the package. For instance, in order to implement a new gaze movement

identification algorithm since ArGaze only provides I-DT and I-VT, a contributor should

consider writing a new Python file as illustrated in CodeListing 3. Once specific Fixation

and Saccade classes have been defined, the contributor has to write a specific

GazeMovementIdentifier class with an identify method and some required properties.

The identify method requires a timestamped gaze position from where identification has to

be done considering former timestamped gaze positions and an optional terminate

parameter to notify the identification algorithm that the given gaze position will be the

last one. The identify method should return identified gaze movement once it is finished

otherwise, it returns empty gaze movement at least. It is mandatory that each identified

gaze movement share its first/last gaze position with the previous/next gaze movement.

1 from argaze import GazeFeatures , DataFeatures

2

3 class Fixation (GazeFeatures . Fixation):

4 """ Define algorithm specific fixation ."""

5 ...

6

7 class Saccade (GazeFeatures . Saccade):

8 """ Define algorithm specific saccade ."""

9 ...

10

11 class GazeMovementIdentifier (GazeFeatures . GazeMovementIdentifier):

ARGAZE 19

12 """ Implementation of a specific identification algorithm ."""

13

14 @DataFeatures . PipelineStepInit

15 def __init__ (self , ** kwargs):

16 """ Initialize identification algorithm ."""

17

18 # Init GazeMovementIdentifier class

19 super (). __init__ ()

20 ...

21

22 @DataFeatures . PipelineStepMethod

23 def identify (self , timestamped_gaze_position : GazePosition , terminate =

False):

24 """ Identify gaze movement from successive timestamped gaze

positions ."""

25 ...

26

27 def current_gaze_movement (self):

28 """ Get the current identified gaze movement (finished or in

progress) if it exists otherwise , an empty gaze movement ."""

29 ...

30

31 def current_fixation (self):

32 """ Get the current identified fixation (finished or in progress)

if it exists otherwise , an empty gaze movement ."""

33 ...

34

35 def current_saccade (self):

36 """ Get the current identified saccade (finished or in progress) if

it exists otherwise , an empty gaze movement ."""

37 ...

Code Listing 3: Gaze analysis new module

ARGAZE 20

Addressing real time gaze mapping in complex geometry workspace

Detection of square-based fiducial markers for camera pose estimation is a fast and

robust solution that is very popular in robot navigation or augmented reality application

(Garrido-Jurado et al., 2016). As proposed by Duchowski et al., 2020, ArGaze provides

augmented reality support to map AOI on ArUco markers set up (Figure 3) and extend

gaze analysis pipeline to complex geometry workspace.

Figure 3

ArUco pipeline axis

Camera frame as main interface

ArGaze defines an abstract ArCamera class to handle gaze mapping on the basis of

any augmented reality technology. As an ArFrame child, the ArCamera class benefits from

all the services described in section Gaze analysis pipeline architecture. Besides, ArGaze

defines an abstract ArScene class to describe and project ArLayers and ArFrames into an

ArCamera on the basis of any augmented reality technology. An ArCamera instance can

contain multiple ArScenes instances in order to handle several independent scenes inside

the same workspace according to any experiment criteria.

ArCamera class defines an abstract watch method to detect augmented reality

features from camera images, estimate the pose of scenes and, then project them into the

camera frame. Then, as ArCamera inherits from ArFrame, its gaze analysis pipeline can be

executed to project gaze positions into projected layers inside the camera frame. An

internal ArCamera thread locker delays ArCamera gaze analysis pipeline execution while

ARGAZE 21

ArCamera is processing a camera image, allowing parallel processes to share the same

ArCamera instance.

ArUco marker technology as a submodule

As a specific augmented reality technology, ArUco markers are embedded in

ArGaze as dedicated submodule where ArUcoCamera inherits from ArCamera class and

ArUcoScene inherits from ArScene class.

Figure 4

ArUco marker pipeline overview

As illustrated in Figure 4, the first ArUcoCamera pipeline step is to detect all

markers from a specific ArUco dictionary2 with a given size inside input image thanks to

an ArUcoDetector instance.

The second ArUcoCamera pipeline step is to estimate scenes pose then to project

each scenes layers into corresponding camera frame layers. To make it possible, each

2 An ArUco marker belongs to a set of markers called ArUco dictionary.

ARGAZE 22

ArUcoScene instance have to describe the places of each ArUco marker and each layer

AOI into the same 3D world referential.

An optional ArUcoCamera pipeline step (not illustrated in Figure 4) allows to

project each scenes frames layer into corresponding scene layers then, into corresponding

camera frame layers. To make it possible, each ArUcoScene instance has to describe each

frame layer AOI into a 2D frame referential.

This architecture allows projecting several scenes, each related to an ArUco

markers subset, that can be spatially independent, like a static desktop screen and a

movable tablet screen with their own AOI inside each screen referential.

Furthermore, ArUcoCamera creation is also done by loading a JSON configuration

file to customize each pipeline step. ArUcoCamera image defines extra parameters to

visualize ArUco marker detection, scene projections or optic parameters. The Code

Listing 4 illustrates how to load and execute ArUcoCamera pipeline.

1 import argaze

2 from argaze . DataFeatures import TimestampedImage

3

4 # Load ArUcoCamera from a JSON configuration file

5 with argaze .load(’./ configuration .json ’) as aruco_camera :

6

7 # Assuming that a video stream or file is opened

8 ...

9

10 # Assuming that the video reading is handled in a dedicated thread

11 ...

12 # Capture timestamp and image from video stream of file

13 timestamp , image = video_capture .read ()

14

15 # Edit timestamped image

16 timestamped_image = TimestampedImage (image , timestamp = timestamp)

17

ARGAZE 23

18 # Detect ArUco markers , estimate scenes pose then , project them

into camera frame

19 aruco_camera .watch(timestamped_image)

20

21 # Assuming that timestamped gaze positions are available in another

thread

22 ...

23 # Execute ArUcoCamera frame for a timestamped gaze position

24 aruco_camera .look(timestamped_gaze_position)

25

26 # Assuming that visualization is running in main thread

27 ...

28 # Display ArUcoCamera frame image.

29 ... aruco_camera .image ()

Code Listing 4: ArUco markers pipeline execution

Cases studies

Here we present a number of studies that have used the ArGaze software library.

These studies used either head-mounted or screen-based eye trackers, and the data was

processed online or post-processed. This gives an overview of the different possibilities

offered by the ArGaze software library.

Post-processing head-mounted eye tracking data

Following use case has integrated ArGaze ArUco markers to map air traffic

controllers gaze onto multiple screens environment in post-processing then, enable scan

path study thanks to gaze analysis pipeline.

Experiment background

The next-gen air traffic control system (4Flight) aims to enhance the operational

capacity of the en-route control center by offering new tools to air traffic controllers.

However, it entails significant changes in their working method, which will consequently

ARGAZE 24

have an impact on how they are trained. Several research projects (Kang and Landry,

2014, Palma Fraga et al., 2021, Wang et al., 2021) on visual patterns of air traffic

controllers indicate the urgent need to improve the effectiveness of training in visual

information seeking behavior. An exploratory study was initiated by a group of trainee air

traffic controllers with the aim of analyzing the visual patterns of novice controllers and

instructors, intending to propose guidelines regarding the visual pattern for training.

Experiment environment

The 4Flight control position (Figure 5) consists of two screens: the first displays the

radar image along with other information regarding the observed sector, the second

displays the agenda, which allows the controller to link conflicting aircraft by creating data

blocks, and the Dyp info, which displays some information about the flight. During their

training, controllers are taught to visually follow all aircraft streams along a given route,

focusing on their planned flight path and potential interactions with other aircraft.

Figure 5

4Flight working position with ArUco markers

A traffic simulation of moderate difficulty with a maximum of 13 and 16 aircraft

simultaneously was performed by air traffic controllers. The controller could encounter

lateral conflicts (same altitude) between 2 and 3 aircraft and conflicts between aircraft that

need to ascend or descend within the sector. After the simulation, a directed interview

ARGAZE 25

about the gaze pattern was conducted. Eye tracking data was recorded with a Tobii Pro

Glasses 2, a head-mounted eye tracker. The gaze and scene camera video were captured

with Tobii Pro Lab software and post-processed thanks to ArGaze software library in a

Python script. As the eye tracker model is head mounted, ArUco markers were placed

around the two screens to ensure that several of them were always visible in the field of

view of the eye tracker camera (Figure 6).

Figure 6

AOI and ArUco marker 3D description

Various metrics were calculated considering the entire size of the two screens, like

average fixation duration, explore/exploit ratio, and K-coefficient, AOI distribution,

transition matrix, entropy and N-grams considering this time the different AOIs of the

environment (sectors and UI panels). All analyses were exported thanks to ArGaze

recording system.

Real time head-mounted eye tracking interactions

The following use case has integrated ArGaze ArUco marker pipeline to map pilot

gaze onto many cockpit instruments in real-time and then enable fixation matching thanks

to the gaze analysis pipeline. ArGaze enabled a cognitive assistant to support a pilot’s

situation awareness.

ARGAZE 26

Experiment background

The HAIKU project (Haiku, 2023) aims to pave the way for human-centric

intelligent assistants in the aviation domain by supporting, among others, the pilot during

startle or surprise events. One of the features provided by the assistant through ArGaze

is a situation awareness support that ensures the pilot updates his awareness of the aircraft

state by monitoring his gaze and flight parameters. When this support is active, relevant

information is highlighted on the Primary Flight Display (PFD; see Figure 7).

Figure 7

Haiku assistant PFD highlights

Experiment environment

Pilot eye tracking data were provided by Tobii Pro Glasses 2, a head-mounted eye

tracker. The gaze and scene camera video were captured through the Tobii SDK and

processed in real-time on NVIDIA Jetson Xavier thanks to ArGaze software library in a

Python script (Figure 8). Since the eye tracker model is head-mounted, ArUco marker were

placed at various locations within the A320 cockpit to ensure that several of them were

constantly visible in the field of view of the eye tracker camera (Figure 8).

ARGAZE 27

Figure 8

Airbus A320 simulator cockpit with ArUco markers

The ArUco marker pipeline has enabled real-time gaze mapping onto multiple

screens and panels around pilot-in-command position while gaze analysis pipeline was

identifying fixations and matching them with dynamic AOIs related to each instruments.

To identify the relevant AOIs, a 3D model of the cockpit describing the AOI and the

position of the markers has been realized (Figure 9).

Figure 9

AOI and ArUco markers 3D description

ARGAZE 28

ArGaze recording system was delivering the fixations on the Ivy bus middleware

(Buisson et al., 2002) for theAOI, which were then used by the situation awareness agent.

A GUI was showing the mapping for monitoring purposes (Figure 10).

Figure 10

Haiku FOCUS assistant gaze mapping visualization

Experiment results

Although it is not possible to report statistical analysis due to the sample size of the

study (5 pilots), participants were generally positive about using the assistant and found it

particularly useful in manual piloting, as it allowed them to maintain good situational

awareness and the awareness guidance was generally relevant.

Post-processing screen-based eye tracking data

The following use case has integrated ArGaze gaze analysis pipeline to

post-process eye tracking data to export basic and spatial metrics.

Experiment background

The SELICNA project aimed to understand the relationship between

inter-individual differences of trainees and success in air traffic control training. In a

selection context, these inter-individual differences are usually cognitive abilities assessed

by psychometric tests (Mouratille et al., 2022). However, the measurement of perceptual

efficiency may be relevant. It can be tested by modulating task difficulty and measured

with an eye tracker.

ARGAZE 29

Experiment environment

Twenty-six air traffic controllers were recruited at the beginning of their training

period. Participant eye tracking data were recorded with a screen-based Tobii Spectrum

eye tracker (600Hz, Figure 11). The gaze and pupil were collected through the Tobii SDK

and post-processed with the ArGaze software library in a Python script. No ArUco

marker was used since coordinates of the screen are known by the screen-based eye tracker.

After a baseline period of five minutes, participants had to perform a dual-task paradigm.

Two concurrent tasks, an ATC task and a N-back task, were integrated into an adapted

version of a low-fidelity ATC simulation named Labyrinth microworld (Imbert et al., 2014).

Difficulty level was manipulated within the N-back task.

Figure 11

SELICNA project : Experimental environment

Experiment results

ArGaze gaze analysis pipeline has enabled the comparison of the pupil diameters

to the baseline period and to extract fixations duration (Figure 12a). Spatial metrics have

also been calculated such as the Explore-Exploit Ratio (Figure 12b) and K-coefficient.

ARGAZE 30

Figure 12

SELICNA project: some metrics according to conditions

(a) Fixations duration (b) Explore-Exploit Ratio

A physiological composite score was computed with all these metrics. This

composite score and the performance score were classified by a cluster analysis. Three

classes were highlighted : an "Efficient" with an excellent performance and a low

physiological cost, an "All-in" with an excellent performance and a high physiological cost,

and an "Average" with an average performance and a high physiological cost. These classes

were used in an exact logistic regression to predict training difficulties (Figure 13).

However, training difficulties could not be predicted by these classes.

Figure 13

SELICNA project: Performance, physiological composite and training difficulties

ARGAZE 31

Perspectives for improvement

Even if ArGaze addresses many experimental situations involving eye movement

analysis, it still has some limitations and many improvements can be envisioned. In

Duchowski’s "Eye Tracking Methodology" book (Duchowski, 2017), a gaze analysis pipeline

consists of several steps that aren’t yet all included in ArGaze gaze analysis pipeline. For

instance, ArGaze does not enable visual angle conversion of raw eye tracking data. The

next ArGaze version will enable the insertion of such step considering display screen

dimensions, resolution and viewing distance whether for screen-based or head-mounted

devices. It is not possible either to denoise and filter raw eye tracking data. As this would

be a major improvement, the next ArGaze version will enable the insertion of algorithms

like Butterworth smoothing, Savitsky-golay differentiation and velocity thresholding.

ArGaze visualization support could also be improved to help in fine-tuning

parameters at each step of the pipeline and to provide detailed experiments results.

OpenCV is used as default graphic library to draw ArGaze objects state. Future

developments plan to enable users to select the most suitable graphic engine according to

the required drawing performance (like OpenGL) or to use their own. There is no plotting

support but this could be enabled in further versions to provide ready-made MatplotLib

exportation at each pipeline step.

Comparing gaze analysis algorithms or proving their reliability is very important to

consolidate any experiment results. As ArGaze proposes a unified pipeline, it would be

particularly adapted to build bench marking support based on Gold Standard datasets.

Whether through standard image processing or recent machine learning technologies

and specifically fast single stage object detectors (.i.e Yolo, Diwan et al., 2023, Shafiee

et al., 2017) many objects can be detected in a live video stream, enabling dynamic AOI to

be defined for gaze mapping or reference image mapping. It is possible to reconstruct a 3D

scene through the detection of invariants in an image, but this comes at a cost. If the scene

is specific, it will require specific supervised learning, and tagging images with the AOI or

ARGAZE 32

objects one would like to detect takes time. ArGaze has been designed in such a way that

it is possible to incorporate other types of detection into the pipeline.

Setting up an ArGaze configuration file and writing the Python script that will

load it requires some programming skills. Having a GUI editor to create its own gaze

analysis pipeline and even more, describe where AOI are in a 2D or 3D scenes, would be a

great tool accessible to non-programmers. Another feature of such GUI would be to create

custom dashboard to monitor any processed gaze metrics. ArGaze is designed to be

integrated into such application, even if its development is not planned yet.

Finally, the broaden discussion, maybe the implementation of open eye tracking

analysis would facilitate the development of a structured community and advance the

adoption of an open science approach for eye tracking.

Acknowledgement

This work was partially done as part of the HAIKU project. This project has

received funding from the European Union’s Horizon Europe research and innovation

programme HORIZON-CL5-2021-D6-01-13 under Grant Agreement no 101075332. The

authors wish to acknowledge our beta testers from l’Ecole de l’Air et de l’Espace (Prof.

Camachon & Dr. Vantrepotte) and Reims ACC (Mrs Rassel & Mrs Bourgouin).

ARGAZE 33

Table 1

Environmental assessment.

Topics Device Interface Integration Mapping

Softwares

L
as

t
u

p
d

at
e

S
cr

ee
n

-b
as

ed

H
ea

d
-m

o
u

n
te

d

L
ib

ra
ry

A
P

I

G
U

I
o

ffl
in

e

G
U

I
o

n
li

n
e

D
at

a
ag

n
o

st
ic

F
re

e

M
u

lt
i-

p
la

tf
o

rm

E
x

te
n

si
b

le

S
cr

ee
n

E
n

v
ir

o
n

m
en

t

Tobii 2023

PupilLabs 2024 - - 1

Gazealytics 2023

PyGaze 2019

PyTrack 2023

OGAMA 2022

BeGaze 2014

EyetrackingR 2015

iMotions 2024 2 3

EyeMMV 2019

Gazepoint 2014

Legend:

available for post and real-time processing

available for post processing only

not available

- not relevant

1 Available with real-time API combined with Real-time Screen Gaze package (PupilLabs, 2024d).
2 iMotions R library enables notebooks to generate metrics (iMotions, 2024d).
3 An online version of iMotions is available for website studies (iMotions, n.d.).

ARGAZE 34

Table 2

Output assessment.

Topics Features and metrics Experiment Outputs

Softwares

P
ri

m
ar

y

B
as

ic

S
p

at
ia

l

S
eq

u
en

ti
al

B
eh

av
io

ra
l

T
em

p
o

ra
l

S
ta

ti
st

ic
al

D
at

a

V
is

u
al

is
at

io
n

Tobii

PupilLabs 1

Gazealytics

PyGaze

PyTrack 2

OGAMA 3

BeGaze

EyetrackingR

iMotions

EyeMMV

Gazepoint

Legend:

available for post and real-time processing

available for post processing only

not available

- not relevant

1 PupilLabs have tutorials about how to exploit real-time raw gaze data and primary

features so it would be possible to build any real-time metrics.
2 PyTrack extracts reading behavior.
3 OGAMA has an event database but there is no temporal analysis feature.

ARGAZE 35

References

Bafna, T., & Hansen, J. P. (2021). Mental fatigue measurement using eye metrics: A

systematic literature review. Psychophysiology, 58 (6), e13828.

Begaze. (2014). Manual. Version 3.4. SensoMotoric Instruments.

https://psychologie.unibas.ch/fileadmin/user_upload/psychologie/Forschung/N-

Lab/SMI_BeGaze_Manual.pdf

Buisson, M., Bustico, A., Chatty, S., Colin, F.-R., Jestin, Y., Maury, S., Mertz, C., &

Truillet, P. (2002). Ivy: A bus software to the development of prototype systems

interactive. ACM International Conference Proceeding Series, 32, 223–226.

Cervera, E. (2020). Gpu-accelerated vision for robots: Improving system throughput using

opencv and cuda. IEEE Robotics & Automation Magazine, 27 (2), 151–158.

Chen, K.-T., Prouzeau, A., Langmead, J., Whitelock-Jones, R. T., Lawrence, L.,

Dwyer, T., Hurter, C., Weiskopf, D., & Goodwin, S. (2023). Gazealytics: A unified

and flexible visual toolkit for exploratory and comparative gaze analysis. Proceedings

of the 2023 Symposium on Eye Tracking Research and Applications, 1–7.

Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2014). Pygaze: An open-source,

cross-platform toolbox for minimal-effort programming of eyetracking experiments.

Behavior research methods, 46, 913–921.

Dehais, F., Peysakhovich, V., Scannella, S., Fongue, J., & Gateau, T. (2015). "automation

surprise" in aviation: Real-time solutions. Proceedings of the 33rd annual ACM

conference on Human Factors in Computing Systems, 2525–2534.

Di Nocera, F., Terenzi, M., Camilli, M., et al. (2006). Another look at scanpath: Distance

to nearest neighbour as a measure of mental workload. Developments in human

factors in transportation, design, and evaluation, -(-), 295–303.

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using yolo:

Challenges, architectural successors, datasets and applications. multimedia Tools

and Applications, 82 (6), 9243–9275.

https://psychologie.unibas.ch/fileadmin/user_upload/psychologie/Forschung/N-Lab/SMI_BeGaze_Manual.pdf
https://psychologie.unibas.ch/fileadmin/user_upload/psychologie/Forschung/N-Lab/SMI_BeGaze_Manual.pdf

ARGAZE 36

Drewes, H., Pfeuffer, K., & Alt, F. (2019). Time-and space-efficient eye tracker calibration.

Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications,

1–8.

Duchowski, A. T. (2017). The gaze analytics pipeline. Eye Tracking Methodology: Theory

and Practice, 175–191.

Duchowski, A. T., Peysakhovich, V., & Krejtz, K. (2020). Using pose estimation to map

gaze to detected fiducial markers. Procedia Computer Science, 176, 3771–3779.

EyeMMV. (2024). Sources. Retrieved March 13, 2024, from

https://github.com/krasvas/EyeMMV

Forbes, S., Dink, J., & Ferguson, B. (2023). Eyetrackingr [R package version 0.2.1].

http://www.eyetracking-r.com/

Foundation, F. S. (2007, June 29). Gnu general public license. Free Software Foundation.

http://www.gnu.org/licenses/gpl.html

Fuhrer, C., Solem, J. E., & Verdier, O. (2021). Scientific computing with python:

High-performance scientific computing with numpy, scipy, and pandas. Packt

Publishing Ltd.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., & Medina-Carnicer, R. (2016).

Generation of fiducial marker dictionaries using mixed integer linear programming.

Pattern Recognition, 51, 481–491.

https://doi.org/https://doi.org/10.1016/j.patcog.2015.09.023

Gazealytics. (2024a). Sources. Retrieved March 13, 2024, from

https://github.com/gazealytics/gazealytics-master

Gazealytics. (2024b). Web-based application. Retrieved March 13, 2024, from

https://www2.visus.uni-stuttgart.de/gazealytics/

Gazepoint. (2024a). User manual. Retrieved March 13, 2024, from http:

//andrewd.ces.clemson.edu/courses/cpsc412/manuals/Gazepoint%20Analysis.pdf

https://github.com/krasvas/EyeMMV
http://www.eyetracking-r.com/
http://www.gnu.org/licenses/gpl.html
https://doi.org/https://doi.org/10.1016/j.patcog.2015.09.023
https://github.com/gazealytics/gazealytics-master
https://www2.visus.uni-stuttgart.de/gazealytics/
http://andrewd.ces.clemson.edu/courses/cpsc412/manuals/Gazepoint%20Analysis.pdf
http://andrewd.ces.clemson.edu/courses/cpsc412/manuals/Gazepoint%20Analysis.pdf

ARGAZE 37

Gazepoint. (2024b). Website. Retrieved March 13, 2024, from

https://www.gazept.com/product/gazepoint-analysis-professional-edition-software/

Ghose, U., Srinivasan, A. A., Boyce, W. P., Xu, H., & Chng, E. S. (2020). Pytrack: An

end-to-end analysis toolkit for eye tracking. Behavior research methods, 52,

2588–2603.

Haiku. (2023). Haiku project. Haiku consortium. Retrieved November 12, 2023, from

https://haikuproject.eu/

Hoffman, J. E. (2016). Visual attention and eye movements. Attention, 119–153.

Howse, J. (2013). Opencv computer vision with python (Vol. 27). Packt Publishing

Birmingham.

Imbert, J.-P., Hodgetts, H. M., Parise, R., Vachon, F., & Tremblay, S. (2014). The laby

microworld: A platform for research, training and system engineering. Proceedings of

the Human Factors and Ergonomics Society Annual Meeting, 58, 1038–1042.

iMotions. (2024a). Api. Retrieved March 13, 2024, from

https://imotions.com/products/imotions-lab/developers/api/

iMotions. (2024b). Gaze mapping. Retrieved March 13, 2024, from

https://imotions.com/blog/learning/best-practice/gaze-mapping/#gaze-mapping-

solves-the-problem

iMotions. (2024c). Lab. Retrieved March 13, 2024, from

https://imotions.com/products/imotions-lab/

iMotions. (2024d). R-notebooks. Retrieved March 13, 2024, from

https://imotions.com/products/imotions-lab/developers/r-notebooks/

iMotions. (n.d.). Online. https://imotions.com/products/imotions-online/

Jayawardena, G. (2022). Introducing a real-time advanced eye movements analysis

pipeline. 2022 Symposium on Eye Tracking Research and Applications, 1–2.

Johnson, R. E., & Foote, B. (1988). Designing reusable classes. Journal of object-oriented

programming, 1 (2), 22–35.

https://www.gazept.com/product/gazepoint-analysis-professional-edition-software/
https://haikuproject.eu/
https://imotions.com/products/imotions-lab/developers/api/
https://imotions.com/blog/learning/best-practice/gaze-mapping/#gaze-mapping-solves-the-problem
https://imotions.com/blog/learning/best-practice/gaze-mapping/#gaze-mapping-solves-the-problem
https://imotions.com/products/imotions-lab/
https://imotions.com/products/imotions-lab/developers/r-notebooks/
https://imotions.com/products/imotions-online/

ARGAZE 38

Kang, Z., & Landry, S. J. (2014). Using scanpaths as a learning method for a conflict

detection task of multiple target tracking. Human factors, 56 (6), 1150–1162.

Krassanakis, V., Filippakopoulou, V., & Nakos, B. (2014). Eyemmv toolbox: An eye

movement post-analysis tool based on a two-step spatial dispersion threshold for

fixation identification. Journal of Eye Movement Research, 7 (1).

Krejtz, K., Duchowski, A., Krejtz, I., Szarkowska, A., & Kopacz, A. (2016). Discerning

ambient/focal attention with coefficient k. ACM Transactions on Applied Perception

(TAP), 13 (3), 1–20.

Krejtz, K., Szmidt, T., Duchowski, A. T., & Krejtz, I. (2014). Entropy-based statistical

analysis of eye movement transitions. Proceedings of the Symposium on Eye

Tracking Research and Applications, 159–166.

Lounis, C., Peysakhovich, V., & Causse, M. (2020). Lempel-ziv complexity of dwell

sequences: Visual scanning pattern differences between novice and expert aircraft

pilots. Eye-Tracking in Aviation. Proceedings of the 1st International Workshop

(ETAVI 2020), 61–68.

Lounis, C., Peysakhovich, V., & Causse, M. (2021). Visual scanning strategies in the

cockpit are modulated by pilots’ expertise: A flight simulator study. PLoS one,

16 (2), e0247061.

Lounis, C. A., Hassoumi, A., Lefrancois, O., Peysakhovich, V., & Causse, M. (2020).

Detecting ambient/focal visual attention in professional airline pilots with a

modified coefficient k: A full flight simulator study. ACM Symposium on Eye

Tracking Research and Applications, 1–6.

Lutz, M. (2013). Learning python: Powerful object-oriented programming. "O’Reilly Media,

Inc."

May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., & Brannan, J. R. (1990). Eye

movement indices of mental workload. Acta psychologica, 75 (1), 75–89.

ARGAZE 39

Moore, K., & Gugerty, L. (2010). Development of a novel measure of situation awareness:

The case for eye movement analysis. Proceedings of the human factors and

ergonomics society annual meeting, 54 (19), 1650–1654.

Mouratille, D., Amadieu, F., & Matton, N. (2022). A meta-analysis on air traffic

controllers selection: Cognitive and non-cognitive predictors. Journal of Vocational

Behavior, 138, 103769.

OGAMA. (2024a). Documentation. Retrieved March 13, 2024, from

http://ogama.net/sites/default/files/pdf/OGAMA-DescriptionV25.pdf

OGAMA. (2024b). Sources. Retrieved March 13, 2024, from

https://github.com/avosskuehler/ogama

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science ‘I&’

Engineering, 9 (3), 10–20. https://doi.org/10.1109/MCSE.2007.58

Palma Fraga, R., Kang, Z., Crutchfield, J. M., & Mandal, S. (2021). Visual search and

conflict mitigation strategies used by expert en route air traffic controllers.

Aerospace, 8 (7), 170.

PupilLabs. (2024a). Documentation. Retrieved March 13, 2024, from

https://docs.pupil-labs.com/

PupilLabs. (2024b). Nerf studio. Retrieved March 13, 2024, from

https://docs.pupil-labs.com/alpha-lab/nerfs/

PupilLabs. (2024c). Pupil core. Retrieved March 13, 2024, from

https://docs.pupil-labs.com/core/software/pupil-capture/

PupilLabs. (2024d). Real-time screen gaze. Retrieved March 13, 2024, from

https://github.com/pupil-labs/real-time-screen-gaze

PupilLabs. (2024e). Reference image mapper. Retrieved March 13, 2024, from

https://docs.pupil-labs.com/enrichments/reference-image-mapper/

PupilLabs. (2024f). Sources. Retrieved March 13, 2024, from https://github.com/pupil-labs

http://ogama.net/sites/default/files/pdf/OGAMA-DescriptionV25.pdf
https://github.com/avosskuehler/ogama
https://doi.org/10.1109/MCSE.2007.58
https://docs.pupil-labs.com/
https://docs.pupil-labs.com/alpha-lab/nerfs/
https://docs.pupil-labs.com/core/software/pupil-capture/
https://github.com/pupil-labs/real-time-screen-gaze
https://docs.pupil-labs.com/enrichments/reference-image-mapper/
https://github.com/pupil-labs

ARGAZE 40

PupilLabs. (2024g). Surface tracking. Retrieved March 13, 2024, from

https://docs.pupil-labs.com/core/software/pupil-capture/#surface-tracking

PyGaze. (2024). Sources. Retrieved March 13, 2024, from

https://github.com/esdalmaijer/PyGazeAnalyser

PyTrack. (2024a). Documentation. Retrieved March 13, 2024, from

https://pytrack-ntu.readthedocs.io/en/latest/index.html

PyTrack. (2024b). Sources. Retrieved March 13, 2024, from

https://github.com/titoghose/PyTrack

Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye

movement control in reading. Psychological review, 105 (1), 125.

Roberts, D., Johnson, R., et al. (1996). Evolving frameworks: A pattern language for

developing object-oriented frameworks. Pattern languages of program design, 3,

471–486.

Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in

eye-tracking protocols. Proceedings of the 2000 symposium on Eye tracking research

& applications, 71–78.

Shafiee, M. J., Chywl, B., Li, F., & Wong, A. (2017). Fast yolo: A fast you only look once

system for real-time embedded object detection in video. arXiv preprint

arXiv:1709.05943.

SmartEye. (2024). Project description. Retrieved March 13, 2024, from

https://www.smarteye.se/solutions/behavioral-research/aviation-aerospace/

Theeuwes, J., Belopolsky, A., & Olivers, C. N. (2009). Interactions between working

memory, attention and eye movements. Acta psychologica, 132 (2), 106–114.

TobiiProLab. (2024a). Assisted mapping. Retrieved March 13, 2024, from

https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping

TobiiProLab. (2024b). Product description. Retrieved March 13, 2024, from

https://go.tobii.com/tobii_pro_lab_product_description

https://docs.pupil-labs.com/core/software/pupil-capture/#surface-tracking
https://github.com/esdalmaijer/PyGazeAnalyser
https://pytrack-ntu.readthedocs.io/en/latest/index.html
https://github.com/titoghose/PyTrack
https://www.smarteye.se/solutions/behavioral-research/aviation-aerospace/
https://connect.tobii.com/s/article/how-to-perform-manual-and-assisted-mapping
https://go.tobii.com/tobii_pro_lab_product_description

ARGAZE 41

TobiiProLab. (2024c). User manual. Retrieved March 13, 2024, from

https://go.tobii.com/tobii_pro_lab_user_manual

Voßkühler, A., Nordmeier, V., Kuchinke, L., & Jacobs, A. M. (2008). Ogama (open gaze

and mouse analyzer): Open-source software designed to analyze eye and mouse

movements in slideshow study designs. Behavior research methods, 40, 1150–1162.

Wang, Y., Wang, L., Lin, S., Cong, W., Xue, J., & Ochieng, W. (2021). Effect of working

experience on air traffic controller eye movement. Engineering, 7 (4), 488–494.

https://go.tobii.com/tobii_pro_lab_user_manual

ARGAZE 42

Appendix

GazeAnalysis submodule

The GazeAnalysis submodule contains ready-to-use algorithms to start using ArGaze.

GazeMovementIdentifiers algorithms

• DispersionThresholdIdentification: implementation of the I-DT algorithm as

described in Salvucci and Goldberg, 2000.

• VelocityThresholdIdentification: implementation of the I-VT algorithm as

described in Salvucci and Goldberg, 2000.

ScanPathAnalyzers algorithms

• Basic: metrics about numbering, summing, averaging values related to fixations

or saccades.

• ExploreExploitRatio: implementation of the explore/exploit ratio algorithm as

described in Dehais et al., 2015. It takes into account saccades, short fixation (80-120 ms),

and long fixations (240-260 ms). When this ratio increase, short fixations and saccades

dominate: it reflects the search for information. When the radio decrease, long fixations

dominate: the individual is considered to exploit or process information, for example in an

instrument.

• KCoefficient: implementation of the K-coefficient algorithm as described in

Krejtz et al., 2016.

• NearestNeighborIndex: implementation of Nearest Neighbor Index algorithm

as described in Di Nocera et al., 2006. This metrics index the level of randomness in the

distribution of eye fixations. It is the ratio between the average of the observed minimum

distances between fixation points and the mean random distance that would be expected if

the distribution was random. A ratio equal to 1 would be a totally random distribution.

According to Di Nocera et al., 2006, the index increase with mental workload, reflecting

more dispersed visual patterns aiming at optimizing promptness to incoming information.

This index can be used online.

ARGAZE 43

AOIMatcher algorithms

• DeviationCircleCoverage: considers the intersection between AOI shape and a

circle based on fixation deviation.

• FocusPointInside: considers the mean point of a fixation.

AOIScanPathAnalyzers algorithms

• Basic: metrics about numbering, summing, averaging values related to AOI

matchings.

• Entropy: implementation of the entropy algorithm as described in Krejtz et al.,

2014.

• KCoefficient: implementation of the K-Modified coefficient algorithm as

described in C. A. Lounis et al., 2020.

• LempelZivComplexity: implementation of Lempel-Ziv complexity algorithm as

described in C. Lounis et al., 2020.

• NGram: Implementation of N-Gram algorithm as proposed in C. Lounis et al.,

2021.

• TransitionMatrix: Implementation of transition matrix probabilities and

density algorithm as described in Krejtz et al., 2014.

GazePositionCalibrator algorithms

• LinearRegression: implementation of linear regression algorithm as described

in Drewes et al., 2019.

	Introduction
	State of the art
	Environmental assessment
	Output assessment
	Current shortcomings

	ArGaze software library
	Design foreword
	Computing environment
	Distribution
	Dependencies
	Hardware requirements

	Gaze analysis pipeline architecture
	Timestamped gaze positions as context
	Rectangular frame as main interface
	AOI management as frame layers
	Configuration and execution
	Recording
	Visualization
	Optional pipeline steps
	Scripting pipeline access
	External gaze analysis libraries

	Addressing real time gaze mapping in complex geometry workspace
	Camera frame as main interface
	ArUco marker technology as a submodule

	Cases studies
	Post-processing head-mounted eye tracking data
	Experiment background
	Experiment environment

	Real time head-mounted eye tracking interactions
	Experiment background
	Experiment environment
	Experiment results

	Post-processing screen-based eye tracking data
	Experiment background
	Experiment environment
	Experiment results

	Perspectives for improvement
	GazeMovementIdentifiers algorithms
	ScanPathAnalyzers algorithms
	AOIMatcher algorithms
	AOIScanPathAnalyzers algorithms
	GazePositionCalibrator algorithms

